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Abstract
We study the roto-orbital dynamics of a uniform sphere and a triaxial body by means of a radial intermediary, which defines
a 2-DOF Hamiltonian system. Our analysis is carried out by using variables referred to the total angular momentum. Its
validity and applicability is assessed numerically by experiments comprising three different scenarios; analysis of the
triaxiality, eccentricity and altitude. They show that there is a range of parameters and initial conditions for which the
radial distance and the slow angles are estimated accurately, even after one orbital period. On the contrary, fast angles
deteriorates as the triaxiality grows. We also include the study of the relative equilibria, finding constant radius solutions
filling 4-D and lower dimensional tori. These families of relative equilibria include some of the classical ones reported
in the literature and some new types. For a number of scenarios the relation between the triaxiality and the inclination
connected with relative equilibria are given.
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G, Go, Gr Total, orbital, rotational angular momentum vectors in body frame
G, Go, Gr Modulus of the corresponding vectors
h Argument of the node relative to the orbital plane
H Hamilton function of the intermediary model
HK Kepler system
HE Free rigid body
H0 Zero order Hamiltonian (H0 = HK +HE )
H1 Perturbation
Io Angle between Πo and Π

Ir Angle between Πr and Π

I Inclination of the total angular momentum plane
I∆ Inclination of the rotational plane
IΘ Inclination of the orbital plane
` Node of the total angular momentum plane
`I Body plane (see Πb) and rotational planes intersection
`r,−`o Total, orbital and rotational planes intersection
`µδ Rotational and spatial planes intersection
`θ Orbital and spatial planes intersection
M Total mass of the system
m Reduced mass of the system
mi Mass of the body Bi
n Unitary vector parallel to the total angular momentum
N, N′ Third component of Gr
P Gravitational potential
p Linear momentum associated to r
q m/m1
r, r′ Modulus of the vector joining the mass center of the bodies
r Vector joining the mass center of the bodies
R, R′ Radial velocity of the center of mass
R1 Distance between the center of mass and the furthest point of B1
R2 Distance between the center of mass and the furthest point of B2
Ri Position vector of the body Bi in the inertial frame
U MacCullagh’s term
V Potential of the intermediary model
γi Direction cosines of r/r
δ , δ ′ Argument of the angle between `r and `I
∆, ∆′ Magnitude of the angular momentum of the rigid body
θ , θ ′ Argument of the vector joining the center of masses of the two bodies
Θ, Θ′ Magnitude of the angular momentum of the center of mass
ι Io + Ir
κ G M
λ Argument of the node relative to the Andoyer plane
µ, Argument of the angle between `µδ and `I
ν , ν ′ Argument of the angle between `I and b1
ΠΠΠ Angular momentum of the body B1
ρ Triaxiality parameter
Π Total angular momentum plane
Πb Body plane, b1b2-plane
Πo Orbital plane
Πr Andoyer plane
σ Angle between Πr and the body plane
τ1 Triaxility ratio of A1 and A3
τ2 Triaxility ratio of A2 and A3
TO Orbital kinetic energy
TR Rotational kinetic energy
φ , φ ′ Argument of the node of the total angular momentum plane
Φ, Φ′ Third component of the total angular momentum in space frame
ψ, ψ ′ Argument of `r
Ψ, Ψ′ Magnitude of the total angular momentum
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1 Introduction

The full gravitational 2-body problem (FG2BP) accounts for the dynamics of two rigid bodies B1 and B2,
with masses m1 and m2, which mutual interaction is exclusively originated by gravitational attraction. In a
previous work [11], we focussed on an axis-symmetric approximation. Here, our main goal is to figure out how
this modelization is influenced by the assumption of a triaxial body in the absence of spin-orbit resonances.

The FG2BP is far from being well understood and requires physical and mathematical simplifications to
be tackled, [27]. Therefore, only partial approaches are possible by now. The strongest streamlining of the
FG2BP is carried out by assuming two point masses, then leading to the Kepler system by setting the Jacobi
coordinates. A possible generalisation of this situation keeping the integrability is assuming two spherical
masses. Thus, obtaining Keplerian motion for the orbital part, which is independent of the uniform rotation
of the two spheres. Next level in the generalisation of the ideal situation is to consider an asymmetric body and
a sphere of homogeneous density. Nevertheless, this situation still leads to a wide set of scenarios depending
on the distances and masses involved. For instance, truncation of the gravitational potential associated to this
problem up to the second order, the so called MacCullagh’s approximation, is possible when the orbiting body
is small compared with the distance between the mass centres. In our work, we precisely consider this situation
and discard terms on the gravitational potential higher that two. As such, from now on we will refer indistinctly
to this approximation as the MacCullagh’s truncation and the full model as well. A different story would be
if we considered two generic bodies, then the fourth order of the gravitational potential includes terms of the
body-body interaction and not only spin-orbit interaction, as it happens with the second order term. Therefore,
the truncation of the potential in this case is recommended at least to the fourth order, see [4].

The study of the attitude dynamics of a generic triaxial spacecraft in a central gravitational field permeates
along the space era, from [3], [7], [8] and [22], up to the very recent research including [12], [28] and [31].
This problem covers aspects such as determination, propagation and control, that continue to be areas of re-
search, see [20, 29, 33] for further details. Common to these studies has been the assumption of fast rotation.
Hence, distinguishing between fast and slow variables, rotational motion has been approached by perturbative
techniques [24].

We approach the gravity-gradient problem making use of the concept of intermediary, which has long tra-
dition in both astronomy and astrodynamics. More precisely, following Poincaré and Arnold, we split the
Hamiltonian into two terms:

H = H0 +H1,

where the intermediary H0 defines a non-degenerate and simplified model of the problem at hand, which in-
cludes the Kepler and free rigid-body as particular cases and H1 is usually dubbed as the perturbation. A special
realization of an intermediary occurs for the case in which it is an integrable 1-DOF system. The work of Hill
on the Moon motion [32] is, perhaps, the best known example. The interest on an intermediary is twofold. On
the one hand, it allows us to identify special solutions that could become nominal trajectories in missions design
whereas it alleviates usual heavy computations. On the other hand, it can be used to build a perturbation theory
based on a new unperturbed part avoiding the degenerate character inherent to the classical superintegrable mod-
els (Kepler or free rigid body systems in astrodynamics). In other words, a first order perturbed solution based
on intermediaries might be accurate enough for tracking purposes. In astrodynamics, when dealing with orbital
dynamics applied to artificial satellites, some lines of research on intermediaries arose during the seventies by
Garfinkel, Aksnes, Cid, Sterne, etc. (see review in [14]), whose benefits are now seen in areas such as the relative
motion in formation flights, an example is given in [25]. Nevertheless, less work has been done when dealing
with attitude dynamics, where the proposal of intermediaries is more recent [2, 17] and, to our knowledge, no
systematic study has been done on them.

In this paper, we continue our work on the intermediary model proposed in previous works [11,19,30], where
an integrable 1-DOF intermediary was obtained by an uncontrolled truncation of the MacCullagh approximation
[26] and assuming the secondary body to be in a Keplerian orbit. The accuracy of this model was tested by
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comparing with the MacCullagh’s truncation and showing a good performance in the numerical experiments. In
our preceding work, we restrict to the study of the axis-symmetric case. The present manuscript complements
this analysis by extending it to the case of a triaxial body and keeping all the remaining assumptions made
previously. This change leads us to a 2-DOF intermediary model, which is expressed with variables referred to
the total angular momentum, see [15, 17].

The validity and applicability of the model is assessed numerically. For that purpose, we study the accuracy
of simulation in three different scenarios. First, we consider the triaxiality parameter introduced in [10], ρ =
(A2−A1)/(2A3−A2−A1). For ρ > 0 the fast angles deteriorate very early and they are only well approximated
for nearly zero values of ρ , though a detailed analysis for the case of a slow rotating body is still required.
However, the radial distance and slow angles show a good performance for one orbital evolution. Precisely,
radial error ratio (rInterm− r f ull)/r0 is under 0.00064% and for the slow angles, we obtain differences up to
the order 10−6 radians. Secondly, we also take into account simulations for different eccentricities up to 0.5.
As it is expected, approximations become worse as eccentricity grows. Finally, this behavior is reversed in the
analysis of the altitude. Namely, as height grows the influence of the higher order terms in 1/r is smaller. Hence,
accuracy is improved by increasing height.

We also include the study of the relative equilibria, finding constant radius solutions filling a 4-D torus.
In addition, equilibria leading to lower dimensional torus are identified and conditions for periodic orbits are
detected. The intermediary model is endowed with several distinguishing and physical parameters. That is to say,
physical constants are related to the bodies’ features and integrals are characterized by their initial configuration.
Having a high multidimensional parametric space introduces complexity in the study of bifurcations. With the
aim of simplifying this scenario, we consider cos ι , cosσ and the set of principal moments of inertia (A1,A2,A3)
as the key objects to present the analysis of the relative equilibria. We will show that the evolution of cos ι ∈[
−
√

1/3,
√

1/3
]

allows for the appearance of the families dubbed as critical inclination equilibria (cos ι =

±
√

1/3) and cos ι leads to the body-perpendicular and body-inclined types. In our analysis, we find families
that depart from the classical equilibria of the free rigid body and the classical equilibria reported in [16, 21].
Though, some of these equilibria are recovered in our setting.

This paper is organized as follows. Section 2 is devoted to introduce the triaxial intermediary into the
Hamiltonian formalism and to describe the canonical variables in which it is expressed. In Section 3, we present
the numerical simulations bounding the applicability and validity of the model. In addition, conditions leading
to families of relative equilibria are identified in Section 4. We establish the connection of our families of relative
equilibria with the classical ones reported in the related literature in Section 5. Finally, we present conclusions
and include an Appendix section.

2 Hamiltonian formulation of the triaxial model

The formulation of the triaxial intermediary model follows the same derivation as the one made in [11],
which is based in six simplifying assumptions. More specifically, the following set of simplifications are as-
sumed in order to define our modelization: (i) Barycentric coordinates. The inertial frame is chosen to be
moving with the total center of mass. (ii) Shape and mass distribution of B2. The main body B2 (mass m2)
is endowed with spherical symmetry. (iii) Size ratios. Dimensions of the secondary body B1 are small when
compared to the distance between the centers of mass of the two bodies. (iv) Shape and mass distribution of
B1. The secondary body may be approximated by an homogeneous triaxial ellipsoid with total mass m1. (v)
Eccentricity. Only small eccentricity orbits are considered. (vi) Resonances. The case of spin-orbit resonances
is not considered.

The Hamiltonian of the roto-orbital model is obtained from the mechanic energy function. Thus, denoting
TO, TR the orbital and rotational kinetic energies and P the potential, the Hamiltonian function is defined in the
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cotangent bundle of the special Euclidean group T ∗SE(3)

H = TO +TR +P

= TO +TR−
G M

r
+V

= HK +HR +V , (1)

in other words, the potential is usually split in two parts: a term which depends only on 1/r and V , called the
perturbing potential, depending on the rest of the variables of the problem. As a result, we have that HK =
TO−G M/r is the Keplerian part of the system, where G is the gravitational constant and HR = TR is referred
as the Euler system (or the free rigid body).More explicitly, we obtain the following expression for H in the
B1-body frame

H (r,A,p,ΠΠΠ) =
|p|2

2m
+

1
2

ΠΠΠ·I−1·ΠΠΠ−G m2

ˆ
B1

dm1(x1)

|r−x1|
, (2)

where m = m1m2/(m1 +m2), r is the vector joining the center of mass of the bodies, A is the rotation matrix
transforming a vector in the body-fixed frame into the inertial frame and p and ΠΠΠ are the linear and angular
momenta. In addition, the assumption (iii) allows us to consider the approximation of the gravitational potential
P given by −G M/r and the MacCullagh’s term [26]

U =− κ m
2m1 r3

[
(A3−A2)(1−3γ

2
3 )− (A2−A1)(1−3γ

2
1 )
]
, (3)

where κ = G M, M = m1+m2 is the total mass of the system, A1 ≤ A2 ≤ A3 are the principal moments of inertia
associated to the secondary body and (γ1,γ2,γ3) are the director cosines of r.

2.1 MacCullagh’s term in variables referred to the total angular momentum

The variables in which the problem is posed may have a significant impact on its treatment. Our choice is the
use of the total angular momentum as the key object to define them, which application for the roto-translatory
problem was first introduced in [17] as a result of the application of the elimination of the nodes in the n-body
problem [15] to the roto-translatory model. Nevertheless, there is a saying in celestial mechanics that no set of
coordinates is good enough. This claim highlights that in every choice of variables, a sacrifice must be done.
More precisely, Cartesian variables have a simple formulation, but they do not take advance of the presence of
symmetries. Conversely, by using variables referred to the total angular momentum, we incorporate the angles
associated to the symmetries allowing for compact expressions and intuitive geometric insight of the relative
equilibria. However, this is done at the expenses of having singularities, i. e. a global study of the system
requires the use of several charts.

The complete set of canonical variables is (r,φ ,ψ,θ ,δ ,ν ,R,Φ,Ψ,Θ,∆,N). We are not going to provide a
complete derivation of them, which may be found in [17, 23]. Instead and with the aim of fixing notation, we
provide the geometric meaning of the angles by means of Figure 1 and briefly recall the definition of the canoni-
cal angles by following [11]: Let us consider the reference frame S∗ = (`, n×`, n), where ` is the unitary vector
defining node of the total angular momentum plane with the horizontal spatial plane and n is the unitary vector
pointing in the direction of the total angular momentum. In addition, SE = {E1,E2,E3} and Sb = {b1,b2,b3}
are the spatial and body frames respectively, where bi corresponds with the principal moment of inertia of B1.
The orientation and center of mass of the body are referred to the new frame by means of (r,φ ,ψ,θ ,δ ,ν), see
Figure 1. These angles are determined by the nodes; `µδ defined by the rotational angular momentum and the
spatial plane, `r = −`o given by the intersection of the total, rotational and orbital angular momentum planes
and `θ generated by the orbital and spatial planes intersection. Precisely, we have that φ = (Ê1, `), ψ = (̂̀, `I),
θ = (̂̀o,r), δ = (`̂r, `I) and ν = (̂̀I,b1). Moreover, there are three more auxiliary angles which are not among
the canonical variables but we will use them later on; λ = (Ê1, `), µ = (`̂µδ , `I), σ = (Π̂r,Πb) and h = (Ê1, `θ ).
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In addition, the conjugate momenta of the variables read as follows

R, Φ = G ·E3, Ψ = G ·n = G, Θ = Go, ∆ = Gr, N = Gr ·b3, (4)

where G is the total angular momentum vector, Gr is the angular momentum of the secondary body in the body
frame and Go is the orbital angular momentum. Thus, we have the following interpretation of the momenta: (R)
Radial velocity of the center of mass. (Φ) Third component of the total angular momentum in space frame. (Ψ)
Magnitude of the total angular momentum. (Θ) Magnitude of the angular momentum of the center of mass. (∆)
Magnitude of the angular momentum of the rigid body. (N) Third component of the angular momentum of the
rigid body in the body frame (principal axes of inertia).

E3

E2

E1

Reference plane

Andoyer plane Πr

Total angular momentum plane Π

`µδ

Body plane

Orbital plane Π0

b1

`I

`r =−`0

`

φ

λ

Ir
I0

I

σ

h

`θ

r
S

O

ν

δ

ψ

IΘ I∆

µ
−δ

π
−θ

Fig. 1 Geometry of the variables (r,φ ,ψ,θ ,δ ,ν ,R,Φ,Ψ,Θ,∆,N). The variable r and the angles are explicitly given in
the figure, while the associated momenta are included implicitly through the inclinations of the planes. The conjugate
variable R remains unrepresented because of its pure dynamical sense.

Finally, we gather below the formulas for the relative positions of the different planes, as functions of the
canonical momenta, which are given by

cos(Io + Ir) =
Ψ2−∆2−Θ2

2Θ∆
, cos Ir =

Ψ2 +∆2−Θ2

2Ψ∆
, (5)

cos Io =
Ψ2 +Θ2−∆2

2ΨΘ
, cosσ =

N
∆
, cos I =

Φ

Ψ
(6)

and the following relations between angles and momenta hold

Ψ = ∆cos Ir +Θcos Io,
∆

sin Io
=

Θ

sin Ir
=

Ψ

sin(ι)
, (7)
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where I is the inclination of the total angular momentum plane Π, Io and Ir are the inclinations of the orbital and
rotational planes with respect to Π and ι = Io + Ir.

The direction cosines appearing in (3) may be expressed in the body frame by means of the following
composition of rotations:

γ = R3(ν)R1(σ)R3(δ )R1(ι)R3(π−θ) e1 (8)

where γ = (γ1,γ2,γ3) and e1 = (1,0,0). Finally, taking into account that γ2
1 + γ2

2 + γ2
3 = 1 and after some calcu-

lations, we are allowed to express the MacCullagh’s term (3) as follows

U =
km

32m1r3

[
(2A3−A2−A1)V1 +

3
2
(A2−A1)V2

]
, (9)

where
V1 = −2(1−3c2

ι )(1−3c2
σ )

−3s2
σ

[
(1− cι)

2C2,2,0 +(1+ cι)
2C−2,2,0

]
−6s2

ι

[
s2

σC0,2,0− (1−3c2
σ )C2,0,0

]
+12cσ sιsσ

[
(1− cι)C2,1,0 +2cιC0,1,0− (1+ cι)C−2,1,0

] (10)

which is independent of ν , and V2, the “triaxiality part” given by

V2 = −(1− cσ )
2
[
(1− cι)

2C2,2,−2 +(1+ cι)
2C−2,2,−2 +2s2

ι C0,2,−2

]
−(1+ cσ )

2
[
(1− cι)

2C2,2,2 +(1+ cι)
2C−2,2,2 +2s2

ι C0,2,2

]
−6s2

ι s2
σ

[
C2,0,2 +C2,0,−2

]
+4s2

σ (1−3c2
ι )C0,0,2

+4sιsσ (1− cσ )
[
(1− cι)C2,1,−2 +2cιC0,1,−2− (1+ cι)C−2,1,−2

]
+4sιsσ (1+ cσ )

[
− (1− cι)C2,1,2−2cιC0,1,2 +(1+ cι)C−2,1,2

]
,

(11)

and the notation has been abbreviated by writing Ci, j,k ≡ cos(iθ + jδ + kν) and cx ≡ cosx and sx ≡ sinx.

2.2 Intermediary model

Facing a non-integrable Hamiltonian system requires the development of a perturbation theory. A usual
way to proceed is to expand the Hamiltonian function in power series and truncate it at a certain order. This
procedure is in general an uncontrolled approximation since, for most cases, we are no longer sure that the
solutions of the truncated model stay close to the full model. In the case of the FG2BP, it is customary to
consider the orbital and rotational kinetic energies and choose the first term in the expansion of the gravitational
potential, see (1). Thus, we end up with the free rigid body Hamiltonian (the rotational kinetic energy) and the
Kepler system Hamiltonian. That is, the orbital kinetic energy plus the first non-zero term of the gravitational
potential. However, there is no any theorem claiming that this is the only way it can be done. The novelty of
an intermediary model is that it allows to consider truncation of partial order in the power series expansion. In
other words, we pick some “entire” terms of the power series plus a “piece” of one term. The only requirement
that must be fulfilled in this procedure is that the intermediary model should be searchable.

In [11], the authors proposed an axis-symmetric integrable intermediary model, whose accuracy was tested
by comparing with the MacCullagh’s truncation and showing a good performance in the numerical experiments.
Here, we complete this previous study by investigating the triaxial case. One of our aims is to analyze the
physical-parametric bifurcations of relative equilibria due to the elimination of the axial symmetry of the body.
Keeping this motivation in mind, we propose our intermediary following exactly the same procedure than in [11],
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except for the triaxial parameter. That is to say, we only take into account the first line of V1 in (10). Then, let
the perturbing potential of the intermediary model be given by

V =− km
16m1r3 (2A3−A2−A1)(1−3c2

ι )(1−3c2
σ ), (12)

which leads us to the final expression of the intermediary Hamiltonian

H =
1
2

(
R2 +

Θ2

r2

)
− κ

r
+

q
2

[(
sin2(ν)

A1
+

cos2(ν)

A2

)
(∆2−N2)+

1
C

N2
]

− κ(2A3−A2−A1)

16r3

(
1−3c2

ι

)(
1−3c2

σ

)
,

(13)

where q = m/m1. Furthermore, with the aim of alleviate formulas, we have considered the Hamiltonian per unit
of mass by scaling the system and inertia momenta as follows:

H ′ =H /m; R′ = R/m; Θ
′ = Θ/m; ∆

′ = ∆/m; N′ = N/m; Ψ
′ = Ψ/m;

Φ
′ =Φ/m; A′1 = A1/m1; A′2 = A2/m1; A′3 = A3/m1.

(14)

Nevertheless, for the sake of simplicity, we keep the original notation without primes on the variables. Then, the
2-DOF Hamiltonian system of differential equations associated with (13) is given by the following expressions:

ṙ = R (15)

Ṙ =
Θ2

r3 −κ
1
r2 −

3ακ

16r4

(
1−3c2

ι

)(
1−3c2

σ

)
(16)

θ̇ =
Θ

r2 −
3ακ

8Θr3 cι

(
1−3c2

σ

)
(cι +

Θ

∆
) (17)

ψ̇ =
3ακΨ

8∆Θr3 cι

(
1−3c2

σ

)
(18)

δ̇ =

[
q
(

sin2(ν)

A1
+

cos2(ν)

A2

)
− 3ακ

8∆2r3

((
1−3c2

ι

)
c2

σ + cι

(
1−3c2

σ

)
(cι +

∆

Θ
)

)]
∆ (19)

ν̇ =

[
q

A3
−q
(

sin2(ν)

A1
+

cos2(ν)

A2

)
+

3ακ

8∆2r3

(
1−3c2

ι

)]
N (20)

Ṅ = q
(A1−A2)

2A1A2
(∆2−N2) sin(2ν) (21)

together with the integrals Θ̇ = φ̇ = Φ̇ = Ψ̇ = ∆̇ = 0.
Note that, in general, a 2-DOF system is not integrable. Thus, in the triaxial case, the analytical integration

is not provided and the integrability of the system remains as an open question, which is not in the scope of the
present paper.

3 Numerical experiments

In this section we present numerical experiment comparing the intermediary versus the full model (MacCul-
lagh’s approximation). For this purpose, we sweep three parameters that allow us to define the usability of the
triaxial intermediary model. In the first scenario, we recover the triaxiality parameter ρ defined in [10], which
is given by the following expression

ρ =
A2−A1

2A3−A2−A1
, (22)
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and allows us to assess the impact of the triaxiality in the performance of the model. Next, we analyze the
role of the eccentricity and height (distance between the bodies surfaces) by carrying out simulations with these
parameters ranging from e ∈ [0,0.5] and height between 1000 and 2000 km.

Before we get into the numerical evaluations, it is important to pay some attention to the way in which we
proceeded. With the aim of keeping track of the geometry, the initial conditions for the variables are not given
directly. Namely, we introduce some of the canonical momenta by means of the set (e,µ,σ , Io, Ir, I), where e
is the inicial eccentricity of the trajectory. For the readers interested in performing their own experiments, we
include in the Appendix the formulas allowing to connect the previous set with the corresponding canonical
variables. That is to say, in our simulations we set (r0,φ0,ψ0,θ0,σ0,ν0,e,µ0,R0, Io, Ir, I) and then we obtain the
corresponding initial canonical variables (r0,φ0,ψ0,θ0,δ0,ν0,R0,Φ0,Ψ0,Θ0,∆0,N0).

Additionally, in order to reproduce the numerical experiment, it is very important to keep in mind throughout
this section that we have introduced some simplifications. Namely, we have considered the Hamiltonian per unit
of mass and the canonical and inertia momenta have been scaled, see (14). Furthermore, we have changed
internally the units for longitudes by choosing the new one as the radius of the spherical body Rp. However,
we set these units back to Km when we present our results. Regarding to the initial conditions, the radius and
angles (radians) are given directly. The following experiments are carried out for fixed values of the initial
conditions and parameters with the exception of the eccentricity, height and principal moments of inertia, which
will be specified for each simulation. We consider the scenario of a massive spheric primary and an arbitrary
secondary. More precisely, the two bodies are given by; Main body B2: a sphere with radius 500 Km and mean
density d = 2.8g/cm3, then mass is given by m2 = 1.47 · 1021 Kg. Body B1: an ellipsoid with mean density
d = 1.4g/cm3, the principal axes will be given for each simulation. Solutions are evaluated for one orbital
period.

3.1 Parameter analyzed: Triaxiality

In this part we analyze the impact of the triaxiality parameter ρ . For this purpose we fix eccentricity to
zero in all the evaluations and consider four different triaxialities by modifying the secondary body principal
axes. Precisely we study the cases ρ ∈ {0,0.0005,0.15,0.35}, which measure the evolution of the model when
ρ ranges from the axial-symmetric case to a moderate triaxiality. In Figure 3 it is shown how the performance
becomes poorer as the triaxiality parameter grows. More in detail, we observe for the radial variable that
differences duplicate in each step from ρ = 0 to ρ = 0.35. Analogously, slow angles ψ and θ reduce their
accuracy. However, in this case there is a drastic change from the axial-symmetric case to the first step into the
triaxial model, which increases differences by a factor of ten. Moreover, there is also a significant difference
in the behavior of these angles, since the differences with the full model are now strict monotone functions
instead of having an oscillatory nature as in the axial-symmetric case. Rather than the expected and moderate
degradation in performance of the radial and the slow-angles, the main novelty in the triaxial case with respect
to the axial symmetric one is that their approximation deteriorates more and much faster. For that reason and
for the sake of brevity, fast angles will not be displayed in the following sections, since their behavior is quite
similar.

Before we present our experiments in the general case, we study in detail the transition from ρ = 0 to a
very low triaxiality. In this regard, Figure 2 shows how fast angles behaves for a nearly zero triaxiality. It is
observed that the annunciated degradation in accuracy depends gradually on the triaxiality parameter ρ , though
it is presented very early. However, our experiments are given for fast rotating bodies. As such, an analysis for
the case of slow rotating bodies is required in order to find out how the rotational angular momentum modulus
influences in accuracy.

Now we consider the case of higher triaxialities. Despite of what have been said, these experiments still show
a very high accuracy for moderate values of ρ . Namely, in all the simulations provided in Figure 3, the error
ratio (rInterm− r f ull)/r0 is under 0.00064% after one orbital period and for the slow angles we obtain differences
up to the order 10−6 radians. Fast angles are no longer well approximated.
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Fig. 2 Columns from left to right we have: (i) ρ = 0, A1 = 9.80 ·1020, A2 = 9.8 ·1020, A3 = 1.07 ·1021. (ii)
ρ = 0.0005, A1 = 1.17 ·1021, A2 = 1.23 ·1021, A3 = 1.39 ·1021. Abscissas are orbital periods and
D [x] = xFull− xIntermediary. The orbital period is 10.8 hours and r is expressed in Km, which initially is set to 1.560 Km.

0 0.25 0.5 0.75 1
0.00

0.05

0.10

0.15

10
·D
In
t1
[r
]

0 0.25 0.5 0.75 1

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00

10
·D
In
t1
[r
]

0 0.25 0.5 0.75 1

-0.8

-0.6

-0.4

-0.2

0.0

10
·D
In
t1
[r
]

0 0.25 0.5 0.75 1

-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

10
6
D
In
t1
[R

]

0 0.25 0.5 0.75 1

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

10
6
D
In
t1
[R

]

0 0.25 0.5 0.75 1
-1.0

-0.5

0.0

0.5

1.0

10
6
D
In
t1
[R

]

0 0.25 0.5 0.75 1

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

10
4
·
D
In
t1
[ψ

]

0 0.25 0.5 0.75 1
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

10
4
·
D
In
t1
[ψ

]

0 0.25 0.5 0.75 1
-6

-5

-4

-3

-2

-1

0
10

4
·
D
In
t1
[ψ

]

0 0.25 0.5 0.75 1

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4

10
4
·
D
In
t1
[θ
]

0 0.25 0.5 0.75 1
0

1

2

3

4

10
4
·
D
In
t1
[θ
]

0 0.25 0.5 0.75 1
0

2

4

6

8

10

10
4
·
D
In
t1
[θ
]

0 0.25 0.5 0.75 1
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2

10
4
·
D
In
t1
[δ
]

0 0.25 0.5 0.75 1
0

100000

200000

300000

400000

500000

10
4
·
D
In
t1
[δ
]

0 0.25 0.5 0.75 1
0

200000

400000

600000

800000

1×106

10
4
·
D
In
t1
[δ

]

0 0.25 0.5 0.75 1

-0.004
-0.002
0.000
0.002
0.004

10
5
·
D
In
t1
[ν
]

0 0.25 0.5 0.75 1

0
1×106
2×106
3×106
4×106
5×106
6×106

10
5
·
D
In
t1
[ν
]

0 0.25 0.5 0.75 1

0

2×106

4×106

6×106

8×106

10
5
·
D
In
t1
[ν
]

Fig. 3 Columns from left to right we have: (i) ρ = 0, A1 = 9.80 ·1020, A2 = 9.8 ·1020, A3 = 1.07 ·1021. (ii)
ρ = 0.15, A1 = 1.17 ·1021, A2 = 1.23 ·1021, A3 = 1.39 ·1021. (iii)
ρ = 0.35, A1 = 1.06 ·1021, A2 = 1.18 ·1021, A3 = 1.28 ·1021. Abscissas are orbital periods and
D [x] = xFull− xIntermediary. The orbital period is 10.8 hours and r is expressed in Km, which initially is set to 1.560 Km.

Initial conditions for simulations in Figure 2 and Figure 3.

r0 = 1550, φ0 =
2π

9
, ψ0 =

π

4
, θ0 = 0, σ0 =

π

2
, ν0 = 0,

µ0 =
7π

18
, R0 = 0, Io =

π

18
, Ir =

π

12
, I =

7π

36
, e = 0,

(23)
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making use of the formulas in the Appendix, we are led to the following initial values for the canonical variables

r0 = 3.12 ·Rp, φ0 = 0.698131, ψ0 = 0.785398, θ0 = 0, δ0 = 0.630221, ν0 = 0,

R0 = 0, Φ0 = 0.125460, Ψ0 = 0.153158, Θ0 = 0.093797, ∆0 = 0.062930, N0 = 0.
(24)

3.2 Parameter analyzed: Eccentricity

In the formulation of the triaxial model in Section 2 we restrict the validity of the model to small eccentrici-
ties. That is to say, we consider eccentricity up to 0.5, since for higher values even the full model (MacCullagh’s
approximation) does not provide a valuable estimation. In Figure 4 e is set to 0.1 and 0.5, showing that accuracy
decreases by factor two as eccentricity grows and leading to a similar scenario than in the triaxiality analysis.
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Fig. 4 Left column e = 0.1 and right column e = 0.5.Abscissas are orbital periods and D [x] = xFull− xIntermediary. The
orbital period is 10.8 hours and r is expressed in Km, which initially is set to 1.560 Km.

Next, we specify the initial conditions and parameters to assess the role of the eccentricity. Firstly, we fix the
dimensions of the secondary body to be 60, 55 and 45 Km. Then, we obtain the following associated moments
of inertia

A1 = 1.06 ·1021, A2 = 1.18 ·1021, A3 = 1.28 ·1021.

The remaining variables, inclinations and momenta are also fixes with the exception of the eccectricity

r0 = 1550, φ0 =
2π

9
, ψ0 =

π

4
, θ0 = 0, σ0 =

π

2
, ν0 = 0,

µ0 =
7π

18
, R0 = 0, Io =

π

18
, Ir =

π

12
, I =

7π

36
, e,

(25)

making use of the formulas in the Appendix, we are led to the corresponding initial values for each value of the
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eccentricity. Namely, for e = 0.1 we obtain

r0 = 3.12 ·Rp, φ0 = 0.698131, ψ0 = 0.785398, θ0 = 0, δ0 = 0.630221, ν0 = 0,

R0 = 0, Φ0 = 0.124829, Ψ0 = 0.152388, Θ0 = 0.09332, ∆0 = 0.062614, N0 = 0,
(26)

and for e = 0.5

r0 = 3.12 ·Rp, φ0 = 0.698131, ψ0 = 0.785398, θ0 = 0, δ0 = 0.630221, ν0 = 0,

R0 = 0, Φ0 = 0.108650, Ψ0 = 0.132637, Θ0 = 0.081229, ∆0 = 0.054498, N0 = 0.
(27)

3.3 Parameter analyzed: Height

This section present a representative selection for a low range of altitudes. In Figure 5 we compare the
results obtained for 1000 and 2000 Km, with fixed e = 0.3, showing that a different picture emerges for the
height analysis. Namely, accuracy is enhanced, at least duplicated, with height. However, a more exhaustive
study considering a wider range of altitudes should be done to clarify at what extend is this claim true.
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Fig. 5 Left column (H = 1000Km,T = 22.8h) and right column (H = 2000Km,T = 10.8h), where T is the orbital
period expressed in hours. Abscissas are orbital periods and D [x] = xFull− xIntermediary

Initial conditions and parameters are set as follows

r0 = 1550, φ0 =
2π

9
, ψ0 =

π

4
, θ0 = 0, σ0 =

π

2
, ν0 = 0,

µ0 =
7π

18
, R0 = 0, Io =

π

18
, Ir =

π

12
, I =

7π

36
, e = 0.3,

(28)

Then, we obtain the following initial conditions for heights H = 1000 and H = 2000 Km accordingly

r0 = 3.12 ·Rp, φ0 = 0.698131, ψ0 = 0.785398, θ0 = 0, δ0 = 0.630221, ν0 = 0,

R0 = 0, Φ0 = 0.119679, Ψ0 = 0.146101, Θ0 = 0.0894754, ∆0 = 0.060031, N0 = 0,
(29)

https://www.sciendo.com


Gravity-gradient rotational intermediary 199

for height=1000Km and

r0 = 5.12 ·Rp, φ0 = 0.698131, ψ0 = 0.187160, θ0 = 0, δ0 = 0.630221, ν0 = 0,

R0 = 0, Φ0 = 0.153312, Ψ0 = 0.146101, Θ0 = 0.114620, ∆0 = 0.076901, N0 = 0,
(30)

for height=2000Km.

4 Searching for relative equilibria. Constant radius solutions

The system of differential equations defined by the Hamiltonian (13) is endowed with several distinguish
and physical parameters. Thus, bifurcations occurs in several directions in the parametric space. With the aim of
simplifying this scenario and provide a clear geometric interpretation of our equilibria, we organize our families
of relative equilibria according to the inclinations of pairs of fundamental planes (orbital, rotational and body
planes). More precisely, we consider the relative inclination between orbital and rotational planes (ι) and the
one determined by the rotational and body planes (σ). For that reason cos ι and cosσ are the key objects to
present the analysis of the relative equilibria. Precisely, we show that cos ι =±

√
1/3 allows for the appearance

of the families dubbed as critical inclination equilibria. Apart from that, from the angle between the body and
rotational planes we obtain body-inclined equilibria (cosσ 6= 0) and body-perpendicular equilibria (cosσ = 0).
Note that the nomenclature of the families of equilibria related to the angle σ has been prefixed with the word
body. It is done with the aim of distinguishing these equilibria from those dubbed as inclined and perpendicular
equilibria in [10], which are related to the dihedral angle ι .

However, the physical parameters do also give rise to bifurcations. Namely, the number and nature of
equilibria depends on the moments of inertia (A1,A2,A3), which for the axis-symmetric case leads to extra
families of equilibria studied in [11]. Additionally, in [10], we also identify a special triaxiality for ρ = 1/3
leading to a family of equilibria. However, the triaxial parameter ρ does not play the same role in the present
intermediary. This fact is due to the elimination of the contribution of V2 in our model, which makes the
triaxiality hinges in α = (2A3−A2−A1).

We begin our study by looking for a possible relative equilibrium of our Hamiltonian system with constant
radius, which leads to solutions living in a 4-D torus. Then, we proceed with the study of conditions leading to
lower dimensional tori. We would like to remark that we are not going to carry out an exhaustive study of all the
equilibria of this intermediary, since it would require the use of variables free of singularities which is beyond
the scope of this paper and it is a research in progress part of [6]. Henceforth, we consider the following notation

νi = i
π

2
, i ∈ {1,2,3,4}. (31)

Observe that on one hand, the cases {ν1,ν3} lead us to the presence of A1 in the formulas (19) and (20) and on
the other hand cases {ν2,ν4} lead us to the presence of A2 respectively.

4.1 Critical inclination equilibria

Along this subsection we study the equilibria obtained under a fixed inclination of the dihedral angle ι which
determines the relative position of the orbital and rotational planes. In particular we consider (1−3c2

ι ) = 0, i.e.
cι =±

√
1/3, inclination dubbed as critical inclination. Observe that for this critical inclination the perturbative

term in (16) and (20) vanishes and these two equations correspond with the decoupled motion of the Kepler and
the free rigid body problems respectively.

• Invariant 4-tori T4(θ ,ψ,δ ,ν).
Our first approach to tackle the problem of searching for orbits of constant radius within our intermediary
is by examining the subsystem (ṙ, Ṙ), i.e. equations (15) and (16). Just by being

(
1−3c2

ι

)
= 0 we get an
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equilibrium of (ṙ, Ṙ) which provide us the following expression for the constant radius:

r =
Θ2

κ
. (32)

The orbits obtained under this inclination are restricted to be into the invariant T4(θ ,ψ,δ ,ν).

4.2 Body-Inclined equilibria

Following the classification previously indicated, we study here the equilibria obtained under a fixed incli-
nation of the σ angle. In particular, we called inclined equilibria to those for which cσ 6= 0, i.e. N 6= 0. Due to
the factorization obtained of (20) and in order to obtain orbits of constant radius for this family of equilibria we
have:

q
A3
− q

Ai
+

3ακ

8

(
1−3c2

ι

)
∆2r3 = 0, i ∈ {1,2}. (33)

Note that the above formula implies (1−3c2
ι )> 0 and the following restriction for ∆

∆
2 ≤ 3ακ

8qr3

(
A3Ai

A3−Ai

)
. (34)

As result of the appearance of the r cubed constrain in the denominator we have that these equilibria are just
possible for very small values of ∆, which implies bodies in a slow rotational regime.

• Fixed ν . Invariant 3-tori T3(θ ,ψ,δ ).

Considering the subsystems (ṙ, Ṙ) and (ν̇ , Ṅ) under a inclined equilibria and 1−3c2
σ 6= 0 along with some

particular initial value problem conditions, i.e. R = 0, ν = νi, N 6= 0, 1−3c2
σ 6= 0, from (16) and (20) we

obtain an expression for the radius

r =
Θ2

2κ
+

√
Θ4

4κ2 −
3α(1−3c2

ι )(1−3c2
σ )

16
, (35)

which leads to an implicit relation between cι and cσ which provides us equilibrium that guarantees us
the existence of orbits of constant radius within the invariant 3-tori T3(θ ,ψ,δ )

3

√
3ακ (1−3c2

ι )AiA3

8∆2q(A3−Ai)
=

√
Θ4

4κ2 −
3
16

α (1−3c2
ι )(1−3c2

σ )+
Θ2

2κ
. (36)

Using Taylor series of the previous expression of cι about 0 we obtain the zero order approximation of cσ

cσ =−
√

16aΘ2 +16a2κ +3ακ

3
√

ακ
,

where

a = 3

√
3αA1A3κ

8∆2q(A1−A3)
.

This expression shows us how the triaxiality of B1 conects the relation between cσ and cι .

Searching for conditions that lead us to find equilibria for δ and ψ within our 3-tori we notice analyzing
(18) and (19) that there is no a simultaneous equilibrium for δ and ψ . Therefore, we continue studying
the existence of 2-tori originated by fixing one of the remaining angles.
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• Fixed ν and δ . Invariant 2-tori T2(θ ,ψ)

We examine now the subsystem (δ̇ , ∆̇) under the same inclination and initial value problem established
previously. Taking into account (19) we get a fixed inclination that allows us to find an equilibrium of δ

within our 3-tori and consequently we find particular body-inclined equilibria that guarantee us the exis-
tence of orbits within the invariant 2-tori T2(θ ,ψ).

The variation of the remainder angles for these orbits are:

θ̇ = nθ =
Θ

r2 −
3ακ

8

cι(1−3c2
ι )(cι +

Θ

∆
)

Θr3 , (37)

ψ̇ = nψ =
3ακ

8
cι(1−3c2

ι )Ψ

∆Θr3 . (38)

Under this particular body-inclined equilibria the relations between inclinations are given by:

c2
σ1 =

1− (4− τ1)c2
ι − (1− τ1)ζ cι

(1− τ1)(1−6c2
ι −3ζ cι)

for νi i ∈ {1,3},

c2
σ2

=
1− (4− τ2)c2

ι − (1− τ2)ζ cι

(1− τ2)(1−6c2
ι −3ζ cι)

for νi i ∈ {2,4}, (39)

where we introduce the following notation

τ1 =
A1

A3
, τ2 =

A2

A3
, ζ =

∆

Θ
.

These relationships lead us to the following family of curves

cσ1 = cσ1(cι ;τ1), cσ2 = cσ2(cι ;τ2)

whose graph is studied in the Cartesian plane Ocιcσ .
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Fig. 6 (Left) triaxiality region with τ1 = 0.35 and τ2 = 0.9. (Right) Curves cσ1 and cσ2 restricted to interval [0,1] for
ζ = 0.7.

Notice that the triaxiality of B1 is encapsulated in the ratios τ1 and τ2 respecting some conditions as
0 < τ1 < τ2 < 1 and 1 < τ1 + τ2. On figure 6 we distinguish curves of equilibria. A complete analysis of
these curves is a work on progress in [6].
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A partial study of the triaxiality role is presented now in more detail due to the important effects produced
on the inclinations of cσ and cι for this particular equilibria. Some important restrictions for the sake
of simplicity must be considered. We restrict the domain of cι to 0 < cι < 1/

√
3 and use the following

nomenclature:

cι
∗ is the cι -intercept value of the curve cσ1 , i.e. 0 = cσ1(cι

∗;τ1) and cι
∗∗ is the cι -intercept value of the

curve cσ2 respectively, namely

cι
∗ =

ζ (1− τ1)−
√

ζ 2(1− τ1)2−4(τ1−4)
2(τ1−4)

, cι
∗∗ =

ζ (1− τ2)−
√

ζ 2(1− τ2)2−4(τ2−4)
2(τ2−4)

.

Within our restriction and fixing a certain inclination c̃ι , we distinguish three regions:

– c̃ι ∈ (0,cι
∗): No equilibria is found for this fixed inclination.

– c̃ι ∈ (cι
∗,cι

∗∗): One equilibrium found. As we notice in figures 7 and 8 (central) for a fixed inclina-
tion on this region we find one cσ value that guarantee us an equilibrium.

– c̃ι ∈
(
cι
∗∗,1/

√
3
)
: Two equilibria found. Figures 7 and 8 (right) show that for a fixed inclination we

find two cσ values that guarantee us equilibrium.

Moreover in figures 7 and 8 (left) we included a representation of the triaxiality region.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.40 0.45 ci* ci**0.0

0.2

0.4

0.6

0.8

1.0

ci~ 0.57 0.40 0.45 ci*0.0

0.2

0.4

0.6

0.8

1.0

ci~ci**

Fig. 7 Parameters: ζ = 0.2, τ1 = 0.3, τ2 = 0.75.
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Fig. 8 Parameters: ζ = 0.2, τ1 = 0.6, τ2 = 0.75.

As we observe the triaxial shape of B1 acquires a fundamental role in the amplitude of the different regions
of equilibria. Notice that the mentioned amplitude is also affected by the ratio ζ . From a more detail study
we conclude that this situation is robust enough even for values of ζ > 1.
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• Fixed ν and ψ . Invariant 2-tori T2(θ ,δ ) and periodic orbits.

Working on the subsystems (ṙ, Ṙ), (ν̇ , Ṅ) and (ψ̇,Ψ̇) under an inclined equilibria and (1−3c2
σ ) = 0 along

with the following initial value problem, we obtain an equilibrium which guarantee us the existence of an
orbit of constant radius within the invariant 2-tori T2(θ ,δ ),

R = 0, r =
Θ2

κ
, ν = νi,

1−3c2
σ = 0, c2

ι =
1
3

[
1−q

(
A3−Ai

A3Ai

)
8∆2Θ6

3ακ4

]
.

(40)

This particular inclination of σ provides us a body-inclined equilibria and leads us to recover in (16) the
Kepler problem formulation. Moreover, it also guarantees us the existence of orbits within T2(θ ,δ ).

Particularly the variation of the remainder angles are given by:

θ̇ = nθ =
Θ

r2 , (41)

δ̇ = nδ = q∆

(
2A3 +Ai

3A3Ai

)
. (42)

Notice that these mean motions for θ and δ provide us periodic orbits within T2(θ ,δ ).

4.3 Body-Perpendicular equilibria

Along this section we study the equilibria obtained under a fixed inclination of the σ angle which determine
the relative position of the rotational and body planes. In particular we consider cσ = 0 inclination dubbed as
body-perpendicular equilibria. It is straightforward that N = 0 is equivalent to have a perpendicular inclination.
Observe that some of the perpendicular equilibria study on this section present critical inclination. Note that not
likewise the inclined equilibria, the body-perpendicular equilibria allow a free regime of ∆.

• Fixed ν .Invariant 3-tori T3(θ ,ψ,δ ).

Examining the subsystems (ṙ, Ṙ) and (ν̇ , Ṅ) under a perpendicular inclination cσ = 0 along with the
following initial value problem we obtain an equilibrium which guarantees us the existence of an orbit of
constant radius within the invariant 3-tori T3(θ ,ψ,δ )

R = 0, r =
Θ2

2κ
+

√
Θ4

4κ2 −
3α(1−3c2

ι )

16
,

ν = νi, N = 0.
(43)

Observe that the radius obtained is according to [11] when the triaxial body tends to be axial-symmetric.

Worth noting is that when the orbital and the rotational planes present a critical inclination, i.e. 1−3c2
ι = 0,

the formula for the radius is simplified to r = Θ2/κ . Notice that by analyzing (18) and (19) it can be
concluded that there is no a simultaneous equilibrium for δ and ψ . As such, we continue studying the
existence of 2-tori originated by fixing each one of the remaining angles individually.

• Fixed ν and δ .Invariant 2-tori T2(θ ,ψ).
Taking into account the subsystems (ṙ, Ṙ), (ν̇ , Ṅ) and (δ̇ , ∆̇) under a perpendicular inclinations cσ = 0 and(
1−3c2

ι

)
= 0 along with the following initial value problem we obtain an equilibrium which guarantee

us the existence of an orbit of constant radius within the invariant 2-tori T2(θ ,ψ)
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r =
Θ2

κ
, R = 0, ν = νi, N = 0,

∆q
(

1
Ai

)
− 3ακ

8

cι(cι +
∆

Θ
)

∆r3

= 0, cι =±
√

1/3.
(44)

Notice that this equilibrium has the same constant radius as the one obtained for a critical inclination,
therefore we interpret that for this equilibrium cσ = 0 confine the motion of our orbit within the invariant
T2(θ ,ψ).

The remainder angles are given by:

θ̇ = nθ =
Θ

r2 −
3ακ

8

cι(cι +
Θ

∆
)

Θr3 , (45)

ψ̇ = nψ =
3ακ

8
cιΨ

∆Θr3 . (46)

• Fixed ν . Invariant 2-tori T2(θ ,δ ).

Analyzing the subsystems (ṙ, Ṙ), (ν̇ , Ṅ) and (ψ̇,Ψ̇) under cσ = 0 and cι = 0 along with the following
initial value problem we find an equilibrium and therefore an orbit within the invariant 2-tori T2(θ ,δ ).

R = 0, r =
Θ2

2κ
+

√
Θ4

4κ2 +
3α

16
,

ν = νi, N = 0.
(47)

The expression for the remainder angles are:

θ̇ = nθ =
Θ

r2 , (48)

δ̇ = nδ =

(
∆q
Ai

)
. (49)

Consequently the mean motions of θ and δ provide us periodic orbits withing T2(θ ,δ ).

5 On the classical families of relative equilibria

In general, classical relative equilibria of the roto-orbital dynamics associated with a rigid body in circular
orbit [16, 21, 22] are not reflected in our analysis, since they require particular inclinations of the fundamental
planes involved leading to angles singularities. For instance, the solutions usually designated as float implies
that the orbital, rotational and body planes are coplanar. Thus, several of the angular canonical variables are not
defined and we should switch to another chart including this possibility. Indeed, this situation is associated to
any relative equilibria in which the rotation is around axis b3.

Next, we consider some special configurations. Let ι be fixed to π/2, then we find relative equilibria among
the family of perpendicular type (σ = π/2) in which the spin axis lies in the orbital plane. When we set initial
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Fig. 9 Special relative equilibria of the body-perpendicular type with ν =±nπ .

conditions for σ = π/2 and ψ fixed, i. e., body-perpendicular relative equilibria among the family T2(θ ,δ ),
the body is spinning around b1 (for ν = π/2± nπ) or b2 (for ν = ±nπ). In both cases, the spin-axis is in
the intersection of the orbital and body planes. Figure 9 provides an illustration of the situation described by
considering a reference frame attached to the orbital plane. Note that the angles θ and δ are moving at a constant
rate. Thus, the spin axis b2 or b1 defines the invariant direction of the rotational angular momentum in the space
frame.

Fig. 10 Special relative equilibria of the body-inclined type.

These relative equilibria are similar to the types arrow and spoke reported by [16, 21] inasmuch as the spin
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axis lies in the orbital plane. However, in order to recover the actual classical relative equilibria, we should allow
the angle ψ to vary. Thus, we consider body-inclined relative equilibria when σ + ι = ±π . Then, since ν is
also fixed, one may choose this angle in such a manner that b1 (or b2) lies in the orbital plane. Nonetheless,
in this configuration ψ and θ evolves at constant rate giving the classical arrow and spoke types at particular
frequencies. See figure 10 for a geometric view of this instance.

As a final remark, we would like to point out that, a complete identification of the classical families of
relative equilibria involves the use of a complete set of charts, which cover the case in which the axis b3 is
allowed to be the spin-axis.

6 Conclusions and future work

An intermediary model has been presented considering the triaxial version of the one introduced in [11].
The numerical simulations assess the validity of the model for the case of a fast rotating body. Although, more
exhaustive experiments are necessary to establish bounds for its applicability. Moreover, our experiments show
the influence of the triaxiality reporting a marked degradation in the precision of the fast angles, though the radial
distance and slow angles remain to be approximated with high accuracy after one orbital period. Nevertheless,
the evaluation of a slow rotation regime is part of our ongoing research.

We also investigate the relative equilibria of the model finding families that depart from the equilibria of the
free rigid body and the classical equilibria reported in the literature. Yet, some of these equilibria are recovered
in our setting and we give a detailed geometric description of how to identify them. A complete searching
of classical equilibria in our setting requires the use of several charts. The role of the triaxial shape of the
body is studied for some equilibria, showing partially how the triaxiality influences the inclinations which lead
to equilibria. The integrability of our model and the stability of the equilibria obtained are parts of a further
research.
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APPENDIX

Though the argument of the node of the orbital and rotational planes are not included in the set of canonical
variables, neither the inclinations of the fundamental planes or eccentricity, they are connected to them. By
zooming Figure. 1, we obtain Figure. 11, which help us in obtaining some relations.

Using basic formulas of spherical trigonometry, the following relation can be derived

cos IΘ = cos Io cos I + sin Io sin I cosψ, sin IΘ =+
√

1− cos2 IΘ,

cosα =
cos Io cos IΘ− cos I

sin Io sin IΘ

, sinα =
sin I

sin IΘ

sinψ,

cos(φ −h) = cosα cosψ + sinα sinψ cos Io, sin(φ −h) =
sin Io

sin IΘ

sinψ,

(A1)
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(a) (b)

Fig. 11 Spherical triangles involved in the problem. α is the angle between the two nodes of the orbital plane. (a)
Triangle formed by the orbital angular momentum plane, the total angular momentum plane and the reference plane. (b)
Triangle formed by the rotational angular momentum plane, the total angular momentum plane and the reference plane.

while for the case of Fig. 11(b), we can write

cos I∆ = cos Ir cos I− sin Ir sin I cosψ, sin I∆ =+
√

1− cos2 I∆,

cos(λ −φ) =
cos Ir− cos I cos I∆

sin I sin I∆

, sin(λ −φ) =
sin Ir

sin I∆

sinψ,

cos(µ−δ ) = cos(λ −φ)cosψ + sin(λ −φ)sinψ cos I, sin(φ −h) =
sin I
sin I∆

sinψ,

(A2)

References

[1] Andoyer, M. H.: Cours de Mécanique Céleste. Gauthier-Villars, Paris, 57 (1923)
[2] Arribas, M.: Sobre la dinámica de actitud de satélites artificiales. PhD, Universidad de Zaragoza, 149 (1989)
[3] Beletskii, V. V.: Motion of an artificial satellite about the center of mass. Israel Prog. for Scientific Trans., Jerusalem

(1966)
[4] Boué, G., Laskar, J.: Spin axis evolution of two interacting bodies, Icarus. 201, 2, 750–767 (2009),

doi.org/10.1016/j.icarus.2009.02.001
[5] Buono, L., Laurent-Polz, F., Montaldi, J.: In Geometric Mechanics and Symmetry: The Peyresq Lectures. J. Montaldi

and T. S. Ratiu, eds, Cambridge University Press. Berlin, 357-402 (2005)
[6] Cantero, A.: Mathematical Models for the Full Gravitational 2-Body Problem. A Perturbative Scheme by Stages. PhD

thesis, Universidad de Murcia. In Progress.
[7] Chernousko, F. L.: On the motion of a satellite about its center of mass under the action of gravitational moments.

Journal of Applied Mathematics and Mechanics 27, 3, 708-722 (1963)
[8] Cochran, J. E.: Effects of Gravity-Gradient Torque on the Rotational Motion of a Triaxial Satellite in a Precessing

Elliptic Orbit. Celestial Mechanics 6, 127-150 (1972)
[9] Crespo, F.: Hopf fibration reduction of a quartic model. An application to rotational and orbital dynamics. PhD Thesis,

Universidad de Murcia, 208 (2015)
[10] Crespo, F.J., Ferrer, S. Roto-orbital dynamics of a triaxial rigid body arround a sphere. Relative equilibria and stability,

Advances in space research 61, 2725-2739 (2018)
[11] Crespo, F., Molero, F.J., Ferrer, S., Scheeres, D.J. A radial axial-symmetric intermediary model for the roto-orbital

motion, Journal of Astronautical Sciences 65, 1-28 (2018). doi: 10.1007/s40295-017-0121-9
[12] de Moraes, R., Cabette, R., Zanardi, M., Stuchi, T., Formiga, J.: Attitude stability of artificial satellites subject to

gravity gradient torque. Celest. Mech. Dyn. Astr. 104, 337-353 (2009). doi: 10.1007/s10569-009-9216-3
[13] Dellnitz, M., Melbourne, I., Marsden, J.E.: Generic bifurcation of Hamiltonian vector fields with symmetry. Nonlin-

earity 5, 979-996 (1992)
[14] Deprit, A.: The elimination of the parallax in satellite theory. Celestial Mechanics 24, 2, 111-153 (1981)
[15] Deprit, A.: Elimination of the nodes inproblem of N bodies. Celestial Mechanics 30, 2, 181-195 (1983)
[16] Duboshin, G. On one particular case of the problem of the translational-rotational motion of two bodies. Soviet As-

tronomy, 3:154. (1959)
[17] Ferrándiz, J. M., Sansaturio, M. E: Elimination of the nodes when the satellite is a non spherical rigid body. Celestial

Mechanics 46, 307–320 (1989)

https://doi.org/10.1007/s40295-017-0121-9
https://doi.org/10.1007/s10569-009-9216-3
https://www.sciendo.com


208 A. Cantero, F. Crespo, and S. Ferrer Applied Mathematics and Nonlinear Sciences 3(2018) 187–208

[18] Ferrer, S., Lara, M.: On Roto-Translatory Motion: Reductions and Radial Intermediaries. The Journal of the Astronau-
tical Sciences 59, 1-2, 21-39 (2012)

[19] Ferrer, S., Molero, F. J.: Intermediaries for Gravity-Gradient Attitude Dynamics I. Action-angle variables. Advances
in the Astronautical Sciences 153, 293-312 (2nd IAA Conference on Dynamics and Control of Space Systems. Roma.
Italy. 24-26 March 2014)

[20] Hughes, P. C.: Spacecraft Attitude Dynamics. Dover Public Inc, New York (1986)
[21] Kinoshita, H.: Stationary Motions of an Axisymmetric Body around a Spherical Body and Their Stabilities. Publica-

tions of the Astronomical Society of Japan 22, 383-403 (1970 )
[22] Kinoshita, H.: Stationary Motions of a Triaxial Body and their Stabilities. Publications of the Astronomical Society of

Japan 24, 409-417 (1972)
[23] Ferrer, S. and Lara, M. On roto-translatory motion: Reductions and radial intermediaries. The Journal of the Astronau-

tical Sciences, 59:21–39. (2012)
[24] Lara, M., Ferrer, S.: Closed form perturbation solution of a fast rotating triaxial satellite under gravity-gradient torque.

Cosmic Research 51, 4, 289-303 (2013). doi: 10.1134/S0010952513040059
[25] Lara, M., Gurfil, P.: Integrable approximation of J2-perturbed relative orbits. Celestial Mechanics and Dynamical

Astronomy 114, 229-254 (2012). doi: 10.1007/s10569-012-9437-8
[26] MacCullagh, J.: On the rotation of a solid body. Proceedings of the Royal Irish Academy 2, 520-545 (1840)
[27] Scheeres, D.: Orbital Motion in Strongly Perturbed Environments: Application to Asteroid, Comet and Planetary

Satellite Orbiters. Jointly published with Praxis Publishing, UK, 390 (2012)
[28] Scheeres, D.: Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems.

Celest. Mech. Dyn. Astr. 113, 291-320 (2012). doi: 10.1007/s10569-012-9416-0
[29] Sidi, M. J.: Spacecraft Dynamics and Control. Cambridge Aerospace Series (2000)
[30] Soler, A.: Intermediarios radiales del movimiento roto-traslatorio de satélites artificiales PhD Thesis, Universidad de

Murcia (2013)
[31] Wang, Y., Xu, S., Zhu, M.: Stability of relative equilibria of the full spacecraft dynamics around an asteroid with

orbit-attitude coupling. Advances in Space Research 53, 1092-1107 (2014)
[32] Wilson, C.: The Hill-Brown Theory of the Moon’s Motion. Springer, 332 (2010)
[33] Zanardi, M., Silva, W., Formiga, J., Stuchi, T., Cabette, R.: Stability analysis of the spacecraft attitude with canonical

variables. Proceedings of the 23th International Symposium on Space Flight Dynamics — 23th ISSFD, Pasadena, USA
(2013)

https://doi.org/10.1134/S0010952513040059
https://doi.org/10.1007/s10569-012-9437-8
https://doi.org/10.1007/s10569-012-9416-0
https://www.sciendo.com

	Introduction
	Hamiltonian formulation of the triaxial model
	MacCullagh's term in variables referred to the total angular momentum
	Intermediary model

	Numerical experiments
	Parameter analyzed: Triaxiality
	Parameter analyzed: Eccentricity
	Parameter analyzed: Height

	Searching for relative equilibria. Constant radius solutions
	Critical inclination equilibria
	Body-Inclined equilibria
	Body-Perpendicular equilibria

	On the classical families of relative equilibria
	Conclusions and future work

