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Abstract
This paper deals with the Noether’s theory for variable mass system on time scales. The calculus on time scales unifies and
extends variable mass system continuous model and discrete model into a single theory. Firstly, Hamilton’s principle of
the variable mass system on time scales is given. Secondly, based on the quasi-invariance of the Hamilton’s action under
a group of infinitesimal transformations, Noether’s theorem and its inverse theorem of the variable mass system on time
scales are presented. Finally, two examples are given to illustrate the applications of the results.
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1 Introduction

The theory of time scales was born in 1988 with the work of Stefen Hilger in order to unify and generalize
continuous and discrete analysis [1, 2]. The calculus of variations on time scales has been developing rapidly
in the past thirteen years, after the pioneering work of Bohner in 2004 [3]. Cai and Fu established the Noether
symmetries of the non-conservative and non-holonomic systems on time scales, and obtained the symmetry
theorem for constrained mechanical systems on time scales [4, 5]. More recently, Noether theory for Bikhoffian
systems on time scales was established by Song and Zhang [6]. Zhai and Zhang obtain the Noether theorem
for non-conservative systems with time delay on time scales [7].The time scales has a tremendous potential for
applications and has recently received much attention in other areas such as engineering, biology, economics,
and physics [9–12].

In 1918, Noether proposed famous Noether symmetry theorem which deal with the invariance of the Hamil-
ton action under the infinitesimal transformations: when a system exhibits a symmetry, then a conservation law
can be obtained [16]. The symmetries and conservation laws can also be studied by using differential variational
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principles [17]. The calculus of variations and control theory are disciplines in which there appears to be many
opportunities for application of time scales [13, 14]. The Noether method is making good progress, such as
Herglotz variational problems [15]. And in recent years, a series of important results have been obtained on the
study of the Noether symmetry and conservation law of classical mechanical systems, such as Torres made use
of the Euler-Lagrange equations on time scales to generalize one of the most beautiful results of the calculus of
variations-the celebrated Noether’s theorem [18, 19].

The problem of variable mass has attracted people’s attention as early as the middle of the nineteenth century.
With the development of space technology and other industrial technologies, the study of variable mass system
dynamics becomes more and more important. There are many studies on variable mass systematics have been
done by Mei [20, 21]. A series of new theories and methods have been put forward, and a series of innovative
research results have been obtained [22–26].

In this article, we will study the Noether theorems and its inverse problem of variable mass on time scales.
In Section 2, we review some basic definitions and properties about the calculus on time scales. In Section
3, we obtain the Lagrange equations of systems by deriving Hamilton’s principle for variation mass systems
with delta derivative. In Section 4, based on the quasi-invariance of Hamiltonian action of the variation mass
systems under the infinitesimal transformations with respect to the time scales and generalized coordinates, the
Noether’s theorem and the conservation laws for variation mass systems on time scales are obtained. In Section
5, the Noether’s inverse theorem of variable mass systems on time scales is given. In the end, two examples are
given to illustrate the applications of the results.

2 Basics on the time scales calculus

In this section we give basic definitions and facts concerning the calculus on time scales. More can be found
elsewhere [27].

A time scales is a nonempty closed subset of real numbers, and we usually denote it by symbol T. The two
most popular examples are (T =) and (T =). We define the forward and backward jump operators σ ,ρ .
Definition 2.1 Let T be a time scale. For t ∈ T we define the forward and backward jump operators σ ,ρ : T→ T
by

σ (t) := inf{s ∈ T : s > t}and ρ (t) := sup{s ∈ T : s < t} for all t ∈ T,

(supplemented by infφ = supT and supφ = infT) and the graininess function µ : T→ [0,∞) is defined by
µ (t) = σ (t)− t for each t ∈ T.

If T =, then σ (t) = t = ρ (t) and µ (t) = 0 for any t ∈ T. If T =, then σ (t) = t+1,ρ (t) = t−1 and µ (t)≡ 1
for every t ∈. A point t ∈ T is called right scattered, right dense, left scattered and left dense if σ (t) > t,
σ (t) = t, ρ (t)< t, ρ (t) = t , respectively. We can consider that t is isolated if ρ(t)< t < σ(t), then t is dense
if ρ(t) = t = σ(t). If supT is finite and left-scattered, we set Tκ = T\{supT}. Otherwise, .
Definition 2.2. Assume f : T→ is a function and let t ∈ Tκ . Then we define f ∆(t) to be the number (provided it
exists) with the property that given any ε > 0, there is a neighborhood U of (i.e., U = (t−δ , t +δ )∩T for some
δ > 0 ) such that ∣∣ f (σ(t))− f (s)− f ∆(t)(σ(t)− s)

∣∣≤ ε |σ(t)− s| for all s ∈U

we call f ∆(t) the delta (or Hilger) derivative of f at t.
For differentiable f , the formula

f σ (t) = f +µ f ∆ and f (σ (t)) = f (t)+µ (t) f ∆ (t) . (1)

Definition 2.3. A function f : T→ is called re-continuous if it is continuous at the right- dense points in T and
its left-sided limits exist at all left-dense points in T. A function f : T→ n is re-continuous if all its components
are re-continuous.
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The set of all re-continuous is denoted by Crd . Similarly, C1
rd will denote the set of functions from Crd whose

delta derivative belongs to Crd .
Theorem 2.1. Let f be regulated. Then there exists a function F : T→ is called an pre-antiderivative of f : T→
if it satisfies F∆ (t) = f (t), for all t ∈ Tκ .
Definition 2.4. Assume f : T→ is a regulated function. Any function F as in Theorem 2.1. is called a pre-
antiderivative of f . We define the indefinite integral of a regulated function f by

ˆ
f (t)∆t = F (t)+C (2)

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy integral by

ˆ b

a
f (t)∆t = F (b)−F (a) for all a,b ∈ T. (3)

We shall need the following properties of delta derivatives and integrals:

( f g)∆ = f ∆gσ + f g∆, (4)

( f +g)∆ (t) = f ∆ (t)+g∆ (t) , (5)

ˆ b

a
f (α (t))α∆ (t)∆t =

ˆ
α(b)

α(a)
f (t∗)∆t∗, (6)

where α : [a,b]∩T→ is an increasing C1
rd function and image is a new time scale.

Lemma 2.1. (Dubois-Reymond) Let g ∈Crd , g : [a,b]→ n, then

ˆ b

a
gT (t) ·η∆ (t)∆t = 0 (7)

for all η ∈C1
rd with η (a) = η (b) = 0, holds if and only if g(t)≡ c on [a,b]κ for some c ∈.

3 Hamilton’s principle and Lagrange equations for variable mass systems with delta derivatives

Consider a mechanical system consisting of N variable mass particles. Suppose at time t, the mass of the
particle i is supposed to be mi (i = 1,2, · · · ,N). At the moment t +∆t the mass of a small particle separated
from the particle i or combined with the particle i is supposed to be ∆mi. The configuration of the system
is determined by n generalized coordinates qs (s = 1,2, · · · ,n) and the mass of the particle depends on time,
generalized coordinates and generalized velocity

mi = mi
(
t,qσ

s ,q
∆
s
)
.

Assuming that the kinetic energy function of the variable mass system on time scales is T = T (t,qσ
s ,q

∆
s ),

Hamilton’s principle states that the actual pace exists when the Hamiltonian action has determining value. Thus
the Hamilton’s principle for variable mass systems with delta derivatives can be written in the following form:

ˆ b

a
(δT +Qsδqσ

s +Psδqσ
s )∆t = 0 (8)
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where Qsδqσ
s is the virtual work of generalized force, Psδqσ

s is the virtual work of generalized counter thrust,
δqσ

s = ε
(
ξ σ − τσ q∆σ

s
)
.

Ps =
(
Ri +m∆

i r∆
i
) ∂ ri

∂qs
− 1

2
r∆

i · r∆
i

∂mi

∂qs
+

∆

∆t

(
1
2

r∆
i · r∆

i
∂mi

∂q∆
s

)
(9)

where ri and r∆
i are respectively the position vector and the velocity vector of the i-th particle and the velocity

vector of the i-th particle and Ri =
∆mi
∆t ui, where ui is the corpuscle’s velocity relative to the i-th particle.

The exchanging relationships with respect to the derivatives on time scales and isochronous variation on
time scales [5]:

δq∆
s = (δqs)

∆, (10)

and following eq. (1) we can find q∆σ
s = q∆

s +µ (t)q∆∆
s .

Taking total variation for function T , we have

δT =
∂T

∂qs
σ

δqs
σ +

∂T
∂qs

∆
δqs

∆. (11)

substituting eq. (11) into eq. (8), we have
ˆ b

a

[
∂T

∂qs
σ

δqs
σ +

∂T
∂qs

∆
δqs

∆ +Qsδqs
σ +Psδqs

σ

]
∆t

=

ˆ b

a

{(
Qs +Ps +

∂T
∂qs

σ

)
(δqs)

σ +
∂T

∂qs
∆
(δqs)

∆

}
∆t

=

ˆ b

a

{(
Qs +Ps

∂T
∂qσ

s

)
(∂qs)

σ +
∂T
∂q∆

s
(δqs)

∆

}
∆T

−
ˆ t

a

(
Qs +Ps +

∂T (τ,qσ (τ) ,)q∆ (τ)

∂qs
σ

)
∆τ

]
(δqs)

∆ +
∂T

∂qs
∆
(δqs)

∆

}
∆t

=

ˆ b

a

{
∂T

∂qs
∆
−
ˆ t

a

(
Qs +Ps +

∂T (τ,qσ (τ) ,)q∆ (τ)

∂qs
σ

)
∆τ

}
(δqs)

∆
∆t = 0.

Therefore, by Lemma 2.1, we can derive

∂T
∂qs

∆
−
ˆ b

a

(
Qs +Ps +

∂T (τ,qσ (τ) ,)q∆ (τ)

∂qs
σ

)
∆τ ≡ const, (12)

hence

∆

∆t
∂T

∂qs
∆
− ∂T

∂qs
σ
−Qs−Ps = 0. (13)

When contains conservative force and nonconservative force Qs
′′
, and Qs

′
satisfies the following conditions:

If is potential, that is, there exists a function such that

Qs
′
=− ∂V

∂qs
σ
. (14)

substituting eq.(14) into eq.(13), we have

∆

∆t
∂T

∂qs
∆
− ∂T

∂qs
σ
+

∂V
∂qσ

s
−Qs

′′−Ps = 0. (15)
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as the function V =V (qσ
s , t) only depends on the generalized coordinates, therefore

∂V
∂qs

∆
= 0. (16)

Then eq.(13) can be written in the form

∆

∆t
∂L

∂qs
∆
− ∂L

∂qs
σ
= Qs

′′
+Ps. (17)

where L = T −V .
If Qs

′
has generalized potential, that is, there exists a function U =U

(
t,qσ

s ,q
∆
s
)

such that

Qs
′
=

∂U
∂qs

σ
− ∆

∆t
∂U

∂qs
∆

(18)

then eq.(13) can be written as:

∆

∆t
∂L

∂qs
∆
− ∂L

∂qs
σ
= Qs

′′
+Ps. (19)

where L = T +U = T −V is the Lagrangian of the variable mass systems with derivatives on time scales.

4 Noether’s theorem of variable mass systems on time scales

In order to simplify expressions, we write L
(
t,qσ

s ,q
∆
s
)

instead of L
(
t,qσ

s (t),q
∆
s (t)

)
, similarly for the partial

derivatives of L.
We consider the fundamental problem of the calculus of variations on time scales as defined by Bohner [3,20]

S [qs (·)] =
ˆ b

a
L
(
t,qσ

s (t),q
∆
s (t)

)
∆t→min (20)

qσ
s (t) = (qs ◦σ)(t), q∆

s (t) is the delta derivative of qs, t ∈ T, and the Lagrangian L :×n× n→ is a C1 function
with respect to its arguments. By ∂iL we will denote the partial derivative of L with respects to the ith variable,
i = 1,2,3. Admissible functions qs (·) are assumed to be C1

rd .
The relationship between the isochronous variation and the total variation on time scale T:

∆qs = δqs +q∆
s ∆t.

Let us consider now the following infinitesimal transformations with respect to the time and the state vari-
able:

t∗ = H (t,qs,ε) = t + ετ (t,qs)+o(ε)q∗s = F (t,qs,ε) = qs + εξ (t,qs)+o(ε) (21)

Let as before U be a set of C1
rd functions qs : [a,b]→ n and we assume that the map t→ α (t) : T (t,qs,ε) ∈

is an increasing C1
rd function for every qs ∈U , every ε , and any t ∈ [a,b], and its image is a new time scale with

the forward jump operator σ∗ and the delta derivative ∆∗. We need to employ the following property:

σ
∗ ◦α = α ◦σ . (22)

Definition 4.1 (Invariance for variable mass systems) Function I is said to be quasi-invariant on U under the
infinitesimal transformations (21) if and only if for any subinterval [ta, tb] ∈ [a,b], any ε , any qs ∈U :
ˆ tb

ta
L
(
t,qσ

s ,q
∆
s
)
∆t =

ˆ T (tb,qs(tb))

T (ta,qs(ta))
L
(
t∗,q∗σs (t∗) ,q∗∆s (t∗)

)
∆t∗+

ˆ tb

ta

(
∆

∆t
(∆G)+

(
Qs
′′
+Ps

)
·δqσ

s

)
∆t (23)
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Theorem.4.1 If infinitesimal transformations (21) satisfy

∂L
∂ t

τ +
∂L

∂qσ
s

ξ
σ
s +

∂L
∂q∆

s
ξ

∆
s +Lτ

∆− ∂L
∂q∆

s
τ

∆q∆
s +
(

Q
′′
s +Ps

){
ξ

σ − τ
σ
[
q∆

s +µ (t)q∆∆
s
]}

=− ∆

∆t
G

then transformations (21) is the Noether generalized quasi-symmetric transformation of variable mass system
on time scales.

Proof. Substituting formula δqσ
s = ε

(
ξ σ − τσ q∆σ

s
)
= ε

{
ξ σ − τσ

[
q∆

s +µ (t)q∆∆
s
]}

into eq. (19), we obtain

ε

[
− ∆

∆t
∂L
∂q∆

s
+

∂L
∂qσ

s
+Q

′′
s +Ps

](
ξ

σ
s − τ

σ q∆σ
s
)
= 0 (24)

adding and subtracting a function ∂L
∂ t τ from eq. (24), we obtain

ε

{[
∂L

∂qσ
s

ξ
σ
s +

∂L
∂q∆

s
ξ

∆
s +

(
Q
′′
s +Ps

)(
ξ

σ
s − τ

σ q∆σ
s
)]
−
(

∂L
∂ t

+
∂L

∂qσ
s

q∆
s +

∂L
∂q∆

s
q∆∆

s

)
τ

+
∂L
∂ t

τ − ∂L
∂q∆

s
q∆

s τ
∆− ∆

∆t

[
∂L
∂q∆

s

](
ξ

∆
s − τ

σ q∆σ
s
)}

= 0 (25)

adding and subtracting a gauge function ∆

∆t G(t,qσ
s ,q

∆
s ) from eq. (25), we obtain

ε

{[
∂L

∂qσ
s

ξ
σ
s +

∂L
∂q∆

s
ξ

∆
s +

(
Q
′′
s +Ps

)(
ξ

σ
s − τ

σ q∆σ
s
)]

+

(
L− ∂L

∂q∆
s

q∆
s

)
τ

∆ +
∂L
∂ t

τ

+
∆

∆t
G
(
t,qσ

s ,q
∆
s
)
− ∆

∆t

[
∂L
∂q∆

s
ξ

σ
s +

(
L− ∂L

∂q∆
s

q∆
s

)
τ +G

(
t,qσ

s ,q
∆
s
)]}

= 0 (26)

eq. (26) is the condition of infinitesimal transformations of the variable mass system on time scales.
If generators τ,ξs of infinitesimal transformations and gauge function G(t,qσ

s ,q
∆
s ) satisfy

∂L
∂ t

τ +
∂L

∂qσ
s

ξ
σ
s +

∂L
∂q∆

s
ξ

∆
s +

(
L− ∂L

∂q∆
s

q∆
s

)
τ

∆ +
(

Q
′′
s +Ps

){
ξ

σ − τ
σ
[
q∆

s +µ (t)q∆∆
s
]}

=− ∆

∆t
G (27)

eq.(27) is called Noether’s identity of the variable mass system on time scales.
Theorem 4.2. If functional I is quasi-invariant on U under the infinitesimal transformations (21), then

I =
∂L
∂q∆

s
ξs +

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
· τ +G (28)

is a conservational law for variable mass dynamical systems on time scales.
Proof. Let L̃(t;s,qs;r,v) := L(s−µ(t)r,qs,

v
r ) · r for qs,v ∈ Rn, t ∈ [a,b] and s,r,∈ R,r 6= 0.

It is readily apparent that for s(t) = t and any qs : [a,b]→ Rn

L(t,qσ
s (t),s

∆
s (t)) = L̃(t;sσ (t),qσ

s (t);s∆(t),q∆(t)), (29)

so for the functional:
S[qs(·)] = S̃[s(·),qs(·)]

and

S̃[s(·),qs(·)] :=
ˆ b

a
L̃(t;sσ (t),qσ

s (t);s∆,q∆(t))∆t (30)
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Consider the infinitesimal transformation eq.(21) given by (Hε ,Fε) and let qs ∈U . For s(t) = t, making use
of eq. (23) we can obtain

S̃[s(·),qs(·)] =
ˆ

α(tb)

α(ta)
L
(
t∗,q∗s ◦σ

∗ (t∗) ,q∗∆s (t∗)
)
∆t∗+

ˆ tb

ta

(
∆

∆t
(∆G)+

(
Qs
′′
+Ps

)
·δqσ

s

)
∆t

=

ˆ tb

ta
L(α(t),(q∗s ◦σ

∗ ◦α)(t),q∗∆s (α(t)))α∆(t)∆t +
ˆ tb

ta

(
∆

∆t
(∆G)+(Q

′
s +Ps) ·δqσ

s

)
∆t

ˆ tb

ta
L
(

α
σ (t)−µ(t)α∆(t),(q∗s ◦σ

∗ ◦α)(t),
(q∗s ◦α)∆(t)

α∆(t)

)
α

∆(t)∆t

+

ˆ tb

ta

(
∆

∆t
(∆G)+(Q

′′
s +Ps) ·δqσ

s

)
∆t

=

ˆ tb

ta
L̃(t;α

σ (t),(q∗s ◦α)σ (t);α
∆(t),(q∗s ◦α)∆(t))∆t +

ˆ tb

ta

(
∆

∆t
(∆G)+(Q

′
s +Ps) ·δqσ

s

)
∆t

= S̃[α(·),(q∗s ◦α)(·)]+
ˆ tb

ta

(
∆

∆t
(∆G)+(Q

′
s +Ps) ·δqσ

s

)
∆t

so for s(t) = t we can obtain

(α(·),(q∗s ◦α)(t)) = (Hε(t,qs(t)),Fε(t,qs(t))) = (Hε(s(t),qs(t)),Fε(s(t),qs(t)))

we observe that S̃ is an invariant on Ũ = {(s,qs)|s(t) = t,qs ∈U} under the infinitesimal transformations:

(s∗,q∗s ) = (Hε(s,qs),Fε(s,qs)) (31)

then
∆

∆t

{
∂L
∂q∆

s
ξs +

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
· τ +G

}
=

∆

∆t
∂L
∂q∆

s
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +

∆

∆t

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
τ

σ

+

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
τ

∆ +
∆

∆t
G

=
∆

∆t
∂L
∂q∆

s
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +

[
∂L
∂ t

+
∂L

∂qσ
s

q∆σ
s +

∂L
∂q∆

s
q∆∆

s −
∆

∆t
∂L
∂q∆

s
q∆

s −
∂L
∂q∆

s
q∆∆

s −
∆

∆t
∂L
∂ t
·µ (t)

]
τ

σ

+

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
τ

∆ +
∆

∆t
G

=

[
∂L

∂qσ
s
+Q

′′
s +Ps

]
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +

[
∂L
∂ t

+
∂L

∂qσ
s

q∆σ
s −

∆

∆t
∂L
∂q∆

s
q∆

s

]
τ

σ

+

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
τ

∆ +
∆

∆t
G

=

[
∂L

∂qσ
s
+Q

′′
s +Ps

]
ξ

σ
s +

∂L
∂q∆

s
ξ

∆
s +

[
∂L
∂ t

+
∂L

∂qσ
s

q∆σ
s −

(
∂L

∂qσ
s
+Q

′′
s +P

)
q∆

s

]
τ

σ

+

[
L− ∂L

∂q∆
s
·q∆

s −
∂L
∂ t
·µ (t)

]
τ

∆ +
∆

∆t
G

=
∂L
∂ t

τ +
∂L

∂qσ
s

ξ
σ
s +

∂L
∂q∆

s
ξ

∆
s +L · τ∆− ∂L

∂q∆
s
· τ∆ ·q∆

s +
(

Q
′′
s +P

)(
ξ

σ
s − τ

σ q∆σ
s
)
+

∆

∆t
G
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= 0.

The calculus on time scales unifies and extends variable mass system continuous model and discrete model
into a single theory.
Remark 1. If T = R, then σ(t) = t,µ(t) = 0, therefore eq(27) give classical variable mass system Noether
equation:

∂L
∂ t

τ +
∂L
∂qs

ξs +
∂L

∂
·

qs

·
ξs+

(
L− ∂L

∂
·

qs

·
qs

)
·
τ +
(

Q
′′
s +Ps

)(
ξs− τ

·
qs

)
=− ∆

∆t
G (32)

and the conservational law become the classical variable mass system Noether conservational law

I =
∂L

∂
·

qs

ξs +

[
L− ∂L

∂
·

qs

·
qs

]
· τ (t,qs)+G (33)

Remark 2. If T = h̄Z, h > 0, then σ(t) = t +h,µ(t) = h, therefore eq(27) give

∂L
∂ t

τ +
∂L
∂qs

ξs (t +h)+
∂L

∂
qs(t+h)−q(t)

h

ξs (t +h)−ξs (t)
h

+

(
L− ∂L

∂
qs(t+h)−q(t)

h

qs (t +h)−q(t)
h

)
τ (t +h)− τ (t)

h
(34)

+
(

Q
′′
s +Ps

)
(ξs− τqs (t +h)) =− ∆

∆t
G

and the conservational law give

I =
∂L

∂
·

qs

ξs +

[
L− ∂L

∂
·

qs

·
qs−h

∂L
∂ t

]
· τ (t,qs)+G (35)

eq.(34)and eq.(35) are the discrete variable mass system Noether identity and Noether conservational law.

5 Noether’s inverse theorem of variable mass system on time scales

Suppose that a first integral of the variable mass system on time scales has been given as

I = I(t,qσ
s ,q

∆
s ) = const. (36)

then we have

∆I
∆t

=
∂ I
∂ t

+
∂ I

∂qσ
s

q∆
s +

∂ I
∂q∆

s
q∆∆

s = 0 (37)

multiply ˜ξ σ
s = ξ σ − τσ q∆σ

s both sides of eq.(19), we obtain

˜ξ σ
s

(
∆

∆t
∂L

∂qs
∆
− ∂L

∂qs
σ
−Qs

′′−Ps

)
= 0 (38)

according to eq. (9), Ps is generally a linear function of q∆∆
s and can be written as

Ps =Wsk(t,qσ
s ,q

∆
s )q

∆∆
sk +Ws(t,qσ

s ,q
∆
s ), (39)
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where Wsk =
∂mi
∂q∆

k
(ui + r∆

i )
∂ ri
∂qs

+ 1
2 r∆

i · r∆
i

∂ 2mi
∂q∆

s ∂q∆
k
+ ∂mi

∂q∆
s
r∆

i
∂ ri
∂qk

.

Adding eq.(38) to eq.(39), and putting the coefficients of q∆∆
s equal to zero, we obtain(

∂ 2L
∂q∆

s ∂q∆
k
−Wsk

)
˜ξ σ
s −

∂ I
∂q∆

k
= 0 (40)

suppose

det(hsk) = det
(

∂ 2L
∂q∆

s ∂q∆
k
−Wsk

)
6= 0 (41)

then from eq.(41) we obtain
˜ξ σ
s = h̃sk

∂ I
∂q∆

k
(42)

in which

h̃skhkr = δsr,hsk =
∂ 2L

∂q∆
s ∂q∆

sk
−Wsk (43)

Now let the integral (37) equal conserved quantity (28), i.e.

I =
∂L
∂q∆

s
ξs +

[
L− ∂L

∂q∆
s

q∆
s −

∂L
∂ t

µ (t)
]

τ (t,qs)+G (44)

Thus, from eq.(42) and (43), generators τ,ξ of infinitesimal transformation can be found.
Theorem 5.1. If the integral of the variable mass holonomic system has been given, then the infinitesimal trans-
formations determined by eq.(21), (43) and (44) are the system’s transformation satisfying Noetheris identity
(27).

Theorem 5.1 is called the generalized Noether’s inverse theorem of the variable mass holonomic system.

6 Examples

Example 1. The time scale and the Lagrangian of the variable mass system are given as:

L =
1
2

m
[(

q∆
1
)2

+
(
q∆

2
)2
]
− 1

2
m
[
(qσ

1 )
2 +(qσ

2 )
2
]
. (45)

The generalized force is Q1 = Q2 = 0, and the generalized counter thrust is P1 = 0, Ps = m∆q∆
s following the

eq.(19), we find

∆

∆t

(
mq∆

1
)
+mqσ

1 = 0,
∆

∆t

(
mq∆

2
)
+mqσ

2 −m∆q∆
2 = 0, (46)

then the Noether identity (27) becomes{
1
2

m∆

[(
q∆

1
)2

+
(
q∆

2
)2
]
− 1

2
m∆

[
(qσ

1 )
2 +(qσ

2 )
2
]}

τ−m(qσ
1 ξ

σ
1 +qσ

2 ξ
σ
2 )+m

(
q∆

1 ξ
∆
1 +q∆

2 ξ
∆
2
)

(47)

we can find solution of eq.(47) as follows

τ = 0,ξ1 =−1,ξ2 =−1, (48)
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substituting the generator (48) into the structure eq. (47) yields

G =−mq∆
1 −mq∆

2 (49)

According to Theorem 4.2 , substituting the generator (47) and the gauge function (48) into the formula (28
), we get the following conserved quantity

I =−mq∆
1 −mq∆

2 . (50)

Example 2. The time scale and the Lagrangian of the variable mass system are given as:

L =
1
2

m(t)
[
(q∆

1 )
2 +(q∆

2 )
2] . (51)

The generalized force is Q1 = 0, Qs = q∆
2 +q1q∆

1 , the generalized counter thrust is P1 = P2 = 0.
Firstly, following the eq. (19), we find

∆

∆t
[m(t)q∆

1 ] = 0,
∆

∆t
[m(t)q∆

2 ] = q∆
2 +q1q∆

1 (52)

then the Noether identity (27) becomes

1
2

m∆
[
(q∆

1 )
2 +(q∆

2 )
2]

τ +m(q∆
1 ξ

∆
1 +q∆

2 ξ
∆
2 )−

1
2

m
[
(q∆

1 )
2 +(q∆

2 )
2]

τ
∆ +(q∆

2 +q1q∆
1 )(ξ

σ
1 − τq∆σ

1 ) =− ∆

∆t
G. (53)

We can find solution of eq. (53) as follows

τ = 0,ξ1 = 0,ξ2 = 1, (54)

substituting the generator (54) into the structure eq(53) yields

G =−q2−
1
2

q2
1 (55)

According to Theorem 4.2 , substituting the generator (53) and the gauge function (54) into the formula (28),
we get the following conserved quantity

I = mq∆
2 −q2−

1
2

q2
1 (56)

Secondly, let us find the corresponding infinitesimal transformations from a known integral. Suppose there
is an integral in the form

I = m∆
2 −q2−

1
2

q2
1 (57)

According to eq.(42) and eq.(44) we can find

˜ξ σ
1 = 0 ˜ξ σ

2 = 1 (58)

Lτ +mq∆
1 δqσ

1 +mq∆
2 δqσ

2 +G = mq∆
2 −q2−

1
2

q2
1 (59)

following the ˜ξ σ
s = ξ σ − τσ q∆σ

s we obtain

τ =−1
L

(
G+q2 +

1
2

q2
1

)
,ξ1 = q∆

1 ,ξ2 = 1+q∆
2 τ (60)

we have G =−q2− 1
2 q2

1, then τ = 0,ξ1 = 0,ξ2 = 1.
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7 Summary

In this manuscript, the Noether’s theorems of variable mass systems on time scales have been studied.
We established the Hamilton principle and derived the Lagrange equations for the variable mass system on
time scales. Under the kind of infinitesimal transformations, we gave the definitions and criteria of Noether
symmetries. And the Noether theorems and its inverse theorem of variable mass system on time scales are
established. This paper considered the continuous case and the discrete case, so the results of this paper are
of universal meaning. Besides, further study could include Lie symmetry. The approach of this paper can be
furthermore generalized to other systems such as relative motion system; Birkhoffian systems and electromectro
mechanial coupling system are equally worth studying on time scales.
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