
Open Access. © 2018 HM.K. Ammar, D.A. Oda, published by Sciendo.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

Applied Mathematics and Nonlinear Sciences 3(1) (2018) 151–160

Applied Mathematics and Nonlinear Sciences
https://www.sciendo.com

Design of Gravity Assist trajectory from Earth to Jupiter

M. K. Ammar, D. A. Oda†

Department of Mathematics, Faculty of Science, Helwan University, Cairo, Egypt,
Email address: medhatammar24@gmail.com, doaa_oda@yahoo.com

Submission Info

Communicated by Elbaz I. Abouelmagd
Received 24th February 2018

Accepted 8th May 2018
Available online 9th May 2018

Abstract
The goal of this paper is to find a combination of conical trajectories, using gravitational assisted maneuvers (swing-by),
which perform the transfer from a nearby of the departure planet (Earth) to the vicinity of the arrival planet (Jupiter),
making a closest approaches with Mars (flyby) to reduce the fuel consumption for the journey. A detailed description of
the mission from Earth−Mars−Jupiter, that used this technique is presented. The table of flyby dates, altitudes of closest
approaches is also included. A methodology known as the Patched Conics was used, where the trajectory is divided into
three parts:
1) Departure phase, inside of the sphere of influence of the departure planet,
2) Heliocentric phase, during the journey between the planets,
3) Arrival phase, inside the sphere of influence of the arrival planet.

Keywords: Interplanetary trajectories − Gravity Assist −Flyby − Departure and arrival trajectories.
AMS 2010 codes: Primary: 70F15; Secondary: 70M20.

Nomenclature

S = Index for Sun
E =Index for Jupiter
M =Index for Mars
µ = Gravitational parameter
R = Planet radius
rp = Periapsis radius
−→
V∞

(1) = Input hyperbolic excess velocity−→
V∞

(2) = Output hyperbolic excess velocity
∆t1 = The time of flight between Earth and Mars
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∆t2 = The time of flight between Mars and Jupiter
T0 = The spacecraft departure date from the Earth (22/4/2018 0h 0m 0s)
T1 = The spacecraft departure and arrival date to Mars (22/8/2018 0h 0m 8s)
T2 = The spacecraft departure and arrival date to Jupiter (3/4/2021 10h 40m 44s)
r0k = the component of position vector of Earth and the S/C at T0 relative to the sun in k - direction (k = x, y, z)
r1k = the component of position vector of Mars and the S/C at T1 relative to the sun in k - direction (k = x, y, z)
r3k = the component of position vector of Jupiter and the S/C at T2 relative to the sun in k - direction (k = x, y, z)

1 Introduction

In deep space missions, a gravity assist trajectory is often used, which uses the gravity of a planet (or other
celestial body) to alter the path and speed of a spacecraft. This technique allows to reach destinations which
would not be accessible with current technology or to reach targets with significantly reduced propulsion re-
quirements. Many spacecrafts such as Voyager, Galileo, and Cassini use the gravity assist technique to achieve
their targets. The two Voyager spacecrafts provide a classic example. Voyager 2 launched in August 1977 took
one G. A. from Jupiter, one from Saturn, later from Uranus, and then move up to Neptune and beyond. Galileo
passed by Venus then twice by Earth, and finally go up to its path Jupiter. Cassini passed by Venus twice, then
Earth, and finally Jupiter on the way to Saturn [1–3].
In a gravity assist trajectory, angular momentum is transferred from the orbiting planet to a spacecraft, while the
value of it’s speed relative to planet is not changed during a gravity assist flyby, but it’s direction is changed.
However, both value and direction of spacecraft’s speed relative to the sun are changed during a gravity assist
flyby, due to the planet relative orbital velocity is added to the spacecraft’s velocity on its way out.
The application of a“multi-conic method” with differential correction was explored by Wilson and Howell [4]
with applications to the Sun-Earth-Moon environment. Their work is based on the original multi-conic method,
which approximates trajectory legs by considering separate perturbing influences. This method is somewhat of
a compromise between patched conics and fully integrated trajectories. In another work, Marchand, Howell,
and Wilson [6] utilized a multi-step correction process for obtaining trajectories in an n-body ephemeris model.
This procedure begins with a“seed” trajectory, divides the trajectory into nodes, and performs differential cor-
rection on the states at the nodes to satisfy specified constraints in the n-body model. The design of a transfer
trajectory combining Solar Electric Propulsion (SEP) and gravity assist (GA) can be regarded as a general tra-
jectory optimization problem [7]. The dynamics of the spacecraft is governed mainly by the gravity attraction
of the Sun, when the spacecraft is outside the sphere of influence of a planet, and by the gravity attraction of the
planet during a gravity assist maneuver. Low-thrust propulsion is then used to shape trajectory arcs between two
subsequent encounters and to meet the best incoming conditions for a swing-by.
An interesting approach is to choice to direct collocation as demonstrated by Betts [8], who efficiently optimized
a transfer trajectory to Mars combining low-thrust with two swing-bys of Venus. In this paper an original direct
optimization approach has been used to design an optimal interplanetary trajectory. The proposed approach is
characterized by a transcription of both states and controls by Finite Elements in Time (DFET) [9]. A set of
additional parameters, not included among states and controls, are allowed and can be used for a combined opti-
mization of both the trajectory and other quantities peculiar to the original optimal control problem (parametric
optimization). In particular, in this paper, the orbital elements of each hyperbola are treated as additional pa-
rameters and opposite to the work of Betts, swing-by trajectories are not transcribed with collocation but using
multiple shooting.
In this work we study the interplanetary trajectory of a spacecraft leaving Earth and making fly by with Mars
in it’s destination to Jupiter. We introduced a simple and accessible algorithms for interplanetary trajectory
planning that do not require gross simplifications and are able to find the required solution. The algorithms are
implemented in Mathematica program, which allows for their straightforward use in an academic setting.
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2 Description of the Mission

The complete trajectory has been divided into five different segments. Three of them are planetary segments
around Earth, Mars and Jupiter, respectively, the other two are heliocentric elliptic orbits Fig. (1). The classical

Fig. 1 Description of the mission from Earth to fly by with Mars

analysis of scales for interplanetary missions is adopted [5]. That is, since planetary radii are significantly
smaller than planetary Spheres of influence (SoI), the limit of the (SoI) is considered (from the point of view
of the planetary segments) to be located at infinity. On the other hand, from the perspective of the heliocentric
trajectories Earth - Mars and Mars - Jupiter, the (SoI) are reduced to a point. Finally, using the method of patched
conics, the five segments are joined to compose the complete trajectory.

3 Gravity Assists

A gravity assist maneuver is applied in an interplanetary trajectory to use of planet’s gravitational field and
momentum in order to increase or decrease the spacecraft’s heliocentric orbital energy. In the planet centered
reference frame of the patched conic method, the trajectory (unpowered gravity assist) does not change in or-
bital energy, but is simply redirected from entering

−→
V∞

(1) to exiting
−→
V∞

(2). When converting the planetocentric
entering and departing V∞ to a heliocentric spacecraft velocity, the change in heliocentric orbital velocity and
energy is apparent, particularly when visualized in Figs. (1) and (3).

−→
V1

(v) is the spacecraft heliocentric velocity pre-encounter,

−→
V2

(v) is the spacecraft heliocentric velocity post-encounter,

−→
V is the planet heliocentric velocity,

δ is the gravitational bend angle (turn angle).
The heliocentric velocity of the spacecraft V (v) resulting from the gravity assist is increased or decreased de-
pending on how the maneuver is performed. If the hyperbolic periapsis occurs on the trailing side of the planet
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with respect to the planet’s heliocentric velocity, then the spacecraft heliocentric velocity will be increased by
the gravity assist. If the hyperbolic periapsis occurs on the leading side of the planet with respect to the planet’s
heliocentric velocity, then the spacecraft the heliocentric velocity will be decreased by the gravity assist.

4 lambert’s problem

Lambert’s problem is characterized by taking two position vectors r1,r2 and the time of flight between them
∆t and solving for the incoming and outgoing velocity vectors of the transfer trajectory

−→
V 1,
−→
V 2. In theory,

Lambert’s problem will need to be solved twice. The first one for the departure from Earth and the arrival at the
flyby planet (Mars), and the second for the departure from the flyby planet and the arrival at the target planet
(Jupiter), see Table (1). From these departure and arrival velocities, we can then calculate the ∆V requirements
that the spacecraft will need to be able to perform those maneuvers. There are many methods that can be used
to solve Lambert’s problem. For this design we will be using the Universal Variable method.

Universal Variable Method

The algorithm that is used is taken from Fundamentals of Astrodynamics and Applications [10]. This al-
gorithm utilizes the bisection method which provide a strong solution for a wide variety of transfer orbits. The
formulation of this method begins with the f and g universal variable, defined by the following formulas :

f = 1− χ2

r1
C(z)

g = ∆t− χ3
√

µ
C(z)

ġ = 1− χ3

r2
C(z)

ḟ =
√

µ

r1r2
χ(zS(z)−1)

(1)

Where r1 and r2 are the magnitudes of the initial and final position vectors,
χ is a universal variable, z is square of the difference in eccentric anomalies, E, at two position (z = (∆E)2)),
C(z) and S(z) are define as:

C(z) =
√

z− sin
√

z√
z3

, S(z) =
1− cos

√
z

z

The f and g expressions in terms of the orbital elements

g =
r1r2√

µP
sin∆ν

f = 1− r2

P
(1− cos∆ν)

ġ = 1− r1

P
(1− cos∆ν)

ḟ =
√

µ

P
tan

∆ν

2
(
1− cos∆ν

P
− 1

r1
− 1

r2
)

(2)

Equating the corresponding equations in the two groups Eqs. (1) and Eqs. (2), we obtain

f = 1− r2

P
(1− cos∆ν) = 1− χ2

r1
C(z) (3)
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g =
r1r2√

µP
sin∆ν = ∆t− χ3

√
µ

C(z) (4)

ġ = 1− r1

P
(1− cos∆ν) = 1− χ3

r2
C(z) (5)

ḟ =

√
µ

P
tan

∆ν

2
(
1− cos∆ν

P
− 1

r1
− 1

r2
) =

√
µ

r1r2
χ(zS(z)−1) (6)

We get from Eq. (3)

χ =

√
r1r2(1− cos∆ν)

PC(z)
(7)

Substituting with χ in Eq. (6) and cancelling h =

√
µ

p
from both sides, we obtain after simplification ;

r1r2(1− cos∆ν)

P
= r1 + r2−

√
r1r2 sin∆ν√
1− cos∆ν

(1− zS(z))√
C(z)

(8)

We can write this equation more compactly by defining two auxiliary symbols, A and y as :

A =

√
r1r2 sin∆ν√
1− cos∆ν

, y = r1r2
(1− cos∆ν)

P

Using these definitions of A and y, Eqs. (7) and (8) may be written more compactly as

χ =

√
y

C(z)

y = r1 + r2−A
(1− zS(z))√

C(z)

If we now solve for ∆t from Eq. (4), we get

√
µ∆t = χ

3S(z)+A
√

y

Using the auxiliary symbols A and y to write Eqs. (3 - 6) in the following simplified expressions :

f = 1− y
r1
, g = A

√
y
µ
, ġ = 1− y

r2

Then the solution of Lambert problems yields the following relations :

−→
V1 =

1
g
(−→r2 − f−→r1 ),

−→
V2 =

1
g
(ġ−→r2 −−→r1 )
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Table 1 Calculations of Lambert problems
lambert earth - Mars Lambert Mars -Jupiter

r0x (km) −1.280952970127814×108 r2x = r1x(km) 1.588109522284044×108

r0y(km) −7.873040871488884×107 r2y = r1y(km) −1.331196049556935×108

r0z(km) 4241.23706297353500 r2z = r1z(km) -6690470.129802731
r1x(km) 1.588109522284044×108 r3x(km) 5.331461279416993×108

r1y(km) −1.3311960495569350×108 r3y(km) 5.392020271071861×108

rz(km) -6690470.12980273100 r3z(km) -9671957.471152349
∆t1(s) 1.054080811623402×107 ∆t2(s) 8.25504364820473×107

µs(km3/s2) 1.32712428000×1011 µs(km3/s2) 1.32712428×1011

V0x(km/s) 18.61716546638244600 V2x(km/s) 30.823073404118684
V0y(km/s) -28.29950136444239000 V2y(km/s) 4.934176592416298
V0z(km/s) -1.152116764359739900 V2z(km/s) -0.8994633203622276
V1x(km/s) 21.7254264303175400 V3x(km/s) -5.888427200446674
V1y(km/s) 13.84469939965363100 V3y(km/s) 3.2105733597573787
V1z(km/s) 0.013528429195021072 V3z(km/s) 0.22569580208145187

5 Mission Analysis

5.1 Initial impulse (Escape from the Earth at T0)

In order to escape the gravitational pull of a planet, the spacecraft must travel a hyperbolic trajectory relative
to the planet, arriving at it’s sphere of influence with a relative velocity V∞1 (hyperbolic excess velocity) greater
than zero Fig. (2).
The heliocentric velocity of S/C

−→
V0 at departure from the Earth is the sum of the Earth velocity

−→
VE and the

hyperbolic excess velocity
−→
V ∞1.

−→
V0 =

−→
VE +

−→
V ∞1

The latter is assumed to be equal to the spacecraft velocity relative to the Earth. In general it is
−→
VE �

−→
V∞1 , due

Fig. 2 Escape from Earth
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to the modest capabilities of present space propulsion, so that the maximum angle between
−→
VE and

−→
V0 is quite

small. In particular the heliocentric leg will lie in a plane that can assume only a modest inclination away from
the ecliptic plane.

The impulse required to be given at the perigee of the hyperbolic orbit to transfer the spacecraft from the
parking orbit to the escape hyperbolic orbit is given by

∆
−→
V1 =

−→
Vp−

−→
Vc

−→
Vp is the velocity of the spacecraft at perigee of hyperbolic orbit,
−→
Vc is the velocity of the spacecraft in the parking orbit.
Clearly the direction of

−→
Vp and

−→
Vc are the same, then ∆

−→
V1 is also in the same direction.

We can obtain
−→
V0 from solving Lambert’s problem earth - Mars , see Table (1), we calculate

−→
VE at T0 to find−→

V ∞1 and it’s magnitude (V∞1) which by it and a given perigee (rp1 = RE + 300) can calculate the hyperbolic
trajectory elements. the angular momentum and eccentricity of the hyperbolic orbit can be obtained from the
following relations [5] :

h1 = rp1

√
V 2

∞1 +
2µ

rp1
,e1 = 1+

rp1V 2
∞1

µ1

The velocity at the perigee of the hyperbolic orbit is :

VP1 =

√
V 2

∞1 +
2µE

rp1

The speed of S/c in its circular parking orbit is given by Vc =
√

µ/rp1 Then the ∆V1 required to put the S/C onto
the hyperbolic departure trajectory is :

∆
−→
V1 =

−→
Vp1−

−→
Vc =

√
V 2

∞1 +
2µE

rp1
−
√

µE

rp1

∆
−→
V1 =Vc

√2+
(

V∞1

Vc

)2

−1


The orientation of the apse line of the hyperbola to the asymptotes of the hyperbolic trajectory measured by the
angle , which can be obtained from the relation [5]

β = cos−1
(

1
e1

)
= cos−1

 1

1+
rp1V 2

∞1
µE


The results are summarized in the Table (2).

5.2 Gravity assist maneuver (fly by Mars at T1 = T0 +∆t1)

Now after solving Lambert’s problem for earth - Mars trajectory and Mars, Jupiter trajectory we have
−→
V 1

and
−→
V 2 , see Table (1). Such that :−→

V 1 is the heliocentric S/C velocity at final position for Earth-Mars Lambert’s algorithm,−→
V 2 is the heliocentric S/C velocity at initial position for Mars- Jupiter Lambert’s algorithm,
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Table 2 Escape from Earth at T0−→
V E0 = {15.113446216468128,−25.49053048920682,0.0008860019561318039}
−→
V 0 = {18.617165466382446,−28.29950136444239,−1.1521167643597399}

−→
V ∞1 = {3.50372,−2.80897,−1.153}
JD (Julian day No) of T0 = 2458230.5

V(parkingorbit) = 11.8689(km/s)

V∞1(km/s) µE (km3/s2) rp1(km) e1 h1 β (red) Vp1(km/s) ∆V1(km/s)

4.63635 3.986004415×105 6678.1363 1.36014 79262.1 .744807 7.72576 4.14313

−→
V M is the velocity of Mars at time T1.
Then the heliocentric velocity of spacecraft at the SOI of Mars is

−→
V 1 and it need to out from the SOI by

−→
V 2,

to complete the trajectory and finally reach to the SOI of Jupiter, on the other hand the spacecraft enter the SOI
velocity relative to mars is

−→
V (1)

∞ and it need to out with velocity relative to Mars is
−→
V out Fig. (3).

−→
V (1)

∞ =
−→
V 1−

−→
V M

−→
V out =

−→
V 0−

−→
V M

We take the direction of
−→
V (2)

∞ (the out velocity of spacecraft in hyperbolic orbit fly by) in the same direction
of
−→
V out then the turn angle of the hyperbolic orbit flyby can be calculate from this relation [5],

cosδ =

−→
V (1)

∞ .
−→
V (2)

∞

V 2
∞

=

−→
V (1)

∞ .
−→
V out

V∞

∣∣∣−→V out

∣∣∣

Fig. 3 fly by with Mars

We know that ∣∣∣−→V (1)
∞

∣∣∣= ∣∣∣−→V (2)
∞

∣∣∣
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Now we can calculate the hyperbolic orbital elements using the relation [5],

e2 =
1

sin( δ

2 )
, rp2 =

µM

V 2
∞2

(e2−1), ∆ = rp

√
1+

2µM

rpV 2
∞2

Then we can calculate the perigee of the hyperbolic fly by Mars, now the spacecraft out the SOI of Mars with
the velocity

−→
V (2)

∞ relative to Mars with magnitude is V∞2 and in the same direction of
−→
V out , to make the velocity

of spacecraft relative to Mars is
−→
V out we give it ∆V2 in the same direction of

−→
V∞

(2),

∆V2 =
∣∣∣−→V out

∣∣∣−V∞2

After that the spacecraft out from the SOI of Mars with heliocentric velocity is−→
V 2 =

−→
V M +

−→
V out

which by it can complete it’s trajectory to reach the SOI of Jupiter. The results are summarized in Table (3).

Table 3 Fly by Mars at T1−→
V in =

−→
V 1 = {21.72542643031754,13.844699399653631,0.013528429195021072}

−→
V out =

−→
V 2 = {30.823073404118684,4.934176592416298,−0.8994633203622276}

−→
V M = {16.48592538172737,20.64382791494634,0.02774276866812586}

JD (Julian day No) of T1 = 2458230.5
V∞2(km/s) µM (km3/s2) rp1(km) e2 ∆(km) Vout/M (km/s) δ (red) ∆V2(km/s)

8.58375 4.305×104 11968.6 21.4844 12539.3 21.2887 0.0931244 12.7049

5.3 Capture by Jupiter at (T2 = T1 +∆t2)

A spacecraft arrives at the sphere of influence of the Jupiter with a hyperbolic excess velocity
−→
V ∞3 relative

to Jupiter, where −→
V ∞3 =

−→
V 3−

−→
V J

Such that :−→
V 3 is the heliocentric S/C velocity at final position for Mars- Jupiter lambert algorithm. see Table (1), or it is
the heliocentric S/C velocity at SOI of Jupiter at T2−→
V J is the heliocentric velocity of Jupiter at T2.
the goal’s mission is landing on Jupiter To achieve this goal we make the perigee of the hyperbola equal to the
Jupiter radius (rp3 = RJ = 69911 km) and the velocity of S/C relative Jupiter equal zero at perigee. we give S/C
the third impulse in the perigee of the hyperbola equal to the it’s velocity and in the opposite direction. The
results are summarized in Table (4),

∆
−→
V 3 =−

−→
V p3

6 Conculsion

The problem of preliminary interplanetary design to outer planets has been studied using Gravity-assisted
maneuvers techniques which have been introduced as a resource to get the required energy to reach far plan-
ets. Deep Space Maneuvers and impulses at the flyby periapsis have also been described as means to increase
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Table 4 Capture from Jupiter at T2−→
V 3 = {−5.888427200446674,3.2105733597573787,0.22569580208145187}
−→
V J = {9.130213923868334,9.803076409849977,−0.2456201552966279}

JD (Julian day No) of T2 = 0.21253784951961086
−→
V ∞3 = {−15.0186,−6.5925,0.471316}

V∞2(km/s) µJ (km3/s2) rp1(km) e2 ∆(km) Vp3(km/s) ∆V3(km/s)

16.4086 1.26675×108 69911 1.14859 265842 62.3951 -62.3951

the degrees of freedom in the global trajectory design process. The method is applied to transfer trajectory
from the Earth to planet Jupiter making flyby with Mars to gain an extra energy to reach to the target planet (
Jupiter). Lambert problem were used to find a solution for the position vectors from initial orbits in each transfer.
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