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Abstract
This article presents two observability inequalities for the heat equation over Ω× (0,T ). In the first one, the observation
is from a subset of positive measure in Ω× (0,T ), while in the second, the observation is from a subset of positive
surface measure on ∂Ω× (0,T ). We will provide some applications for the above-mentioned observability inequalities,
the bang-bang property for the minimal time, time optimal and minimal norm control problems, and also establish new
open problems related to observability inequalities and the aforementioned applications.
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1 Introduction

This article serves as a review of observability inequalities from measurable sets for solutions to the heat
equation. The purpose of trying to obtain the two observability inequalities that we will see and prove in this
article, was that in control theory there is a very well known result, the Hilbert Uniqueness Method, that assures
that the null controllability of an equation is equivalent to obtain an observability inequality for the adjoint
equation. This result is attributed to J.L. Lion. In our previous research we were studying the null controllability
of parabolic equations over measurable sets, so, for the Hilbert Uniqueness Method reason, we focused on
proving the observability inequalities (Theorems 1 and 2) that we will see in this article.
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In the next lines of the Introduction we will establish the type of problem we will work on, remember some
apriori estimates for the parabolic equations and recall some previous results about this kind of work.

Then, in Section 2, we will establish and prove Theorem 1 and 2 which will give us two observability
inequalities. We will continue, in Section 3, showing some applications of the obserbavility inequalities, the
bang-bang property for the minimal time, optimal time and minimal norm control problems. In Section 4, we
will establish some open problems related to observability inequalities and their applications to control theory.
Finally, with Section 5, we will finish the article giving some details of a definition and a proof requiered in
Section 3.

Let Ω be a bounded Lipschitz domain in Rn and T be a fixed positive time. Consider the heat equation:
∂tu−∆u = 0, in Ω× (0,1),

u = 0, on ∂Ω× (0,T ),

u(0) = u0, in Ω,

(1)

with u0 in L2(Ω). The solution of (1) will be treated as either a function from [0,T ] to L2(Ω) or a function
of two variables x and t. Two important apriori estimates for the above equation are as follows:

‖u(T )‖L2(Ω) ≤ N(Ω,T,D)

ˆ
D
|u(x, t)|dxdt, (2)

for all u0 ∈ L2(Ω), where D is a subset of Ω× (0,T ), and

‖u(T )‖L2(Ω) ≤ N(Ω,T,J )

ˆ
J
| ∂

∂ν
u(x, t)|dσdt, (3)

for all u0 ∈ L2(Ω), where J is a subset of ∂Ω× (0,T ). Such apriori estimates are called observability
inequalities.

In the case that D =ω×(0,T ) and J = Γ×(0,T ) with ω and Γ accordingly open and nonempty subsets of
Ω and ∂Ω, both inequalities (2) and (3) (where ∂Ω is smooth) were essentially first established, via the Lebeau-
Robbiano spectral inequalities in [8]. These two estimates were set up to the linear parabolic equations (where
∂Ω is of class C2), based on the Carleman inequality provided in [7]. In the case when D = ω × (0,T ) and
J = Γ× (0,T ) with ω and Γ accordingly subsets of positive measure and positive surface measure in Ω and
∂Ω, both inequalities (2) and (3) were built up in [1] with the help of a propagation of smallness estimate from
measurable sets for real-analytic functions first established in [13]. For D =ω×E, with ω and E accordingly an
open subset of Ω and a subset of positive measure in (0,T ), the inequality (2) (when ∂Ω is smooth) was proved
in [14] with the aid of the Lebeau-Robbiano spectral inequality, and it was then verified for heat equations (when
Ω is convex) with lower terms depending on the time variable, through a frequency function method in [11].
When D = ω×E, with ω and E accordingly subsets of positive measure in Ω and (0,T ), the estimate (2) (when
∂Ω is real-analytic) was obtained in [15].

In [2], we stablished the inequalities (2) and (3) when D and J were arbitrary subsets of positive measure
and of positive surface measure in Ω× (0,T ) and ∂Ω× (0,T ) respectively. Such inequalities not only are
mathematically interesting but also have important applications in the control theory of the heat equation, such
as the bang-bang control, the time optimal control, the null controllability over a measurable set and so on.

We will see how we proved the two above-mentioned inequalities. We start assuming that the Lebeau-
Robbiano spectral inequality stands on Ω. To introduce it, we write

0 < λ1 ≤ λ2 ≤ ·· · ≤ λ j ≤ ·· ·
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for the eigenvalues of −∆ with the zero Dirichlet boundary condition over ∂Ω, and {e j : j ≥ 1} for the set of
L2(Ω)-normalized eigenfunctions, i.e., ∆e j +λ je j = 0, in Ω,

e j = 0, on ∂Ω.
(4)

For λ > 0 we define
Eλ f = ∑

λ j≤λ

( f ,e j)e j and E ⊥
λ

f = ∑
λ j>λ

( f ,e j)e j,

where
( f ,e j) =

ˆ
Ω

f e j dx, when f ∈ L2(Ω), j ≥ 1.

Throughout this paper the following notations are used:

( f ,g) =
ˆ

Ω

f gdx and ‖ f‖L2(Ω) = ( f , f )
1
2 .

ν is the unit exterior normal vector to Ω. dσ is surface measure on ∂Ω. BR(x0) stands for the ball centered at
x0 in Rn of radius R,4R(x0) denotes BR(x0)∩∂Ω, BR = BR(0) and4R =4R(0). For measurable sets ω ⊂ Rn

and D ⊂ Rn× (0,T ), |ω| and |D | stand for the Lebesgue measures of the sets. For each measurable set J in
∂Ω× (0,T ), |J | denotes its surface measure on the lateral boundary of Ω×R. {et∆ : t ≥ 0} is the semigroup
generated by ∆ with zero Dirichlet boundary condition over ∂Ω. Consequently, et∆ f is the solution of equation
(1) with the initial state f in L2(Ω). The Lebeau-Robbiano spectral inequality is as follows:

For each 0 < R≤ 1, there is N = N(Ω,R), such that the inequality

‖Eλ f‖L2(Ω) ≤ NeN
√

λ‖Eλ f‖L2(BR(x0)) (5)

holds, when B4R(x0)⊂Ω, f ∈ L2(Ω) and λ > 0.

2 Observability inequalities

Our main results related to the observability inequalities are stated as follows, but, first, we will define the
real-analyticity of the set44R(q0).

Definition 1. Let q0 ∈ ∂Ω and 0 < R ≤ 1. We say that 44R(q0) is real-analytic with constants ρ and δ if
for each q ∈ 44R(q0), there are a new rectangular coordinate system where q = 0, and a real-analytic function
φ : B′ρ ⊂ Rn−1→ R verifying

φ(0′) = 0, |∂ αφ(x′)| ≤ |α|!δ−|α|−1,

when x′ ∈ B′ρ , α ∈ Nn−1,

Bρ ∩Ω = Bρ ∩{(x′,xn) : x′ ∈ B′ρ , xn > φ(x′)},

Bρ ∩∂Ω = Bρ ∩{(x′,xn) : x′ ∈ B′ρ , xn = φ(x′)}.

(6)

Here, B′ρ denotes the open ball of radius ρ and with center at 0′ in Rn−1.

In the next two theorems, we establish two observability inequalities for the heat equation over Ω× (0,T ).
In Theorem 1, the observation is from a subset of positive measure in Ω× (0,T ), while in Theorem 2, the
observation is from a subset of positive surface measure on ∂Ω× (0,T ).
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Theorem 1. Suppose that a bounded domain Ω verifies the condition (5) and T > 0. Let x0 ∈Ω and R ∈ (0,1]
be such that B4R(x0)⊂ Ω. Then, for each measurable set D ⊂ BR(x0)× (0,T ) with |D |> 0, there is a positive
constant B = B(Ω,T,R,D), such that

‖eT ∆ f‖L2(Ω) ≤ eB
ˆ

D
|et∆ f (x)|dxdt, (7)

when f ∈ L2(Ω).

Theorem 2. Suppose that a bounded Lipschitz domain Ω verifies the condition (5) and T > 0. Let q0 ∈ ∂Ω

and R ∈ (0,1] be such that44R(q0) is real-analytic. Then, for each measurable set J ⊂4R(q0)× (0,T ) with
|J |> 0, there is a positive constant B = B(Ω,T,R,J ), such that

‖eT ∆ f‖L2(Ω) ≤ eB
ˆ

J
| ∂

∂ν
et∆ f (x)|dσdt, (8)

when f ∈ L2(Ω).

Next, we will see some results that will be necessary in the proof of the previous Theorem 1.

Lemma 3. Let BR(x0)⊂Ω and D ⊂ BR(x0)× (0,T ) be a subset of positive measure. Set

Dt = {x ∈Ω : (x, t) ∈D}, E = {t ∈ (0,T ) : |Dt | ≥ |D |/(2T )}, t ∈ (0,T ). (9)

Then, Dt ⊂Ω is measurable for a.e. t ∈ (0,T ), E is measurable in (0,T ), |E| ≥ |D |/2|BR| and

χE(t)χDt (x)≤ χD(x, t), in Ω× (0,T ). (10)

Proof. From Fubini’s theorem,

|D |=
ˆ T

0
|Dt |dt =

ˆ
E
|Dt |dt +

ˆ
[0,T ]\E

|Dt |dt ≤ |BR||E|+ |D |/2.

Theorem 4. Let x0 ∈Ω and R ∈ (0,1] be such that B4R(x0)⊂Ω. Let D ⊂ BR(x0)× (0,T ) be a measurable set
with |D | > 0. Write E and Dt for the sets associated to D in Lemma 3. Then, for each η ∈ (0,1), there are
N = N(Ω,R, |D |/(T |BR|) ,η) and θ = θ(Ω,R, |D |/(T |BR|) ,η) with θ ∈ (0,1), such that

‖et2∆ f‖L2(Ω) ≤
(

NeN/(t2−t1)
ˆ t2

t1
χE(s)‖es∆ f‖L1(Ds) ds

)θ

‖et1∆ f‖1−θ

L2(Ω)
, (11)

when 0≤ t1 < t2 ≤ T , |E ∩ (t1, t2)| ≥ η(t2− t1) and f ∈ L2(Ω). Moreover,

e−
N+1−θ

t2−t1 ‖et2∆ f‖L2(Ω)− e
− N+1−θ

q(t2−t1) ‖et1∆ f‖L2(Ω)

≤ N
ˆ t2

t1
χE(s)‖es∆ f‖L1(Ds) ds, when q≥ (N +1−θ)/(N +1).

(12)

The reader can find the proof of the following Lemma 2 in either [10, pp. 256-257] or [11, Proposition 2.1].

Lemma 5. Let E be a subset of positive measure in (0,T ). Let l be a density point of E. Then, for each z > 1,
there is l1 = l1(z,E) in (l,T ) such that, the sequence {lm} defined as

lm+1 = l + z−m (l1− l) , m = 1,2, · · · ,

verifies

|E ∩ (lm+1, lm)| ≥
1
3
(lm− lm+1) , when m≥ 1. (13)
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Proof. [Theorem 1] Let E and Dt be the sets associated to D in Lemma 3 and l be a density point in E.
For z > 1 to be fixed later, {lm} denotes the sequence associated to l and z in Lemma 5. Because (13) holds,
we may apply Theorem 4, with η = 1/3, t1 = lm+1 and t2 = lm, for each m ≥ 1, to get that there are N =
N(Ω,R, |D |/(T |BR|))> 0 and θ = θ(Ω,R, |D |/(T |BR|)), with θ ∈ (0,1), such that

e−
N+1−θ

lm−lm+1 ‖elm∆ f‖L2(Ω)− e
− N+1−θ

q(lm−lm+1) ‖elm+1∆ f‖L2(Ω)

≤ N
ˆ lm

lm+1

χE(s)‖es∆ f‖L1(Ds) ds, when q≥ N +1−θ

N +1
and m≥ 1.

(14)

Setting z = 1/q in (14) (which leads to 1 < z≤ N+1
N+1−θ

) and

γz(t) = e
− N+1−θ

(z−1)(l1−l)t , t > 0,

recalling that
lm− lm+1 = z−m (z−1)(l1− l) , for m≥ 1,

we have

γz(z−m)‖elm∆ f‖L2(Ω)− γz(z−m−1)‖elm+1∆ f‖L2(Ω)

≤ N
ˆ lm

lm+1

χE(s)‖es∆ f‖L1(Ds) ds, when m≥ 1.
(15)

Choose now

z =
1
2

(
1+

N +1
N +1−θ

)
.

The choice of z and Lemma 5 determines l1 in (l,T ) and from (15),

γ(z−m)‖elm∆ f‖L2(Ω)− γ(z−m−1)‖elm+1∆ f‖L2(Ω)

≤ N
ˆ lm

lm+1

χE(s)‖es∆ f‖L1(Ds) ds, when m≥ 1.
(16)

with

γ(t) = e−A/t and A = A(Ω,R,E, |D |/(T |BR|)) =
2(N +1−θ)2

θ (l1− l)
.

Finally, because of

‖eT ∆ f‖L2(Ω) ≤ ‖el1∆ f‖L2(Ω), sup
t≥0
‖et∆ f‖L2(Ω) <+∞, lim

t→0+
γ(t) = 0,

and (10), the addition of the telescoping series in (16) gives

‖eT ∆ f‖L2(Ω) ≤ NezA
ˆ

D∩(Ω×[l,l1])
|et∆ f (x)|dxdt, for f ∈ L2(Ω),

which proves (7) with B = zA+ logN.

Remark 1. The constant B in Theorem 1 depends on E because the choice of l1 = l1(z,E) in Lemma 5 depends
on the possible complex structure of the measurable set E (See the proof of Lemma 5 in [11, Proposition 2.1]).
When D = ω× (0,T ), one may take l = T/2, l1 = T , z = 2 and then,

B = A(Ω,R, |ω|/|BR|)/T.
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Remark 2. The proof of Theorem 1 also implies the following observability estimate:

sup
m≥0

sup
lm+1≤t≤lm

e−zm+1A‖et∆ f‖L2(Ω) ≤ N
ˆ

D∩(Ω×[l,l1])
|et∆ f (x)|dxdt,

for f in L2(Ω), and with z, N and A as defined along the proof of Theorem 1. Here, l0 = T .

Next, we will see some results that will be necessary in the proof of the previous Theorem 2.

Lemma 6. Let q0 ∈ ∂Ω and J ⊂4R(q0)× (0,T ) be a subset with |J |> 0. Set

Jt = {x ∈ ∂Ω : (x, t) ∈J }, E = {t ∈ (0,T ) : |Jt | ≥ |J |/(2T )}, t ∈ (0,T ).

Then, Jt ⊂4R(q0) is measurable for a.e. t ∈ (0,T ), E is measurable in (0,T ), |E| ≥ |J |/(2|4R(q0)|) and
χE(t)χJt (x)≤ χJ (x, t) over ∂Ω× (0,T ).

Proof. From Fubini’s theorem,

|J |=
ˆ T

0
|Jt |dt =

ˆ
E
|Jt |dt +

ˆ
[0,T ]\E

|Jt |dt ≤ |4R(x0)||E|+ |J |/2.

Theorem 7. Suppose that Ω verifies the condition (5). Assume that q0 ∈ ∂Ω and R ∈ (0,1] such that44R(q0) is
real-analytic. Let J be a subset in4R(q0)×(0,T ) of positive surface measure on ∂Ω×(0,T ), E and Jt be the
measurable sets associated to J in Lemma 6. Then, for each η ∈ (0,1), there are N =N(Ω,R, |J |/(T |4R(q0)|),η)
and θ = θ(Ω,R, |J |/(T |4R(q0)|),η) with θ ∈ (0,1), such that the inequality

‖et2∆ f‖L2(Ω) ≤
(

NeN/(t2−t1)
ˆ t2

t1
χE(t)‖ ∂

∂ν
et∆ f‖L1(Jt) dt

)θ

‖et1∆ f‖1−θ

L2(Ω)
, (17)

holds, when 0≤ t1 < t2 ≤ T with t2− t1 < 1, |E ∩ (t1, t2)| ≥ η(t2− t1) and f ∈ L2(Ω). Moreover,

e−
N+1−θ

t2−t1 ‖et2∆ f‖L2(Ω)− e
− N+1−θ

q(t2−t1) ‖et1∆ f‖L2(Ω)

≤ N
ˆ t2

t1
χE(t)‖ ∂

∂ν
et∆ f‖L1(Jt) dt, when q≥ N+1−θ

N+1 .
(18)

Proof. [Theorem 2] Let E and Jt be the sets associated to J in Lemma 6 and l be a density point in E. For
z > 1 to be fixed later, {lm} denotes the sequence associated to l and z in Lemma 5. Because of (13) and from
Theorem 7 with η = 1/3, t1 = lm+1 and t2 = lm, with m≥ 1, there are N = N(Ω,R, |J |/(T |4R(q0)|))> 0 and
θ = θ(Ω,R, |J |/(T |4R(q0)|)), with θ ∈ (0,1), such that

e−
N+1−θ

lm−lm+1 ‖elm∆ f‖L2(Ω)− e
− N+1−θ

q(lm−lm+1) ‖elm+1∆ f‖L2(Ω)

≤ N
ˆ lm

lm+1

χE(s)‖ ∂

∂ν
es∆ f‖L1(Js) ds, when q≥ N +1−θ

N +1
and m≥ 1.

Let

z =
1
2

(
1+

N +1
N +1−θ

)
.

Then, we can use the same arguments as those in the proof of Theorem 1 to verify Theorem 2.
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Remark 3. The proof of Theorem 2 also implies the following observability estimate:

sup
m≥0

sup
lm+1≤t≤lm

e−zm+1A‖et∆ f‖L2(Ω) ≤ N
ˆ

J∩(∂Ω×[l,l1])

∣∣∣ ∂

∂ν
et∆ f (x)

∣∣∣ dσdt,

for f in L2(Ω), with A = 2(N +1−θ)2/[θ(l1− l)] and with z, N and θ as given along the proof of Theorem 2.
Here, l0 = T .

Remark 4. When J = Γ× (0,T ), Γ ⊂4R(q0) is a measurable set, one may take l = T/2, l1 = T , z = 2 and
the constant B in Theorem 2 becomes

B = A(Ω,R, |Γ|/|4R(q0)|)/T.

3 Applications of observability inequalities

We will now show some applications of the Theorems 1 and 2 in the control theory of the heat equation.
Specifically, we will focus on the uniqueness and bang-bang properties of the minimal time, time optimal and
minimal L∞-norm control problems.

In this section we assume that T > 0 and that Ω is a bounded Lipschitz domain verifying the condition (5).
First of all, we will show that Theorems 1 and 2 imply the null controllability with controls restricted over

measurable subsets in Ω× (0,T ) and ∂Ω× (0,T ) respectively. Let D be a measurable subset with positive
measure in BR(x0)× (0,T ) with B4R(x0) ⊂ Ω. Let J be a measurable subset with positive surface measure in
4R(q0)× (0,T ), where q0 ∈ ∂Ω, R ∈ (0,1] and44R(q0) is real-analytic. Consider the following controlled heat
equations: 

∂tu−∆u = χDv, in Ω× (0,T ],

u = 0,on ∂Ω× [0,T ],

u(0) = u0, in Ω,

(19)

and 
∂tu−∆u = 0, in Ω× (0,T ],

u = g χJ , on ∂Ω× [0,T ],

u(0) = u0, in Ω,

(20)

where u0 ∈ L2(Ω), v ∈ L∞(Ω× (0,T )) and g ∈ L∞(∂Ω× (0,T )) are controls. We say that u is the solution to 20
if v≡ u− et∆u0 is the unique solution defined in [6, Theorem 3.2] to

∂tv−∆v = 0, in Ω× (0,T ),

v = gχJ , on ∂Ω× (0,T ),

v(0) = 0, in Ω,

(21)

with g in Lp(∂Ω× (0,T )) for some 2≤ p≤ ∞.
From now on, we always denote by u(· ;u0,v) and u(· ;u0,g) the solutions of equations (19) and (20) corres-

ponding to v and g respectively.

Corollary 8. For each u0 ∈ L2(Ω), there are bounded control functions v and g with

‖v‖L∞(Ω×(0,T )) ≤C1‖u0‖L2(Ω),
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‖g‖L∞(∂Ω×(0,T )) ≤C2‖u0‖L2(Ω),

such that u(T ;u0,v) = 0 and u(T ;u0,g) = 0. Here C1 =C(Ω,T,R,D) and C2 =C(Ω,T,R,J ).

Proof. We only prove the boundary controllability. Let E be the measurable set associated to J in Lemma 6.
Write

J̃ = {(x, t) : (x,T − t) ∈J } and Ẽ = {t : T − t ∈ E} .

Let l > 0 be a density point of Ẽ (Hence, T − l is a density point of E). We choose z, l1 and the sequence {lm}
as in the proof of Theorem 2 but with J and E accordingly replaced by J̃ and Ẽ. It is clear that

0 < l < · · ·< lm+1 < lm · · ·< l1 < l0 = T, lim
m→+∞

lm = l.

We set
M = J ∩ (∂Ω× [T − l1,T − l])⊂J .

It is clear that |M |> 0. The proof of Theorem 2, the change of variables t = T − τ and Remark 3 show that the
observability inequality

‖ϕ(0)‖L2(Ω) ≤ eB
ˆ

M
| ∂ϕ

∂ν
(p, t)|dσdt, (22)

holds, when ϕ is the unique solution in L∞([0,T ],L2(Ω))∩L2([0,T ],H1
0 (Ω)) to

∂tϕ +∆ϕ = 0, in Ω× [0,T ),
ϕ = 0, on ∂Ω× [0,T ),
ϕ(T ) = ϕT , in ∂Ω,

(23)

for some ϕT in L2(Ω). Set

X = { ∂ϕ

∂ν
|M : ϕ(t) = e(T−t)∆

ϕT , for 0≤ t ≤ T, for some ϕT ∈ L2(Ω)}.

Since M ⊂ ∂Ω× [T − l1,T − l], X is a subspace of L1(M ) and from (22), the linear mapping Λ : X −→ R,
defined by

Λ( ∂ϕ

∂ν
|M ) = (u0,ϕ(0)),

verifies ∣∣∣Λ( ∂ϕ

∂ν
|M )

∣∣∣≤ eB‖u0‖L2(Ω)

ˆ
M
| ∂ϕ

∂ν
(p, t)|dσdt, when ∂ϕ

∂ν
|M ∈ X .

From the Hahn-Banach theorem, there is a linear extension T : L1(M )−→ R of Λ, with

T ( ∂ϕ

∂ν
|M ) = (u0,ϕ(0)), when ∂ϕ

∂ν
|M ∈ X ,

|T ( f )| ≤ eB‖u0‖‖ f‖L1(M ), for all f ∈ L1(M ).

Thus, T is in L1(M )∗ = L∞(M ) and there is g in L∞(M ) verifying

T ( f ) =
ˆ

M
f gdσdt, for all f ∈ L1(M ) and ‖g‖L∞(M ) ≤ eB‖u0‖.

We extend g over ∂Ω× (0,T ) by setting it to be zero outside M and denote the extended function by g again.
Then it holds that u(T ;u0,g) = 0 provided that we know that

ˆ
Ω

u(T ;u0,g)ϕT dx =
ˆ

Ω

u0ϕ(0)dx−
ˆ

M
g ∂ϕ

∂ν
dσdt, for all ϕT ∈ L2(Ω). (24)
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To prove (24), we first use the unique solvability for the problem
∂tu−∆u = 0, in Ω× (0,T ],
u = γ, on ∂Ω× [0,T ],
u(0) = 0 in Ω,

with lateral Dirichlet data γ in Lp(∂Ω×(0,T )), 2≤ p≤∞, stablished in [6, Theorem 3.2] (See also [3, Theorems
8.1 and 8.3]). Then, because gχM is bounded and supported in ∂Ω× [T − l1,T − l] ⊂ ∂Ω× (2η ,T − 2η) for
some η > 0, the calculations leading to (24) can be justified via the regularization of gχM and the approximation
of Ω by smooth domains {Ω j; j≥ 1} as in [3, Lemma 2.2]. For the sake of completeness we provide the detailed
proof of this identity in the Appendix in Section 5.

3.1 Definition of the Minimal Time Control Problems and Main Results

In this section, we apply Theorems 1 and 2 to get the bang-bang property for the minimal time control
problems usually called the first type of time optimal control problems; they are stated as follows. Let ω be a
measurable subset with positive measure in BR(x0) and B4R(x0)⊂Ω. Suppose that44R(q0) is real-analytic for
some q0 ∈ ∂Ω and R ∈ (0,1] and let Γ be a measurable subset with positive surface measure of 4R(x0). For
each M > 0, we define the following control constraint set:

U 1
M = {v measurable on Ω×R+ : |v(x, t)| ≤M for a.e. (x, t) ∈Ω×R+}.

U 2
M = {g measurable on ∂Ω×R+ : |g(x, t)| ≤M for a.e. (x, t) ∈ ∂Ω×R+}.

Let u0 ∈ L2(Ω)\{0}. Consider the minimal time control problems:

(T P)1
M : T 1

M ≡ min
v∈U 1

M

{
t > 0 : et∆u0 +

ˆ t

0
e(t−s)∆(χωv)ds = 0

}
and

(T P)2
M : T 2

M ≡ min
g∈U 2

M

{t > 0 : u(x, t;g) = 0 for a.e. x ∈Ω} ,

where u(·, · ;g) is the solution to 
∂tu−∆u = 0, in Ω×R+,

u = gχΓ, on ∂Ω×R+,

u(0) = u0, in Ω.

(25)

Any solution of (T P)i
M, i = 1,2, is called a minimal time control to this problem. According to Theorem 1 and

Theorem 3.3 in [12], problem (T P)1
M has solutions. By Theorem 2, using the same arguments as those in the

proof of Theorem 3.3 in [12], we can verify that there is g ∈U 2
M such that for some t > 0, u(x, t;g) = 0 for a.e.

x ∈Ω.

Lemma 9. Problem (T P)2
M has solutions.

Proof. Let {tn}n≥1, with tn↘ T 2
M, and gn ∈U 2

M be such that u(x, tn;gn) = 0 over Ω. Hence, on a subsequence,

gn −→ g∗ weakly star in L∞(∂Ω× (0, t1)). (26)

It suffices to show that

un(x, tn)≡ u(x, tn;gn)−→ u∗(x,T 2
M)≡ u(x,T 2

M;g∗), for all x ∈Ω. (27)
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For this purpose, let G(x,y, t) be the Green’s function for4−∂t in Ω×R with zero lateral Dirichlet boundary
condition. [6, Theorems 1.3 and 1.4] and [6, p. 643] show that for g ∈U 2

M and (x, t) ∈Ω× (0,T ),

u(x, t;g) = et4u0−
ˆ t

0

ˆ
∂Ω

∂G
∂νq

(x,q, t− s)χΓ(q,s)g(q,s)dσqds (28)

and ˆ T

0

ˆ
∂Ω

| ∂G
∂νq

(x,q,τ)|2 dσqdτ <+∞, when x ∈Ω, T > 0. (29)

Also, by standard interior parabolic regularity there is N = N(n,ε) with

|u(x, t;g)−u(x,s;g)| ≤ N|t− s|
(
‖g‖L∞(∂Ω×(0,T ))+‖u0‖L2(Ω)

)
(30)

when d(x,∂Ω)>
√

ε and t > s≥ ε . Now, when x ∈Ω with d(x,∂Ω)>
√

ε , it holds that

|un(x, tn)−u∗(x,T 2
M)| ≤ |un(x, tn)−un(x,T 2

M)|+ |un(x,T 2
M)−u∗(x,T 2

M)|.

This, along with (26), (28), (29) and (30) indicates that (27) holds for all x∈Ω with d(x,∂Ω)>
√

ε . Since ε > 0
is arbitrary, (27) follows at once.

Now, we can use the same methods as those in [14], as well as in Lemma 9, to get the following consequences
of Theorems 1 and 2 respectively.

Corollary 10. Problem (T P)1
M has the bang-bang property: any minimal time control v satisfies that |v(x, t)|=

M for a.e. (x, t) ∈ ω× (0,T 1
M). Consequently, this problem has a unique minimal time control.

Corollary 11. The problem (T P)2
M has the bang-bang property: any minimal time boundary control g satisfies

that |g(x, t)|= M for a.e. (x, t) ∈ Γ× (0,T 2
M). Consequently, this problem has a unique minimal time control.

3.2 Definition of the Time Optimal Control Problems and Main Results

Next, we make use of Theorems 1 and 2 to study the bang-bang property for the time optimal control
problems where the interest is on retarding the initial time of the action of a control with bounded L∞-norm.
These problems are usually called the second type of time optimal control problems and are stated as follows:
Let T > 0 and M > 0. Write ω and Γ for the sets given in Problems (T P)1

M and (T P)2
M respectively. Consider

the controlled heat equations: 
∂tu−∆u = χω χ(τ,T )v, in Ω× (0,T ],
u = 0, on ∂Ω× [0,T ],
u(0) = u0, in Ω

(31)

and 
∂tu−∆u = 0, in Ω× (0,T ],
u = χΓχ(τ,T )g, on ∂Ω× [0,T ],
u(0) = u0, in Ω,

(32)

where u0 ∈ L2(Ω). Write accordingly u(· ; χ(τ,T )v) and u(· ; χ(τ,T )g) for the solutions to equation (31) corres-
ponding to χ(τ,T )v, and to equation (32) corresponding to χ(τ,T )g. Define the following control constraint sets:

U 1
M,T = {v measurable on Ω× (0,T ) : |v(x, t)| ≤M for a.e. (x, t) ∈Ω× (0,T )}.

U 2
M,T = {g measurable on ∂Ω× (0,T ) : |g(x, t)| ≤M for a.e. (x, t) ∈ ∂Ω× (0,T )}.
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Consider the time optimal control problems:

(T P)1
M,T : τ

1
M,T ≡ sup

v∈U 1
M,T

{
τ ∈ [0,T ) : u(T ; χ(τ,T )v) = 0

}
and

(T P)2
M,T : τ

2
M,T ≡ sup

g∈U 2
M,T

{
τ ∈ [0,T ) : u(T ; χ(τ,T )g) = 0

}
.

Any solution of (T P)i
T,M, i = 1,2, is called an optimal control to the corresponding problem.

Now, we can use the same arguments as those in the proof of Theorem 3.4 in [11] to get the following
consequences of Theorem 1 and Theorem 2 respectively:

Corollary 12. Any optimal control v∗ to Problem (T P)1
M,T , if it exists, satisfies the bang-bang property: |v∗(x, t)|=

M for a.e. (x, t) ∈ ω× (τ1
M,T ,T ).

Corollary 13. Any optimal control g∗ to Problem (T P)2
M,T , if it exists, satisfies the bang-bang property: |g∗(x, t)|=

M for a.e. (x, t) ∈ Γ× (τ2
M,T ,T ).

Remark 5. By Theorem 1 (See also Remark 1) and the energy decay property for the heat equation, one can
easily prove the following: for a fixed M > 0, there is v ∈ U 1

M,T such that u(T ; χ(0,T )v) = 0, when T is large
enough (such a control v is called an admissible control); while for a fixed T > 0, the same holds when M is
large enough. The same can be said about Problem (T P)2

M,T because of Theorem 2 (See also Remark 4). In
the case where Problem (T P)1

M,T has admissible controls, one can easily prove the existence of time optimal
controls to this problem. In the case when Problem (T P)2

M,T has admissible controls, one can make use of the
similar method in the proof of Lemma 9 to verify the existence of time optimal controls for this problem.

3.3 Definition of the Minimal Norm Control Problems and Main Results

In this section, we apply Theorems 1 and 2 to get the bang-bang property for the minimal norm control
problems; they are stated as follows. Let D and J be the subsets given at the beginning of this section. Let
u0 ∈ L2(Ω), we define two control constraint sets as follows:

VD = {v ∈ L∞(Ω× (0,T )) : u(T ;u0,v) = 0}

and
VJ = {g ∈ L∞(∂Ω× (0,T )) : u(T ;u0,g) = 0} .

Consider the minimal norm control problems:

(NP)D : MD ≡min
{
‖v‖L∞(Ω×(0,T )) : v ∈ VD

}
and

(NP)J : MJ ≡min
{
‖g‖L∞(∂Ω×(0,T )) : g ∈ VJ

}
.

Any solution of (NP)D (or (NP)J ) is called a minimal norm control to this problem. According to Corollary 8,
the sets VD and VJ are not empty. Since VD is not empty, it follows from the standard arguments that Problem
(NP)D has solutions. Because VJ is not empty, by using the similar arguments as those in the proof of Lemma
9, we can justify that Problem (NP)J has solutions.

We can use the same methods as those in [11] to get the following consequences of Theorem 1 and Theorem
2 respectively:

Corollary 14. Problem (NP)D has the bang-bang property: any minimal norm control v satisfies that |v(x, t)|=
MD for a.e. (x, t) ∈D . Consequently, this problem has a unique minimal norm control.

Corollary 15. The problem (NP)J has the bang-bang property: any minimal norm boundary-control g satisfies
that |g(x, t)|= MJ for a.e. (x, t) ∈J . Consequently, this problem has a unique minimal norm control.
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4 Open problems

In tis section we will establish the heat equation with similar conditions to what we studied before, but in
this case we will require it to verify other type of boundary conditions instead of Dirichlet boundary conditions.

Let Ω be a bounded Lipschitz domain in Rn and consider the following heat equation,
∂tu−∆u = 0, in Ω× (0,1),

∂

∂ν
u = 0, on ∂Ω× (0,T ),

u(0) = u0, in Ω,

(33)

with Neumann boundary condition and
∂tu−∆u = 0, in Ω× (0,1),

∂

∂ν
u+αu = 0, on ∂Ω× (0,T ),

u(0) = u0, in Ω,

(34)

with Robin boundary condition, where α ∈ R and u0 in L2(Ω).

We proved two obserbavility inequalities (Theorems 1 and 2) for these kind of equations over measurable sets
with Dirichlet boundary conditions, but if we change that condition to now use Neumann or Robin conditions,
would we be able to prove some similar observability inequalities? And, if that’s the case, could we apply them
to prove some bang-bang properties?

The idea of facing these questions is to spread our mathematical knowledge about this kind of problems and
also to discover new interesting ways or limitations in the techniques we are used to working with. It could also
be physically interesting because of the physical meaning of these new boundary conditions, as we will see now.

The Dirichlet boundary condition states that we have a constant temperature at the boundary. This can be
considered as a model of an ideal cooler in a good contact having infinitely large thermal conductivity.

With the Neumann boundary condition case for the heat flow, we can say that we have a constant heat flux
at the boundary or that it corresponds to a perfectly insulated boundary. If the flux is equal to zero, the boundary
condition describes the ideal heat insulator with the heat diffusion. For the Laplace equation and drum modes,
we could think this corresponds to allowing the boundary to flap up and down but not move otherwise.

Finally, the Robin boundary condition is the mathematical formulation of Newton’s law of cooling where
the heat transfer coefficient α is utilized. The heat transfer coefficient is determined by details of the interface
structure (sharpness, geometry) between two media. This law describes the boundary between metals and gas
quite well and is good for the convective heat transfer.

5 Appendix

Here, we will give the definition of a Lipschitz domain and complete the proof of the equation (24) that
appeared in the proof of Corollary 8.

Definition 2. Let Ω be a bounded domain in Rn. Ω is a Lipschitz domain (sometimes called strongly Lipschitz
or Lipschitz graph domains) with constants m and ρ when for each point p on the boundary of Ω there is a
rectangular coordinate system x = (x′,xn) and a Lipschitz function φ : Rn−1 −→ R verifying

φ(0′) = 0, |φ(x′1)−φ(x′2)| ≤ m|x′1− x′2|, for all x′1,x
′
2 ∈ Rn−1, (35)
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p = (0′,0) on this coordinate system and

Zm,ρ ∩Ω = {(x′,xn) : |x′|< ρ, φ(x′)< xn < 2mρ},
Zm,ρ ∩∂Ω = {(x′,φ(x′)) : |x′|< ρ},

(36)

where Zm,ρ = B′ρ × (−2mρ,2mρ).

Proof. [Proof of (24)] For each (p,τ) ∈ ∂Ω×R and fixed ξ > 0, we define

Γ(p) = {x ∈Ω : |x− p| ≤ (1+ξ )d(x,∂Ω)},

Γ(p,τ) = {(x, t) ∈Ω× (0,T ) : |x− p|+
√
|t− τ| ≤ (1+ξ )d(x,∂Ω)}.

The later are called respectively elliptic and parabolic non-tangential approach regions from the interior of
Ω× (0,T ) to (p,τ). In particular,

Γ(p)×{τ} ⊂ Γ(p,τ), for all (p,τ) ∈ ∂Ω× (0,T ).

When u : Ω −→ R or u : Ω× (0,T ) −→ R (or Rn), define the elliptic and parabolic non-tangential maximal
function of u in ∂Ω× (0,T ) as

u∗(p) = sup
x∈Γ(p)

|u(x)|, u](p,τ) = sup
(x,t)∈Γ(p,τ)

|u(x, t)|, when p ∈ ∂Ω and τ ∈ (0,T ).

Let η > 0 be fixed such that [T − l1,T − l] ⊂ [2η ,T −2η ], with l and l1 as defined in Corollary 8. Denote
by u the solution to 

∂tu−∆u = 0, in Ω× (0,T ),
u = gχM ≡ γ, on ∂Ω× (0,T ),
u(0) = u0, in Ω.

(See the beginning of Section 3 for the definition of the solution to this equation.)
Let γε in C1

0(∂Ω× (0,T )) be a regularization of γ in ∂Ω× [0,T ] such that

‖γε‖L∞(∂Ω×[0,T ])+ ε ‖γε‖C1(∂Ω×[0,T ]) ≤ ‖γ‖L∞(∂Ω×[0,T ]),

supp(γε)⊂ ∂Ω× [η ,T −η ]

and let vε be the solution to 
∂tvε −∆vε = 0, in Ω× (0,T ),
vε = γε , on ∂Ω× (0,T ),
vε(0) = 0, in Ω.

From [6, Theorem 3.2] and either [3, Theorem 6.1] or [4, Theorem 2.9]

‖vε‖L∞(∂Ω×[0,T ])+ ε ‖(∇vε)
] ‖L2(∂Ω×[0,T ]) ≤ ‖γ‖L∞(∂Ω×[0,T ]), (37)

and the limits
lim

(x,t)→(p,τ)
(x,t)∈Γ(p,τ)

∇vε(x, t) = ∇vε(p,τ)

exist and are finite for a.e. (p,τ) in ∂Ω× (0,T ). Also, vε ∈C(Ω× [0,T ])∩C∞(Ω× [0,T ]), vε = 0 for t ≤ η ,
and vε = 0 on ∂Ω× (T −η ,T ]. Moreover, the Hölder regularity up to the boundary for bounded solutions to
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parabolic equations with zero local lateral Dirichlet data, shows that there are positive constants N = N(m,ρ,η)
and α = α(m,ρ), with α ∈ (0,1), such that

|vε(x1, t1)− vε(x2, t2)| ≤ N
[
|x1− x2|2 + |t1− t2|

]α/2 ‖γ‖L∞(∂Ω×[0,T ]), (38)

when x1,x2 ∈Ω, T − η

2 ≤ t1, t2 ≤ T [9, Theorems 6.28 and 6.32].
Let ϕ(t) = e(T−t)∆ϕT , t ∈ (0,T ), where ϕT is in L2(Ω). From the regularity of caloric functions [5, Theorem

1.7]
ϕ ∈C([0,T ];L2(Ω))∩C∞(Ω× [0,T ))∩C(Ω× [0,T )) (39)

and from [6, Theorems 1.3 and 1.4] or the proof of (40) and (41) in this appendix, there are N = N(m,ρ) and
ε = ε(m,ρ,n)> 0 such that

‖(∇ϕ)∗‖L∞(0,T−δ ;L2+ε (∂Ω)) ≤ Ne1/δ ‖ϕT‖L2(Ω), (40)

when 0 < δ < T and the limit
lim
x→p
x∈Γ(p)

∇ϕ(x,τ) = ∇ϕ(p,τ), (41)

exists and is finite for a.e. p ∈ ∂Ω and for all τ ∈ (0,T ). Now, let Ω j ⊂ Ω j+1 ⊂ Ω, j ≥ 1, be a sequence of
C∞-domains approximating Ω as in [3, Lemma 2.2]. Set, uε = vε + et∆u0. By Green’s formula,

d
dt

ˆ
Ω j

uε(t)ϕ(t)dx =
ˆ

∂Ω j

∂uε

∂ν j
ϕ− ∂ϕ

∂ν j
uε dσ j.

Integrating the above identity over [δ ,T −δ ] for a fixed δ ∈ (0, η

2 ), we get

ˆ
Ω j

uε(T −δ )ϕ(T −δ )dx−
ˆ

Ω j

uε(δ )ϕ(δ )dx

=

ˆ
∂Ω j×(δ ,T−δ )

∂uε

∂ν j
ϕ− ∂ϕ

∂ν j
uε dσ jdt.

(42)

Recall that uε(δ ) = eδ∆u0 and let j → +∞ in (42) with ε and δ being fixed. Then, (37), (39), (41) and the
dominated convergence theorem show that

ˆ
Ω

uε(T −δ )ϕ(T −δ )dx =
ˆ

Ω

(eδ∆u0)ϕ(δ )dx−
ˆ

∂Ω×(δ ,T−δ )
γ

ε ∂ϕ

∂ν
dσdt.

Because γε is supported in [η ,T −η ], the later is the same as
ˆ

Ω

uε(T −δ )ϕ(T −δ )dx =
ˆ

Ω

(eδ∆u0)ϕ(δ )dx−
ˆ

∂Ω×(η ,T−η)
γ

ε ∂ϕ

∂ν
dσdt, (43)

when 0 < δ < η/8. Next, from (38),

uε(T −δ ) = vε(T −δ )+ e(T−δ )∆u0 = vε(T )+ eT ∆u0 +O(δ α/2),

uniformly for x ∈Ω, when 0 < δ < η/8. Hence, after letting δ → 0 in (43), we get
ˆ

Ω

(vε(T )+ eT ∆u0)ϕ(T )dx =
ˆ

Ω

u0ϕ(0)dx−
ˆ

∂Ω×(η ,T−η)
γ

ε ∂ϕ

∂ν
dσdt.
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Also, from (37) and (38), vε converges uniformly over Ω× [T −η/2,T ] to some continuous function ṽ as
ε → 0. We claim that ṽ = v. If it is the case, we get after letting ε → 0 in the last equality, thatˆ

Ω

u(T )ϕ(T )dx =
ˆ

Ω

u0ϕ(0)dx−
ˆ

∂Ω×(η ,T−η)
γ

∂ϕ

∂ν
dσdt,

because γε(p,τ)→ γ(p,τ) for a.e. (p,τ) ∈ ∂Ω× (0,T ), (39) and

supp(γε)∪ supp(γ)⊂ ∂Ω× [η ,T −η ].

Recalling that γ = gχM , we getˆ
Ω

u(T )ϕ(T )dx =
ˆ

Ω

u0ϕ(0)dx−
ˆ

∂Ω×(0,T )
gχM

∂ϕ

∂ν
dσdt.

Hence, (24) is proved.
To verify that ṽ = v over Ω× [0,T ], observe that because vε − v is the unique solution to

∂tu−∆u = 0, in Ω× (0,T ),
u = γε − γ, on ∂Ω× (0,T ),
u(0) = 0, in Ω,

whose parabolic non-tangential maximal function is in L2(∂Ω× (0,T )) (See [6, Theorem 3.2]), it holds that

‖(vε − v)]‖L2(∂Ω×(0,T )) ≤ N‖γε − γ‖L2(∂Ω×(0,T )). (44)

For fixed p in ∂Ω, we may assume that p = (0′,0) and that near p,

Ω∩Zm,ρ = {(x′,xn) : φ(x′)< xn < 2mρ, |x′| ≤ ρ},

with φ as in (35) and (36). Then,
ˆ T

0

ˆ
B′ρ

ˆ
φ(y′)+mρ

φ(y′)
|F(y′,yn, t)|2 dy′dyndt

≤ mρ

ˆ T

0

ˆ
B′ρ

F](y′,yn, t)2 dy′dt ≤ mρ

ˆ
∂Ω×(0,T )

F](p, t)2 dσdt,

for all functions F . The above estimate, a covering argument and (44) show that

‖vε − v‖L2(Ωmρ×(0,T )) ≤ N‖γε − γ‖L2(∂Ω×(0,T )), (45)

with Ωη = {x ∈ Ω : d(x,∂Ω) ≤ η}. Recalling that vε = v = 0 for t ≤ η , the local boundedness properties of
solutions to parabolic equations [9, Theorem 6.17] show that,

|(vε − v)(x,τ)| ≤

−ˆ
B R

20
(x)×[τ− R2

202 ,τ]
|vε − v|2 dyds

1/2

,

when x ∈ ∂ΩR, 0≤ τ ≤ T , and taking R < mρ

20 above, we find from (45) that

‖vε − v‖L∞(ΩR×{0}∪∂ΩR×[0,T ]) ≤ NR ‖γε − γ‖L2(∂Ω×(0,T )) .

By the maximum principle and the above estimate

‖vε − v‖L∞(ΩR×[0,T ]) ≤ NR ‖γε − γ‖L2(∂Ω×(0,T )) −→ 0, as ε → 0,

which shows that ṽ = v in Ω× [0,T ].
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