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Abstract
In this paper we study a (2+1)-dimensional coupling system with the Korteweg-de Vries equation, which is associated
with non-semisimple matrix Lie algebras. Its Lax-pair and bi-Hamiltonian formulation were obtained and presented in the
literature. We utilize Lie symmetry analysis along with the (G′/G)−expansion method to obtain travelling wave solutions
of this system. Furthermore, conservation laws are constructed using the multiplier method.
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1 Introduction

It is well-known that nonlinear partial differential equations (NLPDEs) are extensively used to model many
nonlinear physical phenomena of the real world, which can be seen from the number of research papers published
in the literature. One such NLPDE is the celebrated Korteweg-de Vries (KdV) equation [1]

ut +6uux +uxxx = 0, (1)

which has applications in nonlinear dynamics, plasma physics and mathematical physics. It is an important
equation in scientific fields and in the theory of integrable systems. It describes the unidirectional propagation of
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long waves of small amplitude and has a lot of applications in a number of physical contexts such as hydromag-
netic waves, stratified internal waves, ion-acoustic waves, plasma physics and lattice dynamics [2]. Equation (1)
has multiple-soliton solutions and an infinite number of conservation laws and many other physical properties.
See for example [3–5] and references therein.

Recently focus has shifted to the study of coupled systems of Korteweg-de Vries equations because of their
many applications in scientific fields. See for example [5–9].

However, in this work we study the (2+1)-dimensional coupling system with the Korteweg-de Vries equation
[2], namely

ckdv11ut −6uux−uxxx = 0, (2a)

ckdv12vt −6(uv)x−6uuy−3uxxy− vxxx = 0. (2b)

This system is a (2+1)-dimensional integrable coupling with the Korteweg-de Vries equation, which is asso-
ciated with non-semisimple matrix Lie algebras. In the references [10] and [11], its Lax pair and bi-Hamiltonian
formulation were presented respectively. It should be noted that its bi-Hamiltonian structure is the first example
of local bi-Hamiltonian structures, which lead to hereditary recursion operators in (2+1)-dimensions.

Several methods have been developed to find exact solutions of the NLPDEs. Some of these are the homoge-
neous balance method [12], the ansatz method [13], the inverse scattering transform method [14], the Bäcklund
transformation [15], the Darboux transformation [16], the Hirota bilinear method [17], the simplest equation
method [18], the (G′/G)−expansion method [19, 20], the Jacobi elliptic function expansion method [21], the
Kudryashov method [22], the Lie symmetry method [23–28].

The outline of the paper is as follows. In Section 2 we determine the travelling wave solutions for the system
(2a) using the Lie symmetry method along with the (G′/G)−expansion method. Conservation laws for (2a)
are constructed in Section 3 by employing the multiplier approach [26, 29–37]. Finally concluding remarks are
presented in Section 4.

2 Travelling wave solutions of (2a)

In this section we use Lie symmetry analysis together with the (G′/G)−expansion method to obtain travel-
ling wave solutions of (2a).

2.1 Lie point symmetries and symmetry reductions of (2a)

Lie symmetry analysis was introduced by Marius Sophus Lie (1842-1899), a Norwegian mathematician, in
the later half of the nineteenth century. He developed the theory of continuous symmetry groups and applied it
to the study of geometry and differential equations. This theory contains powerful methods which can be used to
obtain exact analytical solutions of differential equations [23–25]. The theory is called symmetry groups theory
or the classical Lie method of infinitesimal transformations. The symmetry group of a differential equation
is the largest local Lie group of transformations of the independent and dependent variables of the differential
equation that transforms solutions of the differential equation to other solutions. The symmetry group associated
to a differential equation can be obtained by Lie’s infinitesimal criterion of invariance.

The (2+1)-dimensional coupling system with the Korteweg-de Vries equation (2a) is invariant under the
symmetry group with the generator

Γ = ξ
1(t,x,y,u,v)

∂

∂ t
+ξ

2(t,x,y,u,v)
∂

∂x
+ξ

3(t,x,y,u,v)
∂

∂y
+η

1(t,x,y,u,v)
∂

∂u
+η

2(t,x,y,u,v)
∂

∂v
(3)

if and only if

ckdv21 Γ
[3] (ut −6uux−uxxx)|(2a) = 0, (4a)
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ckdv22 Γ
[3] (vt −6(uv)x−6uuy−3uxxy− vxxx)|(2a) = 0, (4b)

where Γ[3] denotes the third prolongation [23] of the generator (3) and the symbol |(2a) means it is evaluated on
equations (2a). The third prolongation Γ[3] is given by

Γ
[3] = Γ+ζ

1
t

∂

∂ut
+ζ

1
x

∂

∂ux
+ζ

1
y

∂

∂uy
+ζ

2
t

∂

∂vt
+ζ

2
x

∂

∂vx
+ζ

1
xxx

∂

∂uxxx
+ζ

1
xxy

∂

∂uxxy
+ζ

2
xxx

∂

∂vxxx
, (5)

with

ζ
1
t = Dt(η

1)−utDt(ξ
1)−uxDt(ξ

2)−uyDt(ξ
3),

ζ
1
x = Dx(η

1)−utDx(ξ
1)−uxDx(ξ

2)−uyDx(ξ
3),

ζ
1
y = Dy(η

1)−utDy(ξ
1)−uxDy(ξ

2)−uyDy(ξ
3),

ζ
2
t = Dt(η

2)− vtDt(ξ
1)− vxDt(ξ

2)− vyDt(ξ
3),

ζ
2
x = Dx(η

2)− vtDx(ξ
1)− vxDx(ξ

2)− vyDx(ξ
3),

ζ
1
xx = Dx(ζ

1
x )−utxDx(ξ

1)−uxxDx(ξ
2)−uxyDx(ξ

3),

ζ
2
xx = Dx(ζ

2
x )− vtxDx(ξ

1)− vxxDx(ξ
2)− vxyDx(ξ

3),

ζ
1
xxx = Dx(ζ

1
xx)−utxxDx(ξ

1)−uxxxDx(ξ
2)−uxxyDx(ξ

3),

ζ
1
xxy = Dx(ζ

1
xx)−utxyDx(ξ

1)−uxxyDx(ξ
2)−uyxyDx(ξ

3),

ζ
2
xxx = Dx(ζ

2
xx)− vtxxDx(ξ

1)− vxxxDx(ξ
2)− vxxyDx(ξ

3),

and Dt , Dx and Dy are the operators of total differentiation defined as

Dt =
∂

∂ t
+ut

∂

∂u
+ vt

∂

∂v
+ · · · ,

Dx =
∂

∂x
+ux

∂

∂u
+ vx

∂

∂v
+ · · · ,

Dy =
∂

∂y
+uy

∂

∂u
+ vy

∂

∂v
+ · · · , (6)

respectively. Expanding (4a) and then splitting on the derivatives of u and v, we obtain the following overdeter-
mined system of linear partial differential equations:

ξ
1
x = 0, ξ

1
y = 0, ξ

1
u = 0, ξ

1
v = 0, ξ

2
u = 0, ξ

2
v = 0, ξ

3
t = 0, ξ

3
x = 0, ξ

2
y = 0

ξ
3
v = 0, η

1
v = 0, η

1
uu = 0, η

2
uu = 0, η

2
vv = 0, η

2
uv = 0, η

1
xu−ξ

2
xx = 0,

2η
1
xu−ξ

2
xx = 0, η

2
xv−ξ

2
xx = 0, η

2
xu +η

1
yu = 0, −3ξ

2
x +ξ

1
t = 0,

4uξ
2
x +2η

1 +η
1
xxu = 0,η1

xxx−η
1
t +6uη

1
x = 0−η

1
u +ξ

3
y +η

2
v −ξ

2
x = 0,

2vξ
2
x +2vξ

3
y +2η

2 +η
2
xxu +2η

1
xyu = 0,12uξ

2
x +6η

1−ξ
2
xxx +3η

1
xxu +ξ

2
t = 0,

ξ
1
t −2ξ

2
x −ξ

3
y −η

2
v +η

1
u = 0,6uη

1
y +6vη

1
x −η

2
t +3η

1
yxx +η

2
xxx +6uη

2
x = 0,

6uξ
2
x +6uξ

3
y −6uη

1
u +6η

1−ξ
2
xxx +3η

2
xxv +ξ

2
t +6uη

2
v = 0.

Solving the above system of partial differential equations, one obtains

ξ
1 =C1 +3C3t, ξ

2 =C2 +C3x, ξ
3 =C4{F(y)− vF ′(y)}, η

1 =−2C3u, η
2 =−C3v,
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where C1, · · · ,C4 are arbitrary constants and F(y) is an arbitrary function of y. Thus the Lie algebra of infinites-
imal symmetries of the system (2a) is spanned by the four vector fields

time translation Γ1 =
∂

∂ t
,

space translation Γ2 =
∂

∂x
,

scaling Γ3 = 3t
∂

∂ t
+ x

∂

∂x
−2u

∂

∂u
− v

∂

∂v
,

Γ4 = F(y)
∂

∂y
− vF ′(y)

∂

∂y
.

We now use these Lie point symmetries to find exact solutions of (2a). The linear combination of the three
symmetries Γ1, Γ2 and Γ4 with F(y) = 1 provides us with the three invariants

f = t− y, g = x− y, u = θ( f ,g), v = ψ( f ,g),

the system (2a) is reduced to a system of partial differential equations of two functions θ and ψ in two indepen-
dent variables f and g;

ckdv41θ f −6θθg−θggg = 0, (7a)

ckdv42ψ f −6(θψ)g +6θθ f +6θθg +3θgg f +3θggg−ψggg = 0. (7b)

System (7a) has the following symmetries

X1 =
∂

∂ f
,

X2 =
∂

∂g
,

X3 = 6 f
∂

∂ f
+(2g+3 f )

∂

∂g
− (4θ +

1
2
)

∂

∂θ
− (8ψ +2θ +

1
2
)

∂

∂ψ
,

Considering the symmetry X = X1 +αX2 given by the linear combination of X1 and X2 we get the invariants

z = g−α f , θ = H(z), ψ = J(z).

This further reduces (2a) to a system of third-order ordinary differential equations in two functions H(z) and
J(z).

ckdv51αH ′+6HH ′+H ′′′ = 0, (8a)

ckdv52αJ′+6(HJ)′+6(α−1)HH ′+3(α−1)H ′′′+ J′′′ = 0, (8b)

where the prime denotes derivative with respect to z.

2.2 Application of the (G′/G)−expansion method

In this section we employ the (G′/G)−expansion method to construct travelling wave solutions of the system
of third order ordinary differential equatons (8a). This method was developed by the authors of [19] and has
been extensively used by researchers. It assumes the solutions of the system (8a) to be of the form

H(z) =
M

∑
i=0

Ai

(
G′(z)
G(z)

)i

, J(z) =
N

∑
j=0

B j

(
G′(z)
G(z)

) j

, (9)
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where G(z) satisfies the second-order ODE given by

G′′+λG′+µG = 0 (10)

with λ and µ being arbitrary constants. The homogeneous balance method between the highest order derivative
and highest order nonlinear term appearing in (8a) determines the values of M and N. The parameters Ai and
B j, i = 0,1, · · · ,M and j = 0,1, · · · ,N need to be determined. In our case the balancing procedure yields M = 2
and N = 2, so the solutions of the system of ordinary differential equations (8a) are of the form

H(z) = A0 +A1(G′/G)+A2(G′/G)2, J(z) = B0 +B1(G′/G)+B2(G′/G)2. (11)

Substituting (11) into (8a) and making use of (10), and then collecting all terms with same powers of (G′/G)
and equating each coefficient to zero, yields a system of algebraic equations. Solving this system of algebraic
equations, using Mathematica, we obtain the following set of values for the constants Ai and B j, i, j = 0,1,2:

A0 =−
1
6
(
α +λ

2 +8µ
)
, A1 =−2λ , A2 =−2,

B0 =
1
6
(α−1)

(
α−2λ

2−16µ
)
, B1 = 4λ (α−1), B2 = 4(α−1).

Substituting these values of Ai and B j into the corresponding solutions (11) of ordinary differential equations
(5), we obtain the following three types of travelling wave solutions of equation (2a):

Case 1: When λ 2−4µ > 0, we obtain the hyperbolic function solutions

u1(t,x,y) = −
1
6
(
α +λ

2 +8µ
)
−2λ

[
− λ

2
+δ1

(
C1 sinh(δ1z)+C2 cosh(δ1z)
C1 cosh(δ1z)+C2 sinh(δ1z)

)]
−2
[
− λ

2
+δ1

(
C1 sinh(δ1z)+C2 cosh(δ1z)
C1 cosh(δ1z)+C2 sinh(δ1z)

)]2

, (12)

v1(t,x,y) =
1
6
(α−1)

(
α−2λ

2−16µ
)
+4λ (α−1)

[
− λ

2
+δ1

(
C1 sinh(δ1z)+C2 cosh(δ1z)
C1 cosh(δ1z)+C2 sinh(δ1z)

)]
+4(α−1)

[
− λ

2
+δ1

(
C1 sinh(δ1z)+C2 cosh(δ1z)
C1 cosh(δ1z)+C2 sinh(δ1z)

)]2

, (13)

where z = x+(α−1)y−αt, δ1 =
1
2

√
λ 2−4µ , C1 and C2 are arbitrary constants.

https://www.sciendo.com


246 C.M. Khalique, I.E. Mhlanga. Applied Mathematics and Nonlinear Sciences 3(2018) 241–254

Fig. 1 Profile of solution (12)

Fig. 2 Profile of solution (13)

Case 2: When λ 2−4µ < 0, we obtain the trigonometric function solutions

u2(t,x,y) = −
1
6
(
α +λ

2 +8µ
)
−2λ

(
− λ

2
+δ2
−C1 sin(δ2z)+C2 cos(δ2z)
C1 cos(δ2z)+C2 sin(δ2z)

)
−2
(
− λ

2
+δ2
−C1 sin(δ2z)+C2 cos(δ2z)
C1 cos(δ2z)+C2 sin(δ2z)

)2

, (14)

v2(t,x,y) =
1
6
(α−1)

(
α−2λ

2−16µ
)
+4λ (α−1)

(
− λ

2
+δ2
−C1 sin(δ2z)+C2 cos(δ2z)
C1 cos(δ2z)+C2 sin(δ2z)

)
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+4(α−1)
(
− λ

2
+δ2
−C1 sin(δ2z)+C2 cos(δ2z)
C1 cos(δ2z)+C2 sin(δ2z)

)2

, (15)

where z = x+(α−1)y−αt, δ2 =
1
2

√
4µ−λ 2, C1 and C2 are arbitrary constants.

Fig. 3 Profile of solution (14)

Fig. 4 Profile of solution (15)
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Case 3: When λ 2−4µ = 0, we obtain the rational solutions

u3(t,x,y) = −
1
6
(
α +λ

2 +8µ
)
−2λ

(
− λ

2
+

C2

C1 +C2z

)
−2
(
− λ

2
+

C2

C1 +C2z

)2

,

v3(t,x,y) =
1
6
(α−1)

(
α−2λ

2−16µ
)
+4λ (α−1)

(
− λ

2
+

C2

C1 +C2z

)
+4(α−1)

(
− λ

2
+

C2

C1 +C2z

)2

.

where z = x+(α−1)y−αt, C1 and C2 are arbitrary constants.

3 Conservation laws for (2a)

In this section we construct conservation laws for our (2+1)-dimensional coupling system with the Korteweg-
de Vries equation (2a). Conservations laws are physical quantities such as mass, momentum, angular momen-
tum, energy, electrical charge, that do not change in the course of time within a physical system. They play a
vital role in the solution process of differential equations. They are significant for exploring integrability and
for establishing existence, uniqueness and stability of solutions of differential equations. Also conservation
laws play an essential role in the numerical integration of partial differential equations, for example, to control
numerical errors and they can be used to construct solutions of partial differential equations.

Several methods have been developed by researchers for constructing conservation laws. These include
the Noether’s theorem for variational problems, the Laplace’s direct method, the characteristic form method by
Stuedel, the multiplier approach, Kara and Mahomed partial Noether approach. The computer software packages
for computing conservation laws have also been developed over the past few decades.

Here we use the multiplier method to find conservation laws of the system (2a), namely

ckdv110E1 ≡ ut −6uux−uxxx = 0, (16a)

ckdv120E2 ≡ vt −6(uv)x−6uuy−3uxxy− vxxx = 0. (16b)

A conservation law of the system (2a) is a space-time divergence such that

DtT +DxX +DyY = 0 (17)

holds for all solutions (u(t,x,y);v(t,x,y)) of the system (2a). The vector (T,X ,Y ) is called the conserved vector
of the system (2a).

We look for second-order multipliers Q1 and Q2, that is, Q1 and Q2 depend on t,x,y,u,v and first and second
derivatives of u and v. The multipliers Q1 and Q2 of the system (2a) have the property that

Q1E1 +Q2E2 = DtT +DxX +DyY, (18)

for all functions u(t,x,y) and v(t,x,y). The determining equations for the multipliers are obtained by solving the
system

ckdv71
δ

δu
[Q1(ut −6uux−uxxx)+Q2(vt −6(uv)x−6uuy−3uxxy− vxxx)] = 0, (19a)

ckdv72
δ

δv
[Q1(ut −6uux−uxxx)+Q2(vt −6(uv)x−6uuy−3uxxy− vxxx)] = 0, (19b)

where δ/δu and δ/δv are the standard Euler-Lagrange operators given by

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
−Dy

∂

∂uy
−D3

x
∂

∂uxxx
−D2

xDy
∂

∂uxxy
+ · · · (20)
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and

δ

δv
=

∂

∂v
−Dt

∂

∂vt
−Dx

∂

∂vx
−Dy

∂

∂vy
−D3

x
∂

∂vxxx
+ · · · , (21)

respectively. Expanding system (19a) using (20) and (21) yields an overdetermined system of partial differential
equations, which after solving with the help of Maple [38], we obtain

Q1 = −x
(

5
2

u3 +uuxx−
1
4
(u2

x−utx)

)
F ′2 (y)−

(
6tux+ x2)F ′1 (y)+ vF4 (y)

−x
(
3u2 +uxx

)
F ′3 (y)− xuF ′4 (y)+6 tuF ′5 (y)+

15
2

vu2 +6tvF1 (y)

+
1
4
((8uxy +4vxx)u+4uxx v+(−2uy−2vx)ux +uty + vtx)F2 (y)

+
1
4
(
10u3 +4uuxx−ux

2 +utx
)

F6 (y)+(6uv+2uxy + vxx)F3 (y)

+
(
3u2 +uxx

)
F7 (y)+(6tu+ x)F8 (y)+uF9 (y)+F10 (y) , (22)

Q2 =
1
4
(
10u3 +4uuxx−ux

2 +utx
)

F2 (y)+(6tu+ x)F1 (y)

+
(
3u2 +uxx

)
F3 (y)+F4 (y)u+F5 (y) , (23)

where Fi, i = 1, · · · ,10 are arbitrary functions of y. As a result the ten conserved vectors are calculated via a
homotopy formula [38] and are given by

T1 =6uvF (y) t−3xF ′ (y) tu2−ux2F ′ (y)+ vF (y)x,

X1 =3u2x2F ′ (y)− xuxF ′ (y)+uxx x2F ′ (y)−2uxy F (y)x− vxx F (y)x

−12uuxy F (y) t−6uvxx F (y) t−6vuxx F (y) t +6vx ux F (y) t−6vuF (y)x

−3u2
xxF ′ (y) t +6ux uy F (y) t +6uuxx xF ′ (y) t +F (y)vx +uy F (y)

−36vF (y)u2t +12xF ′ (y) tu3,

Y1 =F (y)ux−6uuxx F (y) t−uxx F (y)x−12u3F (y) t +3ux
2F (y) t

−3u2F (y)x;

T2 =
1
16

F (y)vuxxxx +
1

16
F (y)uuty +

7
6

F (y)u2uxy +
1
4

F (y)uuxxxy

+
1

16
F (y)uvtx +

7
12

F (y)u2vxx +
1

16
F (y)uvxxxx−

1
12

F (y)u2
xv+

1
16

F (y)vutx

− 5
8

xF ′ (y)u4 +
5
2

vF (y)u3− 1
16

F (y)uxxx vx +
1
16

uy F (y)ut

− 1
16

uy F (y)uxxx−
3
16

ux F (y)uxxy +
1
16

ux F (y)vt −
1
16

ux F (y)vxxx

+
1

16
F (y)ut vx−

7
12

F ′ (y)u2uxx x+
1
12

uux
2F ′ (y)x− 1

6
uF (y)ux uy

− 1
16

ux F ′ (y)ut x+
1
16

ux F ′ (y)uxxx x− 1
16

uutx F ′ (y)x

− 1
16

uuxxxx F ′ (y)x+
7
6

vF (y)uuxx−
1
6

uF (y)ux vx,

X2 = −
3

16
F (y)uutxxy−

1
2

vu2
xxF (y)− 1

8
uxx F (y)uty−

1
8

uxx F (y)vtx
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− 1
8

vxx F (y)utx−
1
4

uxy F (y)utx−
1
16

F (y)uxxx vt +
1
8

uy F (y)utxx

− 1
16

F ′ (y)u2
t x− 3

16
ut F (y)uxxy +

1
8

ut F (y)vt −
1
16

ut F (y)vxxx

− 1
16

F (y)vutxxx−
1
16

F (y)vutt −
7
12

F (y)u2uty−
1

16
F (y)uvtt −

7
12

F (y)u2vtx

− 1
16

F (y)uvtxxx +
1
6

ux F ′ (y)uut x−5u3uxy F (y)+
1
8

F (y)ux vtxx

−15vF (y)u4 +
1
4

F (y)ux utxy +
1
4

vxx F (y)u2
x−

5
2

u3vxx F (y)+
1
8

vx F (y)utxx

+3xF ′ (y)u5 +
1
2

uxy F (y)u2
x +

1
16

utF ′ (y)uxxx x− 1
6

uF (y)ux vt

− 1
6

F (y)ux vut −
7
6

vF (y)uutx +
5
2

u3uxxF ′ (y)x− 3
4

u2
xF ′ (y)xu2

+
3
2

ux uy F (y)u2 +
3
2

vx ux F (y)u2− 7
2

u2uxx vF (y)+
3
2

vuF (y)u2
x

− 1
4

uxx u2
xF ′ (y)x+

1
2

uxx ux F (y)uy +
7
12

u2utx F ′ (y)x−2uuxx F (y)uxy

+
1
2

uu2
xxF ′ (y)x−uuxx F (y)vxx +

1
2

vx F (y)ux uxx−
1
6

uy F (y)uut

− 1
6

ut F (y)uvx +
1
8

uxx F ′ (y)xutx−
1
8

utxxF ′ (y)ux x

+
1

16
uutt F ′ (y)x+

1
16

uutxxx F ′ (y)x,

Y2 = −
7
12

F (y)u2utx−
1
16

F (y)uutt +
1
8

F (y)ux utxx−
1
16

F (y)uutxxx

− 5
2

u3F (y)uxx +
3
4

u2F (y)u2
x +

1
4

u2
xF (y)uxx−

1
2

uF (y)u2
xx

− 1
16

ut F (y)uxxx−
1
8

uxx F (y)utx−3u5F (y)+
1

16
u2

t F (y)

− 1
6

uF (y)ux ut ;

T3 = − xF ′ (y)u3 +3F (y)u2v+F (y)uuxy +
1
2

F (y)uvxx

+
1
2

F (y)uxx v− 1
2

x
(
F ′ (y)

)
uuxx,

X3 =
1
2
(
F ′ (y)

)
u2

xxx−2uxx F (y)uxy−uxx F (y)vxx−
1
2

F (y)uuty

−6F (y)u2uxy−
1
2

F (y)uvtx−3F (y)u2vxx−
1
2

F (y)vutx +
9
2

xF ′ (y)u4

−18vF (y)u3 +
1
2

uy F (y)ut +
1
2

ux F (y)vt +
1
2

F (y)ut vx

+3F ′ (y)u2uxx x− 1
2

uxF ′ (y)ut x+
1
2

uutx F ′ (y)x

−6vF (y)uuxx,

Y3 = −3u2F (y)uxx +
1
2

ux F (y)ut −
1
2

uF (y)utx−
9
2

u4F (y)

− 1
2

u2
xxF (y) ;
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T4 = −
1
2

u2xF ′ (y)−uvF (y) ,

X4 =2xF ′ (y)u3−6F (y)u2v− 1
2

xF ′ (y)u2
x−2F (y)uuxy

−F (y)uvxx +F (y)ux uy +F (y)ux vx−F (y)uxx v+ xF ′ (y)uuxx,

Y4 = −2u3F (y)+
1
2

u2
xF (y)−uuxx F (y) ;

T5 = (y)v+3 tu2F ′ (y) ,

X5 = −6uuxx tF ′ (y)+ux F ′ (y)−2F (y)uxy−F (y)vxx−6F (y)uv

−12 tu3F ′ (y)+3u2
xtF ′ (y) ,

Y5 = −3u2F (y)−uxx F (y) ;

T6 = −
1

12
uF (y)u2

x +
1
16

uuxxxx F (y)− 1
16

ux F (y)uxxx +
7

12
u2F (y)uxx

+
1

16
ux F (y)ut +

1
16

uF (y)utx +
5
8

u4F (y) ,

X6 = −
7

12
F (y)u2utx−

1
16

F (y)uutt +
1
8

F (y)ux utxx−
1
16

F (y)uutxxx

− 5
2

u3F (y)uxx +
3
4

u2F (y)u2
x +

1
4

u2
xF (y)uxx−

1
2

uF (y)u2
xx

− 1
16

ut F (y)uxxx−
1
8

uxx F (y)utx−3u5F (y)+
1

16
u2

t F (y)

− 1
6

uF (y)ux ut ,

Y6 =0;

T7 =u3F (y)+
1
2

uuxx F (y) ,

X7 = −3u2F (y)uxx +
1
2

ux F (y)ut −
1
2

uF (y)utx−
9
2

u4F (y)

− 1
2

u2
xxF (y) ,

Y7 =0;

T8 =3 tu2F (y)+uxF (y) ,

X8 =F (y)ux−6uuxx F (y) t−uxx F (y)x−12u3F (y) t +3u2
xF (y) t

−3u2F (y)x,

Y8 =0;

T9 =
1
2

u2F (y) ,

X9 = −2u3F (y)+
1
2

u2
xF (y)−uuxx F (y) ,

Y9 =0;
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T10 =F (y)u,

X10 = −3u2F (y)−uxx F (y) ,

Y10 =0.

Remark: Due to the arbitrary functions in the multipliers Q1 and Q2, infinitely many conserved vectors are
obtained for the system (2a).

4 Conclusion

In this paper we studied a (2+1)-dimensional coupling system with the Korteweg-de Vries equation (2a).
Lie point symmetries of (2a) were computed and used to reduce the system to a system of ordinary differential
equations. This ordinary differential equations system was then solved by employing the (G′/G)−expansion
method and as a result travelling wave solutions of (2a) were obtained. The solutions obtained were expressed
in the form of hyperbolic functions, trigonometric functions and rational functions. Some of these solutions
were plotted. Furthermore, conservation laws for the system (2a) were derived by using the multiplier approach.
The significance of conservation laws was explained in the beginning of Section 3.

Acknowledgments

CMK and IEM would like to thank T Motsepa for fruitful discussions. IEM thanks the Faculty Research
Committee of FAST, North-West University, Mafikeng Campus for the financial support.

References

[1] D. J. Korteweg and G. de Vries. On the change of form of long waves advancing in a rectangular canal, and on a new
type of long stationary waves. Phil. Mag., 39:422–443, 1895. 10.1080/14786449508620739

[2] W. X. Ma and B. Fuchssteiner. The bi-Hamiltonian structure of the perturbation equations of the KdV hierarchy. Phys.
Lett. A, 213:49–55, 1996. 10.1016/0375-9601(96)00112-0

[3] A. M. Wazwaz. Integrability of coupled KdV equations. Cent. Eur. J. Phy., 9:835–840, 2011. 10.2478/s11534-010-
0084-y

[4] A. M. Wazwaz. Partial Differential Equations and Solitary Waves Theory. Springer, New York, 2009. 10.1007/978-3-
642-00251-9

[5] A. R. Adem and C. M. Khalique. On the solutions and conservation laws of a coupled KdV system. Appl. Math.
Comput., 219:959–969, 2012. 10.1016/j.amc.2012.06.076

[6] D. S. Wang. Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation. Appl.
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