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Abstract
In this paper, boundary layer flow over a moving flat plate with second-order velocity slip, injection and applied magnetic
field is analyzed. The governing partial differential equations are converted in to a nonlinear ordinary differential equation
through an appropriate similarity transformation. The resulting nonlinear equation is solved via homotopy analysis method
(HAM). Errors ranging from 10−7 to 10−10 are reported for a relatively few terms. The effects of the pertinent parameters
on the velocity and the shear stress are presented graphically and discussed. In the absence of magnetic field and the two
slip parameters, the results are found to be in excellent agreement with the available results in the literature. It is expected
that the results obtained will not only provide useful information for industrial applications but also complement the earlier
works.
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1 Introduction

As we know, a moving flat plate in a fluid medium infuses a boundary layer. This kind of flow appears in
several technological industries, such as extrusion process, wire and fiber coating, polymer processing, food-
stuff processing, design of heat exchangers, and chemical processing equipment. The pioneering work of
Sakiadis [1, 2] on the laminar boundary layer over a rigid surface moving in its own plane is quite different
from the flow past a stationary surface (known as the classical Blasius [3] flow). Tsou et al. [4] examined the
results of Sakiadis [2], analytically and experimentally, which includes both laminar and turbulent flow condi-
tions. Vajravelu and Mohapatra [5] investigated the effects of injection, analytically, on the boundary layer flow
past a moving sheet. Takhar et al. [6] analyzed the boundary layer flow due to a moving plate in the presence
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of variable fluid properties. Furthermore, Andersson and Aarseth [7] revisited the Sakiadis flow problem with
the view to assess some crucial misconceptions of the flow behavior and provided numerical results for water
at atmospheric pressure. Ahmad et al. [8] extended the Blasius and Sakiadis problems to nanofluids. Ding
and Xin [9] used fixed-point method (FPM) and obtained semi-analytical solutions for classical Blasius flow.
In recent years, several authors examined the boundary layer flow a past moving sheet or stretching sheet by
considering Newtonian/non-Newtonian fluids with various constraints (Vajravelu et al. [10] and Prasad et al.
( [11]- [13])).

The velocity slip is a phenomenon of non-adherence of the fluid to a solid boundary. More often "apparent
wall slip" occur at solid boundaries for the fluids like slurries, gels, emulsions, and foam. Even for these fluids,
equations of motion are governed by Navier-Stokes equations with no-slip condition. Beavers and Joseph [14],
introduced the concept of a slip flow condition at the boundary. In view of this, Andersson [15] and Wang [16]
considered Newtonian fluid flow past a linearly stretching sheet under partial slip (first order slip/general slip)
condition. Many researchers such as Fang et al. [17], Sajid et al. [18], Matthews and Hill [19] considered partial
slip in the absence of heat transfer, whereas Hayat et al. [20], Yazdi et al. [21], Sahoo [22] considered both
partial slip and heat transfer character. Also, for futher applications see Zhu et al. [23], Mansur et al. [24], Zhu
et al. [25], Sahoo et al. [26] and Hayat et al. [27] . The Maxwell [28] slip condition is widely accepted and
implemented in current rarefied gas flow. However, the Maxwell model is only applicable for the gas flows
where the rarefaction and roughness effects are not evident. Beskok and Karniadakis [29] proposed a classical
second-order slip boundary condition and used it to solve the Navier-Stokes equations for confined fluids at the
microscale and nanoscale. Wu [30] explored a new and advanced second-order slip velocity model. Fang et
al. [31] used this model to obtain exact solutions of the governing Navier-Stokes equations.

In view of these applications, the problem studied here extends the work of Vajravelu and Mohapatra [5]
to the second-order slip velocity at a moving plate. The coupled non-linear partial differential equations gov-
erning the problem are transformed into a system of coupled non-linear ordinary differential equations. The
transformed equations are solved analytically via homotopy analysis method (HAM). Computed results for the
flow characteristics are analyzed. The analysis of the results shows that the fluid flow is appreciably influenced
by the sundry parameters. It is expected that the results obtained will not only provide useful information for
industrial applications but also complement the earlier works.

2 Mathematical formulation

Consider a flow of an incompressible viscous fluid, with constant velocity U∞ past a parallel, porous, semi-
infinite flat plate moving with a constant velocity Uw in the direction opposite to the main stream (see Fig.1,
not drawn to scale). Let the x-axis be taken along the plate, with positive x being the direction of the flow, and
the y-axis is normal to it. Further, let the fluid properties be constant. Under these assumptions, the governing
boundary-layer equations for the flow are

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 −

σB2
0

ρ2x
(u−U∞), (2)

where ν is the kinematic viscosity of the fluid and the other symbols have their usual meanings. The appropriate
boundary conditions are

u =−(Uw +USlip), v = vw(x) =C

√
νU∞

2x
at y = 0, u =U∞ as y→ ∞. (3)
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where u and v are the velocity components in the x-and y-directions, respectively, and USlip is the slip velocity
at the wall. Wu’s [30] slip velocity model (valid for arbitrary Knudsen numbers Kn) is given by

USlip =
2
3

(
3−αl3

α
− 3

2
1− l2

Kn

)
λ (x)

∂u
∂y
− 1

4

(
l4 +

2
K2

n
(1− l2)

)
λ

2(x)
∂ 2u
∂y2 = Aλ (x)

∂u
∂y

+Bλ
2(x)

∂ 2u
∂y2 (4)

where l = min[1/Kn,1], α is the momentum accommodation coefficient with 0≤ α ≤ 1, and λ (x) = λx1/2 is the
molecular mean free path. The molecular mean free path is always positive. Thus, B < 0, and hence the second
term in right hand side of Eq.(4) is positive. There are numerous applications that involve micro-scale devices
including sensors, heat exchangers, and micro-power systems. Based on Knudsen number (Kn ), Beskok and
Karniadakis [29] classified the gas flow in micro channels into four flow regimes: (a) continuum flow regime
(Kn ≤ 0.001) (b) slip flow regime (0.001≤ Kn ≤ 0.1); (c) transition flow regime (0.1≤ Kn ≤ 10.0) and (d) free
molecular flow regime (Kn > 10).

Fig. 1 Physical model with coordinate system. δ1 represents the thickness of the boundary layer

The stream function and the similarity variables can be written as

η =

√
U∞

2νx
y, ψ(x,y) =

√
2νxU∞ f (η). (5)

Now, the velocity components can be expressed as

u =U∞ f ′(η),v =−
√

νU∞

2x
[ f (η)−η f ′(η)]. (6)

Hence, the mass transfer velocity at the wall becomes

vw(x) =−
√

νU∞

2x
f (0). (7)

Using (5) and (6) in equations (1)-(3), we get

f ′′′+ f f ′′−Mn( f ′−1) = 0 (8)

with the boundary conditions

f (0) =−C, f ′(0) =−λ1− γ f ′′(0)−δ f ′′′(0), f ′→ 1 as η → ∞, (9)
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where C is the wall mass transfer parameter, λ1 =
Uw
U∞

is the velocity ratio parameter, γ is the first-order velocity

slip parameter with 0 < γ = A
√

U∞

2ν
and δ is the second-order velocity slip parameter with 0 > δ = BU∞

2ν
and

Mn =
σB2

0
ρU∞

is the magnetic parameter.

The physical quantity of interest is the skin friction coefficient C f which takes the form

C f =
τwx

ρU2
w
, (10)

where τw is the wall skin friction, given by

τw = µ

(
∂u
∂y

)
y=0

. (11)

From Eq.(5), the dimensionless skin friction coefficient becomes√
Re
2

C f = f ′′(0), (12)

where Re = Ux
ν

is the local Reynolds number.

3 Analytic solution via homotopy analysis method

For obtaining solution to the problem, we turn to homotopy analysis method (HAM). In 1992, Liao proposed
HAM to serve as a general analytical method for solving nonlinear problems [32]. The accuracy and robustness
of the HAM for solving nonlinear boundary value problems has been repeatedly confirmed in a wide range
of papers, including: Lane-Emden equation [33], time-dependent Michaelis-Menton equation [34], non-local
Whitham equation [35], and Zakharov system [36] to name a few. Here we outline the solution method and later
discuss the convergence and accuracy of the HAM solution.

For the present problem, we choose the auxiliary linear operator L as

L =
∂ 3

∂η3 +β
∂ 2

∂η2 , (13)

with an initial approximation to f (η) as

f0(η) = η +
λ1 +1

β − γβ 2 +δβ 3 e−βη −
(

C+
λ1 +1

β − γβ 2 +δβ 3

)
, (14)

where β > 0 is a convergence control parameter to be chosen later. From Eq.(8), we define the nonlinear operator
N as

N [ f̂ (η ,q, h̄,β )] =
∂ 3 f̂ (η ,q, h̄,β )

∂η3 + f̂ (η ,q, h̄,β )
∂ 2 f̂ (η ,q, h̄,β )

∂η2 −Mn

(
∂ f̂ (η ,q, h̄,β )

∂η
−1

)
. (15)

The so-called zeroth-order deformation equation is

(1−q)L [ f̂ (η ,q, h̄,β )− f0(η)]−qh̄N [ f̂ (η ,q, h̄,β )] = 0, (16)

with boundary conditions

f̂ (0,q, h̄,β ) =−C, f̂ ′(0,q, h̄,β ) =−λ1− γ f̂ ′′(0,q, h̄,β )−δ f̂ ′′′(0,q, h̄,β ), f̂ ′(∞,q, h̄,β ) = 1, (17)
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where q ∈ [0,1] is the embedding parameter, h̄ 6= 0 is a convergence control parameter, and the prime denotes
differentiation with respect to η . At q = 0 and q = 1, we get respectively

f̂ (η ,0, h̄,β ) = f0(η), and f̂ (η ,1, h̄,β ) = f (η). (18)

Therefore, as q increases from 0 to 1, f̂ (η ,q, h̄,β ) varies continuously from the initial approximation f0(η) to
the solution of interest f (η). By defining

fm(η , h̄,β ) =
1

m!
dm f (η ,q, h̄,β )

dηm

∣∣∣∣
q=0

(19)

we expand f̂ (η ,q, h̄,β ) about q to obtain

f̂ (η ,q, h̄,β ) = f0(η)+
∞

∑
m=1

fm(η , h̄,β )qm. (20)

With prudent choice of the auxiliary linear operator, initial approximation, and convergence control parameters,
the series in (20) can be made convergent at q = 1. The HAM series solution now becomes

f (η) = f0(η)+
∞

∑
m=1

fm(η , h̄,β ) (21)

In order to obtain fm(η , h̄,β ), we differentiate Eq. (16) m times with respect to q , divide by m!, and finally
evaluate at q = 0 to arrive at the so-called mth-order deformation equation

L [ fm(η , h̄,β )−χm fm−1(η , h̄,β )] = h̄

[
f ′′′m−1 +

m−1

∑
n=0

fm−1−n f ′′n −Mn( f ′m−1)+Mn(1−χm)

]
, (22)

with corresponding boundary conditions

fm(0, h̄,β ) = 0, f ′m(0, h̄,β ) = 0, and f ′m(∞, h̄,β ) = 0, (23)

where χm if defined as

χm =

{
0, m≤ 1,
1, m > 1.

(24)

It should be noted that fm(η , h̄,β ) for m ≥ 1 is governed by the linear Eq.(22) with boundary conditions (23).
Thus, the HAM has efficaciously converted the nonlinear Eq. (8) with relevant boundary conditions into an
infinite series of linear sub-problems, which can be solved.

4 Convergence region and the error analysis

As pointed out by Liao [37], the convergence rate and the convergence region of the HAM series solution is
strongly tied to the convergence control parameter. Therefore, the optimal solution is obtained vis-á-vis optimal
choice of the convergence control parameter. In 2007, Yabushita et al. [38] suggested squared residual error
as a means to determine the optimal convergence-control parameter in the framework of the HAM. The exact
squared residual error for the mth-order solution is defined as

Em(h̄,β ) =
ˆ

∞

0
(N [ fm(η , h̄,β )])2dη . (25)
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In practice, it is often too computationally demanding to evaluate the integral in (25), even for lower order
approximations. Alternatively, we make use of an average squared residual error

Em(h̄,β ) =
1

N +1

N

∑
i=0

(N [
m

∑
j=0

f j(ηi, h̄,β )])2, (26)

where ηi = i∆η , and N is a positive integer.

Notice that the series in (21) gives a family of solutions in two parameters, h̄ and β .We may further reduce
computation time by selecting an appropriate value of β and minimizing the error function (26) over one param-
eter, h̄. It should be reiterated that the HAM provides considerable freedom in selecting the values of h̄ and β ,
as to ensure convergence of the series solution. On selecting an appropriate value of β , the reader is referred to
Liao [39]. In that work, Liao presents a HAM solution to the Blasius flow problem and finds admissible values
of β to be β > βc, where β ≈ 2.5. For computational purposes, we set β = 3 and minimize the error function
(26) to obtain the optimal value of h̄.

Fig. 2 Average square residual error versus order of approximation for: (I) Mn = 15, C = 0.001, λ1 = 0.3, γ = 1.0, and
δ =−2.0, (II) Mn = 20, C = 0.01, λ1 = 0.2, γ = 0.5, and δ =−0.5, (III) Mn = 10, C = 0.1, λ1 = 0.1, γ = 0.1, and
δ =−1.0.

We consider the following three sets of values for the parameters:

(I) Mn = 15, C = 0.001, λ1 = 0.3, γ = 1.0, and δ =−2.0,

(II) Mn = 20, C = 0.01, λ1 = 0.2, γ = 0.5, and δ =−0.5,

(III) Mn = 10, C = 0.1, λ1 = 0.1, γ = 0.1, and δ =−1.0,

and calculate the 10th-order HAM solution with β = 3. The optimal values for the convergence control parameter
h̄ are found to be, I: h̄=−0.17916 , II: h̄=−0.24102 , and III: h̄=−0.30055 . In Fig.2, we presented the average
squared residual error against order of approximation for the above three sets of parameters. For the 2nd-order
solution, we observed errors of E2 = 2.8× 10−3, E2 = 5.0× 10−5 , and E2 = 3.9× 10−6 for the parametric
schemes I, II, and III, respectively. The error decreases as the order of approximation increases, reaching errors
of E10 = 1.9×10−6 , E10 = 1.1×10−7 , and E10 = 1.5×10−9 for schemes I, II, and III, respectively.
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5 Results and discussion

Solutions to the governing Eq. (8) with associated boundary conditions (9) are obtained using the HAM. The
mathematical computations were executed using Mathematica 9.0. To confirm the accuracy of the present re-
sults, we compare values of the skin friction coefficient f ′′(0) with numerical (obtained by Runge-Kutta method
with shooting technique) and approximate results reported by Vajravelu and Mohapatra [11], for the special case
where the magnetic parameter Mn, first-order velocity slip parameter γ , and second-order velocity slip param-
eter δ are neglected. The results, reported in Table 1, are in excellent agreement. Hence, the outlined solution
method in the paper can be applied to the present problem with confidence.

Table 1 Comparison of skin friction coefficient for different values of C and λ1 in the absence of magnetic parameter Mn
, first-order slip parameter γ , and second-order slip parameter δ .

C λ1
Vajravelu and Mohapatra [11] Present work
Numerical Approximate HAM -h̄ E10

0 0 0.4698 0.4081 0.4694 1.07698 1.8×10−4

0 −0.4 0.3751 0.3398 0.3751 1.06885 1.5×10−6

0 −0.8 0.1490 0.1411 0.1490 1.04524 2.5×10−8

−0.2 0 0.6190 0.5546 0.6190 1.08715 2.2×10−5

−0.2 −0.4 0.4578 0.4198 0.4578 1.07285 1.7×10−7

−0.2 −0.8 0.1757 0.1657 0.1756 1.04966 2.7×10−9

Here we illustrate the effects of the physical parameters on the dimensionless velocity components f (η),
f ′(η) , and dimensionless shear stress f ′′(η). That is, the effects of magnetic parameter Mn, injection parameter
C, velocity ratio parameter λ1, first-order velocity slip parameter γ > 0, and second-order velocity slip parameter
δ < 0, are analyzed graphically. Fig.3 shows the f versus η for different values of Mn and C. It can be seen
that an increase in Mn or C results in a decrease in f . Additionally, f (η) is observed to increase over the entire
domain.

Fig. 3 Similarity profile f (η) for various values of Mn and C . The direction of the arrows represents increasing Mn.

The dimensionless velocity and shear stress profiles for different combinations of parameters are displayed
in Figs. 4-7. From Figs. 4 and 5, it can be seen that increasing the magnetic parameter Mn has the effect of
decreasing the velocity profile, and decreasing the magnitude of the shear stress. Due to an enhanced magnetic
field, a Lorentz force is produced opposite to the flow, causing the velocity profile to decrease. The effects of
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Fig. 4 Dimensionless velocity profile f ′(η) and shear
stress profile f ′′(η) for various values of Mn and γ .

Fig. 5 Dimensionless velocity profile f ′(η) and shear
stress profile f ′′(η) for various values of Mn and λ1.

Fig. 6 Dimensionless velocity profile f ′(η) and shear
stress profile f ′′(η) for various values of δ and C.

Fig. 7 Dimensionless velocity profile f ′(η) and shear
stress profile f ′′(η) for various values of λ1 and C.

mass injection parameter C on the velocity and shear stress profiles are displayed in Figs. 6 and 7. From these
figures we see that higher velocity and higher magnitude of shear stress occur for larger values of C. Physically,
the introduction of mass in to the flow allows the flow to penetrate deeper into the fluid, causing an increase in
velocity.

The influence of velocity ratio parameter λ1 on the velocity and shear stress profiles are shown Figs. 4 and
7. We see that an increase in λ1 results in an increase in the velocity field and increase in magnitude of the shear
stress. From the velocity ratio parameter λ1 =

Uw
U∞

, it is interesting to note that the velocity within the boundary
layer increases as the free stream velocity decreases (i.e. with increasing values of λ1 for a constant Uw ), thereby
causing an increase in the velocity gradient at the surface and increase in skin friction.

The effects of first-order velocity slip parameter γ on the dimensionless velocity and shear stress profiles are
displayed in Fig. 4. From this figure, the velocity field and magnitude of the shear stress decrease for increas-
ing values of γ . Fig. 6 depicts the effects of the second-order velocity slip parameter δ on the dimensionless
velocity and shear stress profiles. From the figure, we see that the velocity field and magnitude of shear stress
decreases with an increase in |δ |.
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Table 2 Values of dimensionless skin friction coefficient − f ′′(0) for different values of Mn, C, λ1, γ , and δ .

λ1 γ δ Mn C − f ′′(0) −h̄ E10

0.1 0.1 −1.0

10
0.0 0.3831367021 0.29298 1.5×10−9

0.1 0.3901923456 0.30055 1.5×10−9

0.2 0.3987005677 0.32451 1.3×10−8

20
0.0 0.2571008233 0.17678 3.4×10−7

0.1 0.2602239164 0.17830 3.1×10−7

0.2 0.2633971893 0.17982 2.9×10−7

0.1 0.1 -2.0

10
0.0 0.1847004307 0.29375 2.9×10−10

0.1 0.1880876345 0.30028 2.8×10−10

0.2 0.1915676774 0.32601 3.1×10−9

20
0.0 0.1267106747 0.18026 9.5×10−8

0.1 0.1281916297 0.18175 9.0×10−8

0.2 0.1296940688 0.18326 8.6×10−8

0.1 0.5 -1.0

10
0.0 0.3362198941 0.29318 1.1×10−9

0.1 0.3420969011 0.30025 1.1×10−9

0.2 0.3481356753 0.32529 1.0×10−8

20
0.0 0.2351151601 0.18126 4.2×10−7

0.1 0.2377247511 0.18272 4.0×10−7

0.2 0.2403706095 0.18420 3.9×10−7

0.2 0.1 -1.0

10
0.0 0.4180362493 0.29300 1.9×10−9

0.1 0.4263973738 0.30067 1.9×10−9

0.2 0.4350306454 0.32440 1.5×10−8

20
0.0 0.2804874862 0.17668 4.1×10−7

0.1 0.2838950790 0.17819 3.8×10−7

0.2 0.2873574604 0.17972 3.5×10−7

To further illustrate the effects of the physical parameters on the surface drag force, the dimensionless skin
friction coefficient − f ′′(0) as a function of different pertinent parameters is displayed in Figs. 8-10. As one
can see in Fig. 8, the magnitude of the skin friction coefficient increases as λ1 increases, but decreases with
increasing Mn. Fig. 9 shows the skin friction coefficient as a function of γ for two values of C. From Fig. 10, we
see that the magnitude of the skin friction coefficient decrease as |δ | increases. The functional dependence of
the skin friction coefficient on C is illustrated in Figs. 9 and 10. It is noticed that the magnitude of skin friction
coefficients is lower when there is no fluid injection in to the boundary layer (C = 0). Additional values for the
dimensionless skin friction coefficient − f ′′(0) are presented in Table 2. This table further illustrates the effects
of the physical parameters on the shear stress at the surface.

6 Conclusions

The viscous flow with second-order velocity slip over a porous moving flat plate subjected to a perpendic-
ular magnetic field is investigated. The governing nonlinear partial differential equation is transformed in to
a nonlinear ordinary differential equation by an appropriate similarity transformation. We solved the resulting
equation analytically by the homotopy analysis method. The influence of various physical parameters on the
velocity field and shear stress are analyzed and discussed. Some of the conclusions are as follows:

• Velocity and shear stress values are lower in the presence of the two slip parameters;

• The presence of mass injection results in higher velocity and skin friction coefficient;
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Fig. 8 Dimensionless skin friction coefficient − f ′′(0)
versus λ1 for different values of Mn.

Fig. 9 Dimensionless skin friction coefficient − f ′′(0)
versus γ for different values of C.

Fig. 10 Dimensionless skin friction coefficient − f ′′(0) versus δ for different values of C.

• The effect of increasing magnetic parameter is to reduce the velocity field and the shear stress, while the
opposite is true with the velocity ratio parameter.

Thus, the inclusion of mass injection and two slip parameters have significant influence on the fluid flow and
shear stress at the surface of the moving plate, as well as in the fluid medium.
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