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Abstract
Very recently, Liao has invented a Directly Defining Inverse Mapping Method (MDDiM) for nonlinear differential equa-
tions. Liao’s method is novel and can be used for solving several problems arising in science and engineering, if we can
extend it to nonlinear systems. Hence, in this paper, we extend Liao’s method to nonlinear-coupled systems of three dif-
ferential equations. Our extension is not limited to single, double or triple equations, but can be applied to systems of any
number of equations.

Keywords: Method of directly defining the inverse mapping; Nonlinear systems; Nanofluid; Brownian motion; Stretching surface;
analytical methods; Homotopy analysis method.
AMS 2010 codes: 34A25, 34A34, 34B15, 65L10, 76D10.

1 Introduction

Consider a steady, incompressible, laminar, two-dimensional boundary layer flow of a nanofluid at a vertical
wall coincide with the plane y = 0, the flow being confined to y > 0 (see Figure 1). Two equal and opposite
forces are introduced along the x-axis so that the wall is stretched while keeping the origin fixed. The sheet is
then stretched with a velocity uw = axn where a is a constant, n is a nonlinear stretching parameter and x is the
coordinate measured along the stretching surface. We make following assumptions:

(i) the pressure gradient and external forces are neglected

(ii) the stretching surface is maintained at a constant temperature and concentration, Tw and Cw, respectively,

(iii) Tw and Cw values are greater than the ambient temperature and concentration, T∞ and C∞ respectively.
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Fig. 1 Flow configuration.

Under these assumptions, the basic equations for the conservation of mass, momentum, thermal energy and
nanoparticles of the nanofluid can be written in Cartesian coordinates x and y as ( for details see Rana and
Bhargava [1])

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= v
∂ 2u
∂y2 , (2)

u
∂T
∂x

+ v
∂T
∂y

= αm∇
2T + τ

[
DB

∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)2
]
, (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +(

DT

T∞

)
∂ 2T
∂y2 , (4)

where

αm =
km

(ρc) f
, τ =

(ρc)p

(ρc) f
. (5)

The boundary conditions for the problem are

v = 0, uw = axn, T = Tw, C =Cw at y = 0, (6)

u = v = 0, T = T∞, C =C∞ as y→ ∞. (7)

Here u and v are the velocity in the x and y directions, ρ f is the density of the base fluid, αm is the thermal
diffusivity, ν is the kinematic viscosity, a is a positive constant, DB is the Brownian coefficient, DT is the ther-
mophoretic diffusion coefficient, τ is the ratio between the effective heat capacity of the nanoparticle material
and heat capacity of the fluid, c is the volumetric volume expansion coefficient and ρp is the density of the
nanoparticles.
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Defining the new variables

η = y

√
a(n+1)

2v
x

n−1
2 , u = axn f ′(η), v =−

√
av(n+1)

2
x

n−1
2 ( f +(

n−1
n+1

)η f ′), (8)

θ(η) =
T −T∞

Tw−T∞

, φ(η) =
C−C∞

Cw−C∞

, (9)

and substituting in (1)-(4), we obtained

f ′′′+ f f ′′−
(

2n
n+1

)
f ′2 = 0, (10)

1
Pr

θ
′′+ f θ

′+Nbθ
′
φ
′+Nt(θ ′)2 = 0, (11)

φ
′′+

1
2

Le f φ
′+

Nt
Nb

θ
′′ = 0, (12)

with boundary conditions,

at η = 0, f = 0, f ′ = 1, θ = 1, φ = 1, (13)

as η → ∞, f ′ = 0, θ = 0, φ = 0. (14)

The key thermophysical parameters are defined by:

Pr =
v
α
, Le =

v
DB

, Nb =
(ρc)pDB(Cw−C∞)

(ρc) f v
, Nt =

(ρc)pDT (Tw−T∞)

(ρc) f vT∞

. (15)

Here Pr,Le,Nb, and Nt denote the Prandtl number, the lewis number, the Brownian motion parameter and
the thermophoresis parameter respectively.

In the present paper, we study the nonliner system analyticaly through the Optimam Homotopy Analysis
Method by directly defining an inverse mapping J , i.e. without calculating any inverse operator. This method
was intoduced by Liao [2] for a single differentiall equation. Vajravelu et al. [3] extended it to solve coupled
systems. Here, we extend the method to a system of three nonlinear diferential equations using a common
inverse linear mapping and approximated f (η), θ(η) and φ(η).

2 HAM and MDDiM

In this section, we discuss the set up of the problem using the details of OHAM ( see [4]- [5] for more
details) and MDDiM for the nonlinear system. First, we discuss the space that solution and base functions come
from and then we derive deformation equations that we are trying to solve (nonlinear system). Finally, we use
MDDiM to solve these deformation equations by introducing an appropriate inverse linear map J .

Define three nonlinear operators

N1[ f (η),θ(η),φ(η)] = f ′′′+ f f ′′−
(

2n
n+1

)
f ′2, (16)

N2[ f (η),θ(η),φ(η)] =
1

Pr
θ
′′+ f θ

′+Nbθ
′
φ
′+Nt(θ ′)2, (17)

N3[ f (η),θ(η),φ(η)] = φ
′′+

1
2

Le f φ
′+

Nt
Nb

θ
′′ = 0, (18)
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so that N1[ f (η),θ(η),φ(η)] = 0, N2[ f (η),θ(η),φ(η)] = 0 and N3[ f (η),θ(η),φ(η)] = 0 give the original
system (10)-(12). Take complete set of an infinite number of base functions that are linearly independent

S∞ =
{

1,e−δη ,e−2δη , . . .
}
, (19)

and define the space of functions that is their linear combinations to be

V =

{
∞

∑
k=0

ake−kδη
∣∣ak ∈ R

}
. (20)

That is, V is the solution and base space for f (η), θ(η) and φ(η).
Let

S∗ =
{

1,e−δη

}
. (21)

denote a set, consists of first 2 members of S∞. Next, form the space of functions taking their linear combinations

V ∗ =
{

a0 +a1e−δη |a0,a1 ∈ R
}
. (22)

Then the primary solutions, or our initial guesses, µ(η) ∈V ∗ have the form

µ(η) =
1

∑
j=0

a je−δη . (23)

Write
Ŝ =

{
e−2δη ,e−3δη , . . .

}
, (24)

and define

V̂ =

{
∞

∑
k=2

ake−kδη
∣∣ak ∈ R

}
. (25)

Obviously, V = V̂ ∪V ∗.
Next, define

SR = {ψ1(η),ψ2(η), . . .} , (26)

which is an infinite set of base functions that are linearly independent, and set of linear combinations of functions
from SR

U =

{
∞

∑
k=1

ckψk(η)
∣∣ck ∈ R

}
. (27)

Assuming that N1[ f (η),θ(η),φ(η)],N2[ f (η),θ(η),φ(η)],N3[ f (η),θ(η),φ(η)]∈U , then N1,N2,N3 : V →U .
Optimal Homotopy Analysis Method allows us to obtain approximate series solutions to wide variety of

nonlinear systems. Define three homotopies of operators H1,H2 and H3

0≡H1( f ,θ ,φ ,q) = (1−q)L1[ f ]− c0qN1[ f ,θ ,φ ], (28)

0≡H2( f ,θ ,φ ,q) = (1−q)L2[θ ]− c1qN2[ f ,θ ,φ ], (29)

0≡H3( f ,θ ,φ ,q) = (1−q)L3[φ ]− c2qN3[ f ,θ ,φ ], (30)

through the homotopy embedding parameter q ∈ [0,1], between nonlinear operators N1,N2,N3 and an auxiliary
linear operators L1,L2,L3. Here, c0,c1,c2 6= 0 are the converge control parameters which will be used to optimize
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the function approximations in the next section. In the frame of OHAM, the series solution of f ,θ and φ is given
by

f (η) = f0(η)+
∞

∑
k=1

fk(η)qk, (31)

θ(η) = θ0(η)+
∞

∑
k=1

θk(η)qk, (32)

φ(η) = φ0(η)+
∞

∑
k=1

φk(η)qk, (33)

where f0(η),θ0(η) and φ0(η) are initial guesses that satisfy boundary conditions (13)-(14) and belong to the
set V .

It is clear that when q = 0 in the homotopies (28)-(30), they become L1[ f ] = 0, L2[θ ] = 0 and L3[φ ] = 0;
but for q = 1, the original nonlinear differential equations N1[ f ,θ ,φ ] = 0,N2[ f ,θ ,φ ] = 0 and N3[ f ,θ ,φ ] = 0
are recovered. In addition, when q = 1 in the expansions (31)-(33), the solutions f ,θ and φ are a sum of the
components f0, f1, f2, . . . ,θ0,θ1,θ2, . . . and φ0,φ1,φ2, . . .. Substituting (31)-(33) in to the first homotopy (28), we
get the deformation equations

L1[ f0(η)] = 0, f0(0) = 0, f ′0(0) = 1 f ′0→ 0 as η → ∞, (34)

and for k ≥ 1 we have

L1[ fk(η)] = χkL1[ fk−1(η)]+ c0D
1
k−1(η), fk(0) = 0, f ′k(0) = 0, f ′k→ 0 as η → ∞, (35)

where

χk =

{
0, k ≤ 1,
1, k ≥ 1.

(36)

Here Dξ

k , for ξ = 1,2,3, is the homotopy derivative defined to be

Dξ

k−1(η) =
1

(k−1)!

(
∂ k−1

∂qk−1 Nξ

[
∞

∑
j=0

f j(η)q j,
∞

∑
j=0

θ j(η)q j

])∣∣∣
q=0

. (37)

Similarly, substituting (31)-(33) into (29) and (30) obtained:

L2[θ0(η)] = 0, θ0(0) = 1, θ0→ 0 as η → ∞, (38)

L3[φ0(η)] = 0, φ0(0) = 1, φ0→ 0 as η → ∞, (39)

and for k ≥ 1

L2[θk(η)] = χkL2[θk−1(η)]+ c1D
2
k−1(η), θk(0) = 0, θk→ 0 as η → ∞. (40)

L3[φk(η)] = χkL3[φk−1(η)]+ c1D
3
k−1(η), φk(0) = 0, φk→ 0 as η → ∞. (41)

Using Liao’s Method of Directly Defined Inverses, the deformation equations (35) and (40)-(41) are

fk(η) = χk fk−1(η)+ c0J
[
D1

k−1(η)
]
+ak,1e−δη +ak,0, (42)

θk(η) = χkθk−1(η)+ c1J
[
D2

k−1(η)
]
+bk,1e−δη +bk,0, (43)

φk(η) = χkφk−1(η)+ c1J
[
D3

k−1(η)
]
+ ck,1e−δη + ck,0. (44)
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The benifit of the Optimal Homotopy Analysis Mehod is that it has a great freedom to choose the auxillary
linear operators L1,L2 and L3 and initial guesses f0(η),θ0(η),φ0(η). After auxillary linear operator and ini-
tial guesses are properly choosen we are free to determine how many terms fk,θk,φk ∈ V we want and can do
iteratively. There has been great success in solving systems of nonlinear differential equations using OHAM
(see [4]- [17]).

The only drawback of this homotopy analysis method is spending a lot of CPU time. First we choose auxil-
iary linear operators, and then solving the linear higher order deformation equation only to find out the inverse
operators and applying them to quickly-growing expressions. However, in the latest innovation of Liao we have
the freedom to directly define inverse operator by completely neglecting the linear operator. So, using this novel
method can solve higher order deformation equations quickly and it’s unnecessary to calculate inverse linear
operators.

In our work the inversely defined mapping, J , is the same for all three equations. But different directly
defined inverses could be chosen if a different structure for the solutions f ,θ and φ is required.

Define J : U →V by

J
[
e−kδη

]
=

e−kδη

Ak3 + k
, (45)

where A, δ are parameters which will be used to optimize the square residual error functions.

3 Results and Error Analysis

The appropriate solutions for the system (10)-(12) with boundary conditions (13)-(14) are obtained using
MDDiM. Further used error analysis to get a general idea of how good the approximations are.

Define three term approximation f̂ , θ̂ and φ̂ which is sum of the first three solutions to the deformation
equations. If they are exact, then they solve system (10)-(12), i.e., if N1

[
f̂ , θ̂ , φ̂

]
= 0, N2

[
f̂ , θ̂ , φ̂

]
= 0 and

N3

[
f̂ , θ̂ , φ̂

]
= 0, then the three term approximations are exact solutions. If not N1

[
f̂ , θ̂ , φ̂

]
, N2

[
f̂ , θ̂ , φ̂

]
and

N3

[
f̂ , θ̂ , φ̂

]
become residual error functions that can be evaluated at any point η in the domain of the problem.

Taking square of the L2-norm of error functions and setting converge control parameters to be c0 = c2 = c3
define square residual error functions

Eξ (Le,Nb,Pr,Nt,n,A,c0,δ ) =

ˆ
∞

0

(
Nξ

[
f̂ (η), θ̂(η), φ̂(η)

])2
dη , (46)

for ξ = 1,2,3. Since we have three error functions we will take affine combination of them as

E(Le,Nb,Pr,Nt,n,A,c0,δ ) =
3

∑
ξ=1

Eξ (Le,Nb,Pr,Nt,n,A,c0,δ ). (47)

But in practice the evaluation of Eξ (Le,Nb,Pr,Nt,n,A,c0,δ ) is much time consuming so instead of exact resid-
ual error we use average residual error defined as

Êξ (Le,Nb,Pr,Nt,n,A,c0,δ ) =
1

M+1

M

∑
j=0

(
Nξ

[
f̂ ( j), θ̂( j), φ̂( j)

])2
. (48)

Now, we minimize error functions with respect to A, c0, δ and obtained optimal values of A,c0,δ . Substituting
those values in to f̂ , θ̂ and φ̂ we get three term approximation solution to the system (10)-(12) which satisfies
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the conditions (13)-(14).

We start with initial guesses f0(η),θ0(η) and φ0(η) that satisfy the boundary conditions (13)-(14), respec-
tively. We choose

f0(η) =
1
δ
− 1

δ
e−δη , (49)

θ0(η) = e−δη , (50)

and
φ0(η) = e−δη . (51)

Now, using the deformation equations (42)-(44) to find f1(η),θ1(η) and φ1(η), they are

f1(η) =−1
2

c0(n−1)
(n+1)(4A+1)

+
c0(n−1)

(n+1)(4A+1)
e−δη − 1

2
c0(n−1)

(n+1)(4A+1)
e−2δη , (52)

θ1(η)− 1
2
(1+Nt ·δ 2 +Nb ·δ 2)c0 ·δ 2

4A+1
e−δη +

1
2
(1+Nt ·δ 2 +Nb ·δ 2)c0 ·δ 2

4A+1
e−2δη , (53)

and
φ1(η) =−1

4
· Le · c0

4A+1
e−δη +

1
4
· Le · c0

4A+1
e−2δη . (54)

Using only three terms, let f̂ (η) = f0(η)+ f1(η)+ f2(η), θ̂(η) = θ0(η)+θ1(η)+θ2(η) and φ̂(η) = φ0(η)+
φ1(η)+φ2(η), the sum of the square residual error function is given by

E(A,c0,δ ) =
1

500

499

∑
j=0

(
3

∑
ξ=1

(
Nξ

[
f̂ ( j), θ̂( j), φ̂( j)

]))2

. (55)

and it is a function of A,c0 and δ with parameters Le,Nb,Pr,Nt and n in it.

Fig. 2 Plot of E(c0,δ ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values
Le = 2, Nb = 2,Pr = 1, Nt = 1, n = 0.5, A = 0.1314. The error function has minimum E(c0,δ ,A) = 9.71×10−5 where
c0 =−0.6195 and δ = 0.8462963.
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Fig. 3 Plot of E(c0,δ ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values
Le = 3, Nb = 1,Pr = 5, Nt = 0, n = 1, A = 7.8902. The error function has minimum E(c0,δ ,A) = 9.41×10−5 where
c0 =−9.30195 and δ = 1.03944.

Fig. 4 Plot of E(c0,δ ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values
Le = 2, Nb = 2,Pr = 7, Nt = 0.5, n = 0.8, A = 0.24764. The error function has minimum E(c0,δ ,A) = 8.28×10−5

where c0 =−0.690605 and δ = 0.8462963.

Using three different sets of values for the parameters Le,Nb,Pr,Nt and n we found the sum of the square
residual error E(A,c0,δ ) and are presented below.

Table 1 Minimum of the squared residual error E(A,c0,δ ) for three different sets of parameters.
Le Nb Pr Nt n A c0 δ E(c0,δ ,A)
2 2 1 1 0.5 0.1314 −0.6195 0.673 9.71×10−5

3 1 5 0 1 7.8902 −9.3020 1.0394 9.71×10−5

2 2 7 0.5 0.8 0.2476 −0.6906 0.8463 8.28×10−5

The plot of the error functions E(A,c0,δ ) is given in Figures 2-4 for three schemes at their optimum A
values.
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The plots of f̂ (η) and f̂ ′(η) are presented in Figures 5-6, for parametric values in Table 1 for E1(A,c0,δ ).
In Figures 7-8 the plots of θ̂(η) and φ̂(η) are presented for parametric values in Table 1 for E(A,c0,δ ).

Fig. 5 Plot of f̂ (η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve 2 has Le = 3, Nb = 1, Pr = 5,
Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7, Nt = 0.5, n = 0.8 using their respective error-minimizing
convergence control parameter.

Fig. 6 Plot of f̂ ′(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve 2 has Le = 3, Nb = 1, Pr = 5,
Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7, Nt = 0.5, n = 0.8 using their respective error-minimizing
convergence control parameter.

A very good validation of the present analytical results has been achieved with the numerical results as
shown in Figure 9. Also, it is found that the squared residual error decreases as a function of the number of

https://www.sciendo.com
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Fig. 7 Plot of θ̂(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve 2 has Le = 3, Nb = 1, Pr = 5,
Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7, Nt = 0.5, n = 0.8 using their respective error-minimizing
convergence control parameter.

Fig. 8 Plot of φ̂(η), where Curve 1 has Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, Curve 2 has Le = 3, Nb = 1, Pr = 5,
Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7, Nt = 0.5, n = 0.8 using their respective error-minimizing
convergence control parameter.

terms in the approximation series, as shown in Figure 10.

The skin friction at the surface |− f̂ ′′(0)| as a function of the stretching parameter n is presented in Figure
11. It is found that skin friction decreases with an increase in stretching parameter. Figure 12 illustrated Nusselt
number | − θ̂ ′(0)| as a function of Lewis number (Le) and Brownian motion parameter (Nb). It is found that
Nusselt number decreases with increase Nt and Nb. Figure 13 illustrated Sherwood number | − φ̂ ′(0)| as a
function of Nt, Nb and it is found that Sherwood number increases with increase Nt and but decreases with

https://www.sciendo.com
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increasing Nb.

Fig. 9 Comparison of f (η),θ(η) and φ(η) obtained by the MDDiM 3-term approximation and shooting method
solutions with Le = 2, Nb = 2, Pr = 1, Nt = 1, n = 0.5, where Curve 1 is shooting method results of f (η), Curve 2 is
MDDiM results of f (η), Curve 3 is shooting method results of θ(η), Curve 4 is MDDiM results of θ(η), Curve 5 is
shooting method results of φ(η), Curve 6 is MDDiM results of φ(η).

Fig. 10 Plot of Residual Error function verses Terms of approximation , where Curve 1 has Le = 2, Nb = 2, Pr = 1,
Nt = 1, n = 0.5, Curve 2 has Le = 3, Nb = 1, Pr = 5, Nt = 0, n = 1, and Curve 3 has Le = 2, Nb = 2, Pr = 7, Nt = 0.5,
n = 0.8 using their respective error-minimizing convergence control parameter.

4 Conclusions

Liao’s Directly Defining inverse Mapping method is extended to a system of three nonlinear diferential
equations. Approximate series solutions for f (η),θ(η), and φ(η) are obtained. Also, illustrated dimensionless
velocity ( f (η)), dimentionless temperature (θ(η)) and dimensionless concentration (φ(η)) profiles for three set
of parameters (see Figures 5-8) are presented. Further, analytical results are compared with the numerical results
(see Figure 9) and studied convergence of analytical results (see Figure 10).
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Fig. 11 Plot of |− f̂ ′′(0)| versus n, using Le = 3, Nb = 1, Pr = 5 and Nt = 0.

Fig. 12 Plot of |− θ̂ ′(0)|, where Curve 1 is |− θ̂ ′(0)| versus Nt using Le = 3, Nb = 1, Pr = 5, n = 1, Curve 2 is |− θ̂ ′(0)|
versus Nb using Le = 3, Pr = 5, Nt = 0, n = 1.

Since the inverse operator is directly defined, the series solutions are obtained with less CPU time. The
freedom of choosing the inverse operator leads to obtaining less complicated terms for the approximation solu-
tion. Futher, the selected inverse linear operator leads to three term solution which is accurate up to five decimal
places by optimizing square residual function with respect to A,δ , and c0. Hence, we can conlude that MDDiM
is not only easy to use, but also accurate. Theoretically, even if a smaller error was desired, it would just amount
to computing more terms in the series by solving deformation equations. Furthermore, one can write an algo-
rithm to iteration approach and truncate the approximate series solution at a given accuracy.

The idea is novel and is useful. This idea is not limited to a single nonlinear differential equation, but can
be used for system of several equations. Also, it is important to note that finding an inverse operator that works
well for the equation and it leads to an easily generated solution series. Hence, it is worth-while to investigate

https://www.sciendo.com
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Fig. 13 Plot of |− φ̂ ′(0)|, where Curve 1 is |− φ̂ ′(0)| versus Nt using Le = 2, Nb = 2, Pr = 1, n = 0.5, Curve 2 is
|− φ̂ ′(0)| versus Nb using Le = 2, Pr = 1, Nt = 1, n = 0.5.

this inverse linear operator.
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