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Abstract
We make some considerations about Relativistic Positioning Systems (RPS). Four satellites are needed to position a user.
First of all we define the main concepts. Errors should be taken into account. Errors depend on the Jacobian transformation
matrix. Its Jacobian is proportional to the tetrahedron volume whose vertexes are the four tips of the receiver-satellite unit
vectors. If the four satellites are seen by the user on a circumference in the sky, then, the Jacobian and the tetrahedron
volume vanish. The users we consider are spacecraft. Spacecraft to be positioned cannot be close to a null Jacobian
satellites-user configuration. These regions have to be avoided choosing an appropriate set of four satellites which are not
seen too close to the same circumference in the sky. Errors also increase as the user spacecraft separates from the emission
satellite region, since the tetrahedron volume decreases. We propose a method to autonomously potion a user-spacecraft
which can test our method. This positioning should be compared with those obtained by current methods. Finally, a
proposal to position a user-spacecraft moving far from Earth, with suitable devices (autonomous), is presented.

Keywords:Astronomy and Astrophysics, Mathematical Physics, General Relativity, Relativistic Positioning Systems, Numerical Meth-
ods
AMS 2010 codes:35Q85, 37M99, 83C05.

1 Introduction

This paper gives some considerations about Relativistic Positioning Systems (RPS). First of all we define
the main concepts. In Minkowski Space-Time (M-ST), the analytical transformation from emission to inertial
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coordinates was found by [1]. A numerical code (Newton-Raphson) to find the inverse transformation has also
been developed by our team. A quasi-inertial system should be taken to describe satellites and user coordinates.

Errors depend on the Jacobian transformation matrix, J. Its Jacobian, |J|, is proportional to the tetrahedron
volume whose vertexes are the four tips of the receiver-satellite unit vectors. If the four satellites are seen by the
user on a circumference in the sky, then, the Jacobian and the tetrahedron volume vanish. Two kind of errors
may be defined: U-errors associated to uncertainties in the satellite world lines (see [2] for details) and S-errors
due to an approximate description of the photon world lines: the metric used in this description which takes into
account some of the astronomical bodies but not all of them.

Both S and Uerrors have infinite limit as |J| tends to zero; hence, there are great errors in a certain region
near null Jacobian points. The users we consider are spacecraft. Spacecraft to be positioned cannot be close to
a null Jacobian satellites-user configuration. These regions have to be avoided choosing an appropriate set of
four satellites which are not seen too close to the same circumference in the sky. Errors also increase as the user
spacecraft separates from the emission satellite region, since the tetrahedron volume decreases.

We present the basic ideas to understand the following prospects: 1) Improve on the description of the Solar
System gravitational field in the positioning region. 2) Look for criteria to select the best sets of four satellites.
It is not enough to calculate the Jacobian because its maximum value does not correspond to the minimum U
and S errors. We only know that the errors tend to infinite when J vanishes. 3) If a spacecraft carries devices
to get the unit vectors at emission times, the tetrahedron volume may be estimated for any set of four visible
satellites and, consequently, sets leading to excessively small Jacobian values should not be used for positioning.
4) Only configurations of four satellites leading to big enough Jacobian values will be considered for positioning
to get small U and S-errors. Each of these configurations gives a position, and the distribution of positions will
be used to get the most probable position and the probability of any other location. 5) We propose a method to
autonomously potion a user-spacecraft which can test our method. This positioning should be compared with
those obtained by current methods. 6) Finally, a proposal to position a user-spacecraft moving far from Earth,
with suitable devices (autonomous), should be presented.

2 The method

In the 0-order RPS, positioning coordinates are inertial coordinates in the M-ST asymptotic to Schwarszchild-
ST and, consequently, they will be called inertial asymptotic coordinates or inertial coordinates xα , as done in
previous papers [3], [4] and [5].

The inertial coordinates (user position) may be found by using the satellite world lines and the emission
proper times, excepting some cases in which the emission coordinates are compatible with two user positions
(bifurcation); in these cases, a criterion –based on additional data– is necessary to choose the true position [6],
[7], [8], [9], [10], [11] and [3]. Bifurcation does not play a role in this paper.

User -simultaneously- receives proper times (emission coordinates τA) from 4 satellites. User space-time
position is given by four Quasi-Inertial coordinates xα , associated to a quasi-inertial reference system. From
emission (satellite) to reception (user spacecraft), photons travel through null geodesics: If the satellite world
lines are known, user quasi-inertial coordinates may be computed from emission ones.

In M-ST, the analytical transformation from emission to inertial coordinates was found by [1]:

τ
A(past)−→ xα (1)

This analytical transformation is valid for any known satellite world line xα
A = xα

A (τ
α) in M−ST . Only past

emission proper times lead to positioning (past solutions).
xα

A = xα
A (τ

α) are the world lines of satellites (known) in the quasi-inertial system parameterized by satellite
proper times. These are the photon null geodesics:

ηαβ [x
α
A − xα

A (τ
α)]
[
xβ

A = xβ

A(τ
α)
]
= 0 (2)
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An analytical solution was found for these four equations to give xα as a function of τA, see [1]. We also built
a numerical code (Newton-Raphson) to find the inverse transformation giving τA in terms of xα . The Jacobian
of the transformation, |J|, of τA = τA(xα) is:

|JAα |=
∂τA

∂xα
∼=

ζ [xα
A (τ

A)− xα ]

DA
(3)

where ζ = 1 for α = 1,2,3 and ζ =−1 for α = 4. Quantities DA are given by:

ηµνU µ

A (τ
A)[xν − xν

A]
∼= x4

A(τ
A)− x4 =−DA (4)

And the explicit form of |J| is:

|J|=
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In Fig. 1 we can see the Jacobian geometrical interpretation. VT is the tetrahedron volume whose vertex are
the four tips of the receiver-satellite unit vectors ni

A (red vectors in Fig. 1). This is the relation between the |J|
and the tetrahedron volume.

|J| ∼= 6VT (6)

Fig. 1 Name of the figure.

If the four satellites are seen by the user on a circumference in the sky, then |α1−α4|, |J| and VT vanish. For
more details see [12]. This can be seen in Fig. 2.

Fig. 2 Name of the figure.
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3 Positioning Errors in RPS

Two kind of errors may be defined:
U-errors are associated to uncertainties in the satellite world lines (see [2] for details) S-errors due to an

approximate description of the photon world lines. The metric used in this description which takes into account
some of the astronomical bodies but not all of them. Both S and U errors have infinite limit as |J| tends to zero;
hence, there are great errors in a certain region near |J|= 0 points. Spacecraft to be positioned cannot be close
to a |J|= 0 satellites-user configuration.

We should avoid these regions choosing an appropriate set of four satellites which are not seen too close
to the same circumference in the sky (unit vectors ni

A are not in the same cone). Errors increase as the user
spacecraft separates from the emission satellite region, since the tetrahedron volume decreases (small solid
angle).

We now show a representation of |J|, U-errors and |α1−α4| for a particular direction from Earth up to a
distance of 105 km in Fig. 3. |J| does not vanish, but it decreases in terms of the distance Consistently, U-errors
increase, whereas |α1−α4| decreases.

Fig. 3 Name of the figure.

We have choosen another particular direction with |J| = 0, |α1−α4| and infinite errors. See fig. 4. Those
are the kind of tracks that should be avoided.

4 Conclusions and Perspectives

We have explained the basic ideas to understand the following prospects, which are listed below: 1) We
should improve on the description of the Solar System gravitational field in the positioning region. 2) Look
for the criteria to select the best sets of four satellites. It is not enough to calculate the Jacobian |J| because
the maximum value of |J| does not correspond to the minimum U and S errors. We only know that the errors
tend to infinite when |J| vanishes. 3) If a spacecraft carries devices to get the unit vectors n1

A at emission times
τA, the tetrahedron volume (|J|) may be estimated for any set of four visible satellites and, consequently, sets
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Fig. 4 Name of the figure.

leading to excessively small |J| values should not be used for positioning. Only configurations of four satellites
leading to big enough |J| values will be considered for positioning to get small U and S-errors. Each of these
configurations gives a position, and the distribution of positions will be used to get the most probable position
and the probability of any other location. 4) The International Space Station (ISS) would be considered as a
user-spacecraft to be autonomously positioned. To do that, this station would be provided with appropriate
devices: detectors for the signals giving the emission coordinates τA (to get the position), and instruments to
measure angles and vectors ni

A (to select suitable sets of four satellites). This would be a good way to test the
method that we have described in this paper, our resulting positions could be compared with those obtained by
current methods. 5) Since spacecrafts moving far from Earth cannot be positioned with GNSS, it should be
interesting to design a distribution of emissors in the Solar System placed in adequate planets or spacecrafts.
This distribution would be designed in such a way that a user-spacecraft moving far from Earth, with suitable
devices (autonomous), can see sets of four emissors having large enough tetrahedron volumes (small enough
errors). This work is in progress.
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