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Abstract

In this paper we introduce the walk polynomial to find the number of walks of different lengths in a simple connected
graph. We also give the walk polynomial of the bipartite, star, wheel, and gear graphs in closed forms.
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1 Introduction

Several graph polynomials have been introduced so far, as the chromatic polynomial [2], the Tutte poly-
nomial, the Hosoya polynomial, and the M-polynomial. All these polynomials play important roles in graph
theory, particularly due to their applications. The chromatic polynomial counts the number of distinct ways to
color a graph with a number of given colors. The Tutte polynomial [5] became popular because of its universal
property that any multiplicative graph invariant with a deletion-contraction reduction must be an evaluation of it.
The Hosoya polynomial [4] counts the number of paths of different lengths in a molecular graph, and now plays
a key role to find distance-based topological indices. The M-polynomial [3] plays a crucial role for degree-based
topological indices parallel to the role the Hosoya polynomial plays for distance-based invariants.
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In this paper we introduce the walk polynomial to find the number of walks of different lengths in a graph.
We not only give a way of computing it but also give walk polynomial of the bipartite, star, wheel, and gear
graphs.

2 Preliminaries

A graph G is a pair (V,E), where V = {vy,v2,...,v,} is the set of vertices and E = {ej,e2,...,vy} is the set of
edges. An edge e between two vertices u and v is denoted by e = (u,v).

A path from a vertex v to a vertex w is a sequence of vertices and edges that starts from v and stops at w. The
number of edges in a path is the length of that path. A graph is said to be connected if there is a path between
any two of its vertices. The distance d(u,v) between two vertices u, v of a connected graph G is the length of a
shortest path between them. The diameter of G, denoted by d(G), is the longest distance in G.

Definition 2.1. A walk between two vertices 1 and v of G is finite alternating sequence u = vy, ey, vy, e2,Vv2,€3,V3,.
v of vertices and edges of G such that the edge e; joins the vertices v;_; and v;.

Theorem 2.2. [/] If A is the adjacency matrix of simple graph G, then the entry a;; € AK is the number of
different walks of length k between the vertices i and j.

In the following we introduce the walk polynomial as a new graph invariant, a function which assigns a
single value to all isomorphic graphs.

Definition 2.3. The walk polynomial in variable x of a simple connected graph G is defined as

d(

a

W (G,x) = ( Z aij—tr(Ak))xk,

1 a,-jEAk

N =

k

where A is the adjacency matrix of G.

3 Main Results

In this section we give the walk polynomial of the complete bipartite, star, wheel, and gear graphs.
First of all we give the walk polynomial of the complete bipartite graph K, ;.

Bipartite graph K> 4

Theorem 3.1. The walk polynomial of the complete bipartite graph Ky, ,,m >2,n> 1, is W (Kyp) = mnx" +
2 (m+n—2)x%.
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Proof. Since the diameter of K, , is 2, we need only two matrices, the adjacency matrix A and its square matrix
A?. In order to give the total number of walks of lengths 1 and 2, we first give the general forms of A and A
The (m+n) x (m+ n) adjacency matrix corresponding to K, , is

Om,m Jm,n
A= ( Jrim 0”="> 7

where O and J are respectively matrices of zeros and ones. It is better to see the adjacency matrix of the bipartite
graph ky 4:

001111

001111

110000

110000

110000
110000

Since the upper triangular part of the adjacency matrix A is the matrix J,, ,, the sum of entries of this matrix is
mn. Thus the number of all walks of length 1 in J,, , is wi = mn. Similarly, the general form of A?is

A2 _ nJm,m Om,n
0,{17,1 mlyp )’

where n(J,,,,) represents the multiplication of J with the number n. The following is the second power of the
adjacency matrix of the bipartite graph k 4.

440000
440000
002222
002222
002222
002222

The number w; of walks of length 2 in K,,, , is wy = %[the sum of entries of 1y, —17(nJym)] + % [the sum of entries of mJ,,
tr(mly)) = 3n(m®) —n(m)] + 3[m(n*) —m(n)] = 2 [m+n—2]. This completes the proof. O

The following result gives the walk polynomial of the star graph S,,.

5

2

Star graph Sg
Theorem 3.2. Let S, represent the star graph. Then %/ (S,) = (n— 1)x" + 1 (n* = 3n+2)x%.

Proof. Since the diameter of §,, is 2, we need only two matrices, the adjacency matrix A and its square matrix

A2, each of order n x n:
O17 Jip
A= ’ k ,
(Jlel Onfl,nfl
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where O and J are matrices of zeros and ones, respectively. You can see the adjacency matrix of S7:

0111111
1000000
1000000
A=1]11000000
1000000
1000000
1000000

Since the upper triangular part of the adjacency matrix A is the matrix J; ,,—1, the sum of entries of this matrix
is n— 1. Thus the number of all walks of length 1 in J; ,—1 is w; = n — 1. Similarly, the general form of A% is

A2 ((”— DJi1 Oy >

T
Ol,n—l Jn—1n-1

where n(J; ;) represents the multiplication of J; ; with the number n — 1. The following is the second power of
the adjacency matrix of S7.

6000000
0111111
0111111
A*=]0111111
0111111
0111111
0111111

Note that the walks of length 2 the contribution comes only from the matric J,_1 ,—1, and in this case the sum of
all entries of this matrix is (n — 1)2. Now the number of walks of length 2 in S, is

1
w2 =5 [the sum of entries of J,—1 1 —tr(Jp—1,-1)]

= M= 17~ (n—1)]
1
= §[n2—3n+2],

and the proof is finished. 0

In the following we are going to give walk polynomial of the wheel graph W,,.

Wheel graph Wg

Theorem 3.3. The walk polynomial of wheel graph is W (W) = (2n—2)x' 4+1/2(n? 4 3n —4)x? for n > 3 with
2n—?2 edges and n vertices.
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Proof. Here, again, the diameter of the wheel graph is 2. So, again, we need just two matrices, the adjacency
matrix A and its square A?. The adjacency matrix corresponding to W, is A = (a; ), where

0,i=j
I, i=lorj=1
ajj = 1,j:i+lori:j—|—1
1, i=2,j=nandi=n,j=2
0, otherwise.

For better understanding, please the following adjacency matrix of W5.

0111111
1010001
1101000
A=11010100
1001010
1000101
1100010

You can see that there are three types of entries where nonzero entries appear; the nonzero entries are actually
Is. The first type of entries appear at positions where either i = 1 or j = 1, and their count is 2(n — 1); The
second type of entries appear at positions where either i = j+ 1 or j = 1+ 1, and their count is 2((n — 1) — 1);
The third type of entries appear at positions where either i =2, j = n or i = n, j = 2, and their count is 2. You
may observe that all the entries of main diagonal are 0. So, the number of all distinct walks of length 1 in W, is
wi = %(2(n—1))+2((n—1)—1)) +2 =2(n— 1). The upper triangular entries of A> = (b;;) are

I, j=i+1,i=2,....n—1

,i=1,j=2,....n
, J=i+3,...i+(n—4),2<i<n-3)i+n—4<n

The following is A% of W5.

6222222
2312121
2131212
A’=12213121
2121312
2212131
2121213

Now we give the sum of all the entries: and the first type of entries are all 1s and appear at the positions
where j =i+ 1, and their count is (n —2). The second type of entries are all 1s and appear at the positions
where i = 2, j = n, and their count is 1. The third type of entries are all 2s and appear at the positions where
J=1i+2,i =2 and their count is (n — 3); The fourth type of entries are all 2s and appear at the positions
wherei = 2, j = n— 1, and their count is 1; the fifth type of entries are all 2s and appear at the positions where
i =3,j=n—1, and their count is 1; the sixth type of entry is are all 2s and appear at the positions where
i=1,j=2,....n, and their count is (n — 1); the seventh type of entries are all 1s and appear at the positions
where j=i+3,...,i+(n—4),2<i<n—3,i+n—4<n, and their count is Y% >(n —i). You may observe
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that all the entries are of upper triangular entries. So, the number of all distinct walks of length 2 in W, is
wr=((n=2)+1+(n-3)+1+1+(n—1)+Y; (n—i)=1(n>+3n—4) -

In the following we are going to give walk polynomial of the gear graph G,,.

Gear graph Gg

Theorem 3.4. The walk polynomial of the gear graph G,,n > 6, is

n*+7n
2

n3 + 15n% 4+ 24n

W (G,) =3nx' +( 5

)%+ (3n* + 12n)x° + ( )xt,

Proof. Since the diameter of the gear graph is 4, we need four matrices, A, A% A3, and A%,

Walks of lengths 1: Since only the upper-triangular entries contribute towards the walk polynomial, we give
only the nonzero upper-triangular entries of the (2n+ 1) x (2n+ 1) adjacency matrix A = (a;;) of G:

1,i=1,....2n—1,j=i+1
1,i=1,j=2n

1, i=odd,i<2n+1,j=2n+1
0, otherwise.

aij:

Let us have a look at the adjacency matrix of G7:

010000000000011
101000000000000
010100000000001
001010000000000
000101000000001
000010100000000
000001010000001
A=1]1000000101000000
000000010100001
000000001010000
000000000101001
000000000010100
000000000001011
100000000000100
101010101010100

You can see that there are three types of entries where nonzero entries appear; the nonzero entries are actually
1s. The first type of entries appear at positions where i = 1,...,2n—1 and j =i+ 1, and so their count is 2n — 1;
the second type of entries appear at positions where i = 1 and j = 2n, and so their count is 1; the third type of
entries appear at positions where 7 is odd and is less than 2n+ 1 and j = 2n+ 1, and so their count is n. So, the
number of all distinct walks of length 1 in G, is w; = ((2n— 1)+ 1+n) = (3n).
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Walks of lengths 2: Now we find walks of lengths 2. The upper triangular entries of A> = (b; ;) are

27
17
27
17
17
]‘7
2
1

I

)

For better understanding you may have a look at the walks of lengths 2 in the matrix A% of G7.

i=odd, 1 <i<(2n—3),j=i+2
i=even,2<i<(2n—2),j=i+2

i=even,2<i<(2n),j=2n+1

i=odd,1<i<(2n—5),j=it+d4
i=o0dd,1<i<(2n—-7),j=1i+6

i=odd, 1 <i<3,j=i+8
i=1,j=2n-1
i=2,j=2n

302010101010200
020100000000012
203020101010100
010201000000002
102030201010100
000102010000002
101020302010100
000001020100002
101010203020100
000000010201002
101010102030200
000000000102012
201010101020300
010000000001022
020202020202027
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Now we give the sum of all these entries. The first type of entries are all 2s and appear at positions where i is
oddand 1 <i < (2n—3),j=i+2, and their count is (n — 1). the second type of entries are all 1s and appear at
positions where i is even and 2 < i < (2n—2) and j = i+ 2, and their count is (n — 1); the third type of entries
are all 2s and appear at positions where i is even and 2 < i < (2n) and j = 2n+ 1, and their count is n; the fourth
type of entries are all 1s and appear at positions where i is odd and 1 < i < (2n—35) and j = i+ 4, and their
count is n — 2; the fifth type of entry is are all 1s and appear at positions where i is odd and 1 <i < (2n—7) and
J = i+6, and their count is (n — 3); the sixth type of entries are all 1s and appear at positions where i is odd and
1 <i<3and j=i+8, and their count is (n —4); the seventh type of entries are all 2s and appear at positions
where i = 1, j = 2n — 1, and their count is 1. The eighth type of entries are all 1s and appear at positions where

i =2, j=2n, and their count is 1. So, the number of all distinct walks of length 2 is w,

Walks of lengths 3: In order to find walks of length 3, we need upper triangular entries of the matrix A>:

)

9

)

5
3
3
Cij = 2
2
5
n

\

1<i<(2n—1),j=i+1
1<i<3,j=i+(2n-3)
1<i<2n-3,j=i+3
1<i<2n-5,j=i+5
1<i<2n—-17,,j=i+7
i=1,j=n—1

+4, iisodd,1 <i<2n+1,j=2n+1
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The following is the matrix A® of G.

0503020202030511
505030202020300
0505030202020311
305050302020200
0305050302020211
203050503020200
0203050503020211
A=1202030505030200
0202030505030 211
202020305050300
0202020305050311
302020203050500
0302020203050511
503020202030500
110110110110110110110 0

Now we give the sum of all entries of above diagonals. The first type of entries are 2s. These entries appear in
n —4 secondary diagonals, and the entries appear as follows:

2, 1<i<2n—5,j=i+5
2, 1<i<2n—17,j=i+7
Cij:

2, 1<i<5,j=i+(2n—5)

Since the number of 2s appearing at these positions is n(n — 4), their sum is 2n(n —4).

The second type of entries are 5s. These numbers appear on secondary diagonal with 1 <i <2n—1 and
Jj =141, and their count is 2n — 1. Moreover, one 5 appears at the position where i = 1, j = 2n. Since the total
number of 5s is 2n, their sum is 10n.

The third type of entries are 3s. These entries appear only in 2 secondary diagonals, and their positions are:

o3 1<i<3j=it(2n-3)
U3, 1<i<2n—3,j=i+3

Since the total number of 3s is 2x, their sum is 6n.

The fourth type of entries are n + 4s and appear at positions where i is odd and 1 <i<2n+1and j=2n+1.
Since their count is n, the sum of these numbers is n(n+4).

Finally, the number of all distinct walks of length 3 in W, is 2n(n—4) + 10n+6n+n(n+4) =3n(n+4).
Walks of lengths 4: Now we go for distinct walks of length 4 by giving upper triangular entries of the matrix
A* = (d;;). You may observe that these entries will form secondary diagonals, which are divided into three

types:
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Type L.

87
n+9,
dij=1 5,
n+8,
47
0,

n+12, i=odd, 1 <i<(2n—3),j=i+2

i=even,2<i<(2n—-2),j=i+2
i=odd,1<i<(2n—5),j=it+4
i=even,2<i<(2n—4),j=i+4
i=odd,1<i<(2n—7),j=i+6
i=even,2<i<(2n—6),j=i+6
otherwise

Type 1I. The last two nonzero secondary diagonals are:

(n+12, i=1,j=2n—1
8, i=2,j=2n
n+9, i=1,j=2n-3
5, i=2,j=2n-2
n+9, i=3,j=2n-1

5, i=4,j=2n

329

Type III. There are n — 5 secondary diagonals such that the first entry of each of these diagonals is n+ 8. In the
following m denotes the number of such diagonals, i.e., 1 <m <n—5.

g n+8, i=odd,1 <i<2(n—m)—5,j=2(m+2)+i
Y 4, i=even,1 <i<2(n—m—2),j=2(m+2)+i

The entries which are not covered yet are the entries of the last column of A*:

dij={2n+8, i=even,2 <i<2n,j=2n+1

The following is the matrix A* of G.

21019016 0150150160190 0
0100 8 050404050 822
19021019016 0150150160 0
0801008 0504040 522
16 019021019016 0150150 0
050801008 05040422
150160190210190160150 0
A= 04050801008 050 422
5015016019021 0190160 0
0404050801008 0522
160150150160190210190 0
050404050380100 822
190160150150160190210 0
08050404050 2801022
0220220220220220220 2277

Now we give the sum of all these upper-triangular entries. There are four diagonals that appear once in the
matrix. The entries of the first such diagonal are n+ 12 and 8 and each of these appear n — 1 times, and so there
sum is (n—1)(n+12) 4+ 8(n— 1). The entries of the second such diagonal are n+9 and 5 and each of these
appear n — 2 times, and so there sum is (n —2)(n+9)+5(n—2). The entries of the third such diagonal are n+9
and 5 and each of these appear 2 times, and so there sum is 2n + 28. The entries of the fourth such diagonal are
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n+ 12 and 8 and each of these appears 1 time, and so there sum is n + 20.

Now we find the sum of those n — 5 diagonals whose entries are same but appear with different number of times.
Each such diagonal has two types of entries, n+ 8 and 4. The largest of these diagonals contains n — 3 entries
of value n+ 8, the next contains n — 4 entries of value n -+ 8, and so on the last such diagonal contains 3 entries.
Thus the sum of all these entries is

Sum; = (n—3)(n+8)+(n—4)(n+8)+---+(3)(n+8)
— (1 8)[(n=3)+ (1= 4) 443
:g(n+8)(n—5).

Similarly, since 4 appears the same number of times the n+ 8 appears, their sum is Sum, = 2n(n—>5).
Since the entries 2n+ 8 in the last column appear n times, their sum is n(2n + 8).
Finally, the sum of all upper-triangular entries of A is

wi=[(n—=1)(n+12)+8(n—1)] + [(n—2)(n+9) +5(n—2)]
o+ [2n-+28] 4 [n+20] + 5 (n+8)(n = 5) + 2n(n —5) + n(2n+8)

1
= —[n® 4 15n% 4-24n).

2
O
Corollary 3.5. The walk polynomial of the Jahangir graph J» ,,,m > 6, is
2 3 2
7 15 24
W (o) = 3mx + (%me + (3 + 12m)8 + (2 “ Rl
Proof. Just substitute m for n in the walk polynomial of the gear graph G,,. O
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