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Abstract
The present paper investigates the motion of the variable infinitesimal body in circular restricted four variable bodies
problem. We have constructed the equations of motion of the infinitesimal variable mass under the effect of source of
radiation pressure due to which albedo effects are produced by another two primaries and one primary is considered as an
oblate body which is placed at the triangular equilibrium point of the classical restricted three-body problem and also the
variation of Jacobi Integral constant has been determined. We have studied numerically the equilibrium points, Poincaré
surface of sections and basins of attraction in five cases (i. Third primary is placed at one of the triangular equilibrium
points of the classical restricted three-body problem, ii. Variation of masses, iii. Solar radiation pressure, iv. Albedo effect,
v. Oblateness effect.) by using Mathematica software. Finally, we have examined the stability of the equilibrium points
and found that all the equilibrium points are unstable.

Keywords: Albedo, Oblate body, Triangular equilibrium points, Stationary Points, Poincaré surface of sections, Basins of Attraction.
AMS 2010 codes: 70F15, 85A20, 70F05.

1 Introduction

Few-body problem attract many scientists for a long time in celestial mechanics and dynamical astronomy.
The restricted three-body problem and four-body problem with many perturbations like different shapes of the
primaries, resonance, variable mass of the primaries as well as infinitesimal body, Coriolis and centrifugal forces,
Pointing-Robertson drag, solar radiation pressure and albedo effects etc., have been studied by many scientists.
Simó [36] investigated the linear stability of the relative Lagrangian solutions in the four-body problem. Had-
jidemetriou [17]studied the periodic orbits of fourth body in the restricted four-body problem with respect to
rotating frame. Michalodmitrakis [27] generalized the restricted three-body problem to the restricted four-body
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problem and studied about the equilibrium points, regions of possible motion and periodic orbits. Kalvouridis et
al. in the series of three papers [20,21] and [22] investigated the equilibrium points and stability in the restricted
four-body problem under the effect of oblateness and radiation pressure. And also performed the zero-velocity
surface and curves. Baltagiannis et al. [14] shown that equilibrium points depend on the mass of the primaries in
the restricted four-body problem. Papadauris et al. [31,32] investigated the existence, locations, stability and pe-
riodic orbits of the equilibrium points in and out of the orbital plane in the photo-gravitational circular restricted
four-body problem. Ansari [1] studied the periodic orbits in the restricted four-body problem around lagrangian
points in three cases. In the first case, he has considered all three primaries as spherical in shape. In the second
case, he has taken one of the three primaries as an oblate body. And in the third and last case, he has taken two of
the primaries as oblate body and all the three primaries are source of radiation pressure. Falaye [16] investigated
the stability of the equilibrium points in the restricted four-body problem under the effects of oblateness and
solar radiation pressure and found that these equilibrium points are unstable. Arribas et al. [22] investigated
the equilibria of the symmetric collinear restricted four-body problem where primaries are placed in a collinear
central configuration with both masses and radiation pressure of the peripheral bodies are equal. Papadakis [30]
performed the 21 families of simple 3D symmetric periodic orbits as well as the typical orbits of all symme-
try type 3D orbits in the circular restricted four-body problem. After examined the stability, he illustrated the
characteristic curves and stability diagrams of families of 3D periodic orbits. Asique et al. [10]– [13] studied
the restricted four-body problem with different shapes of the primaries with solar radiation pressure. They have
placed one of the primaries at the lagrangian points of the classical restricted three-body problem. They have
illustrated the equilibrium points and zero-velocity curves for these models. Singh et al. [45, 46] investigated in
and out of plane equilibrium points in the circular restricted four-body problem with the effect of solar radiation
pressure.

On the other-hand many scientists have studied about the albedo on these models. Anselmo et al. [8] per-
formed the periodic perturbations of the satellite is the radiation pressure due to the sun-light reflected by the
Earth. Rocco [34] evaluated the terrestrial albedo by using earth albedo model and orbital dynamics model and
also calculated the irradiance at the satellite with radiant flux from each cells. Idrisi [18] investigated the exis-
tence and stability of the circular restricted three-body problem under the effect of albedo when smaller primary
is an ellipsoid. Many scientists have investigated on these models with variable masses as Jeans [19], Meshch-
erskii [26], Shrivastava et al. [35], Lichtenegger [24], Singh et al. [37]- [41], Lukyanov [25], Zhang et al. [44],
Abouelmagd and Mostafa [2], Mittal et al. [28], Ansari [3]- [6], etc. And also many scientists have explained
the basins of attraction in these models as Douskos [15], Kumari and Kushvah [23], Paricio [33], Ansari [5, 6],
Zotos [45]- [48], etc.

This paper deals the motion of the infinitesimal body in the circular restricted four-body problem in which
the masses of the primaries as well as the mass of the infinitesimal body vary and also one of the primaries is
taken as source of radiation pressure due to which albedo effects are produced and another primary is considered
as oblate body. We have studied this problem in various sections. In the statement of the problem and equations
of motion section, we have constructed the equations of motion of the infinitesimal variable mass under the
effect of these perturbations where the third primary is fixed at the triangular equilibrium point of the classical
restricted three-body problem and also the variation of Jacobi Integral constant has been determined. In the
computational work section, we have plotted numerically the equilibrium points, Poincaré surface of sections
and basins of attraction in five cases by using Mathematica software. In the stability section, we have examined
the stability of the equilibrium points under the effect of the perturbations. Finally, we have concluded the
problem.

2 Statement of the problem and equations of motion

Let m1(t),m2(t),m3(t) and m(t) be four variable masses (m1(t) > m2(t) >> m3(t)). The configuration of
the m1(t),m2(t) and m(t) is taken as the restricted three-body problem. The third primary m3(t) is considered as
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Fig. 1 Configuration of the problem in CRFVBP with the effect of oblateness and Albedo.

so small that it is not influencing the motion of the primaries m1(t) and m2(t). Thus the center of the rotation of
the system remains the same as for the bodies m1(t) and m2(t). The body m3(t) is placed at one of the triangular
equilibrium points of the R3BP. m(t) is moving in the space under the influence of these three primaries but not
influencing them. In this way these four variable bodies formed the restricted circular four-body problem.
Here we have considered m3(t) as oblate body with oblateness factor σ (the shape of the oblate body remain
same though the mass is variable) and m1(t) is a source of radiations(Fp)due to these radiations, m2(t) and m3(t)
produce albedo FA and Fa respectively (i.e. Albedo = (radiation reflected back into the space)/(incident radia-
tion)). The infinitesimal body m(t) is moving in the space under the gravitational forces F1,F2 and F3 of the
primaries respectively. The total force on infinitesimal body will be F = F1(1− p1)+F2(1− p2)+F3(1− p3).
Where 0≤ p1 =Fp/F1 < 1,0≤ p2 =FA/F2 < p1,0≤ p3 =Fa/F3 < p1. The line joining m1(t) and m2(t) is taken
as x-axis and are moving around their common center of mass which is taken as origin O and the line perpendic-
ular to the x-axis and passing through the origin is considered as y-axis, the line passing through the origin and
perpendicular to the plane of motion of the primaries is taken as z-axis. Let us consider the synodic coordinate
system, initially coincide with the inertial coordinate system, and revolving with angular velocity ω(t) about
z-axis. Let the coordinates of m1(t), m2(t), m3(t) and m(t) in the rotating frame be (x1,0,0),(x2,0,0),(x3,y3,0)
and (x,y,z) respectively (Fig. 1). Following the procedure given in Ansari [7], we can write the equations
of motion of the infinitesimal variable mass in the rotating coordinate system when the variation of mass is
non-isotropic with zero momentum as
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ṁ(t)
m(t)(ẋ−ω(t) y)+(ẍ− ω̇(t) y−2ω(t) ẏ−ω2(t)x)

=− µ1(t)(x−x1)(1−p1)

r3
1

− µ2(t)(x−x2)(1−p2)

r3
2

− µ3(t)(x−x3)(1−p3)

r3
3

−3µ3(t)(x−x3)(1−p3)σ

2r5
3

,

ṁ(t)
m(t)(ẏ+ω(t) x)+(ÿ+ ω̇(t) x+2ω(t) ẋ−ω2(t) y)

=− µ1(t)y(1−p1)

r3
1

− µ2(t)y(1−p2)

r3
2

− µ3(t)y(1−p3)

r3
3

−3µ3(t)(y−y3)(1−p3)σ

2r5
3

,

ṁ(t)
m(t) ż+ z̈ =− µ1(t)z(1−p1)

r3
1

− µ2(t)z(1−p2)

r3
2

− µ3(t)z(1−p3)

r3
3

−3µ3(t)z(1−p3)σ

2r5
3

.

(1)

where, r2
i = (x−xi)

2+(y−yi)
2+ z2 are the distances from the primaries to the infinitesimal body in the rotating

coordinate system respectively, µi(t) = G mi(t),(i = 1,2,3).
Using Meshcherskii transformation
x = ξ R(t), y = ηR(t), z = ζ R(t), dt

dτ
= R2(t),ri = ρiR(t),ω(t) = ω0

R2(t) ,xi = ξiR(t),yi = ηiR(t),µ(t) = µ1(t)+

µ2(t) =
µ0

R(t) ,µi(t) =
µi0

R(t) ,m(t) = m0
R(t) ,R(t) =

√
αt2 +2β t + γ,

where α,β ,γ,µ0,µi0,m0 are constants for i = 1,2,3.
The system (1) becomes 

ξ ′′−2ω0η ′− (αt +β )ξ ′ = ∂W
∂ξ

,

η ′′+2ω0ξ ′− (αt +β )η ′ = ∂W
∂η

,

ζ ′′− (αt +β )ζ ′ = ∂W
∂ζ

.

(2)

where,

W = 1
2((αt +β )2 +ω2

0 − (αγ−β 2))(ξ 2 +η2)+ 1
2((αt +β )2− (αγ−β 2))ζ 2− (αt +β )ξ η

+ µ10(1−p1)
ρ1

+ µ20(1−p2)
ρ2

+ µ30(1−p3)
ρ3

+ µ30(1−p3)σ

2ρ3
3

,

ρ2
i = (ξ −ξi)

2 +(η−ηi)
2 +ζ 2.

Prime (′) is the differentiation w.r.to τ . Taking unit of mass, distance and time at initial time t0 such that

µ0 = 1, ξ1 +ξ2 = 1, G = 1, ω0 = 1, αt0 +β = α1(constant).

Introducing the new mass parameter as µ10 = 1−υ ,µ20 = υ ,µ30 = α2υ , where α2 << 1 and υ is the ratio of
the mass of the primary m2 to the total mass of the primaries m1 and m2.
Finally, the system (2) becomes 

ξ ′′−2η ′−α1ξ ′ = ∂U
∂ξ

,

η ′′+2ξ ′−α1η ′ = ∂U
∂η

,

ζ ′′−α1ζ ′ = ∂U
∂ζ

.

(3)
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where, U = 1
2(α

2
1 + k)(ξ 2 +η2 +ζ 2)− 1

2 ζ 2−α1ξ η + (1−υ)(1−p1)
ρ1

+ υ(1−p2)
ρ2

+ α2υ(1−p3)
ρ3

+ α2υ(1−p3)σ

2ρ3
3

,

ρ2
i = (ξ − ξi)

2 +(η −ηi)
2 + ζ 2,αγ −β 2 = 1− k and (ξ1,η1) = (υ ,0),(ξ2,η2) = (1−υ ,0), (ξ3,η3) = (υ −

1
2 ,
√

3
2 ).

If there are constant masses then there is a constant motion (i.e Moulton [29]), the Jacobi Integral Constant
defined as

JIC = 2U−2((ξ ′)2 +(η ′)2 +(ζ ′)2), (4)

Multiplying in the first equation of (3) by ξ ′, in the second equation of (3) by η ′ and in the third equation of (3)
by ζ ′ and add and using equation (4), we get the variation of the Jacobi Integral Constant as

dJIC

dτ
=−2α1((ξ

′)2 +(η ′)2 +(ζ ′)2), (5)

Where JIC is the Jacobi Integral Constant.

3 Computational work

In this section, we have drawn the locations of equilibrium points, the Poincaré surfaces of section and the
basins of attraction for five different cases by using Mathematica software (in all the calculations υ = 0.019,α2 =
0.01):
a. Third primary is placed at one of the Lagrangian points of the classical restricted three-body problem
(i.e. k = 1,α1 = 0, p1 = 0, p2 = 0, p3 = 0,σ = 0),
b. Variation of masses
(i.e. k = 0.4,α1 = 0.2, p1 = 0, p2 = 0, p3 = 0,σ = 0),
c. Solar radiation pressure
(i.e. k = 0.4,α1 = 0.2, p1 = 0.5, p2 = 0, p3 = 0,σ = 0),
d. Albedo effect
(i.e. k = 0.4,α1 = 0.2, p1 = 0.5, p2 = 0.3, p3 = 0.2,σ = 0),
e. Oblateness effect
(i.e. k = 0.4,α1 = 0.2, p1 = 0.5, p2 = 0.3, p3 = 0.2,σ = 0.01).

3.1 Equilibrium points during in-plane and out of plane motions

The solutions of Uξ = 0, Uη = 0, and Uζ = 0, will be the location of equilibrium points but the solu-
tions of these equations represent the location of equilibrium points during in-plane motions when (ξ 6= 0,η 6=
0,ζ = 0),(Fig.2) and represent the location of equilibrium points of the out of plane when (ξ 6= 0,η = 0,ζ 6=
0),(Fig.3) and (ξ = 0,η 6= 0,ζ 6= 0),(Fig.4). At the equilibrium points, all the derivatives of the co-ordinates
with respect to the time will be zero. Therefore the infinitesimal body will stay at these points with zero velocity.
Hence the singularities are known as stationary points. Where

Uξ =(α2
1 +k)ξ−α1η− (1−υ)(ξ −ξ1)(1− p1)

ρ3
1

− υ(ξ −ξ2)(1− p2)

ρ3
2

− υ3(ξ −ξ3)(1− p3)

ρ3
3

− 3α2υ(ξ −ξ3)(1− p3)σ

2ρ5
3

,

(6)

Uη = (α2
1 + k)η−α1ξ − (1− p1)(1−υ)η

ρ3
1

− (1− p2)υη

ρ3
2

− υ3(η−η3)(1− p3)

ρ3
3

− 3α2υη(1− p3)σ

2ρ5
3

, (7)

Uζ = (α2
1 + k−1)ζ − (1− p1)(1−υ)ζ

ρ3
1

− (1− p2)υζ

ρ3
2

− υ3ζ (1− p3)

ρ3
3

− 3α2υζ (1− p3)σ

2ρ5
3

. (8)
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3.1.1 During in-plane motion (i.e. ξ 6= 0,η 6= 0,ζ = 0) locations of lagrangian points

During in-plane motion, we have plotted graphs for the locations of the lagrangian points in five cases. We
found six lagrangian points in which three points (L1,L2,L3) are collinear and rest three points (L4,L5,L6) are
non-collinear when third primary is placed at one of the lagrangian points of the classical restricted circular three-
body problem (Fig. 2(a) points with blue color). It is observed that the lagrangian points (L1,L4,L5,L6) and
(L2,L3) lie left side and right side of the origin respectively. In the variable mass case, we found six lagrangian
points (Fig. 2(b) points with green color) in which points (L2,L3,L6) and (L1,L4,L5) lie left side and right side
of the origin respectively. Here (L3,L4) and (L5,L6) are symmetrical and rest points are non-symmetrical. In the
rest three cases, we found eight lagrangian points with slight different locations (Fig. 2(c) points with red color,
Fig. 2(d) points with black color, Fig. 2(e) points with magenta color). In all the figures black stars denote the
locations of the primaries respectively.

3.1.2 During out of plane (i.e. ξ 6= 0,η = 0,ζ 6= 0 and ξ = 0,η 6= 0,ζ 6= 0)the locations of lagrangian
points

During out of plane (i.e. ξ 6= 0,η = 0,ζ 6= 0), we found three lagrangian points on the ξ -axis in all the five
cases (Fig. 3(a) points in blue color, Fig. 3(b) points in green color, Fig. 3(c) points with red color, Fig. 3(d)
points with black color, Fig. 3(e) points with magenta color). In all the cases, the points L1 and (L2,L3) lie left
and right side of the origin with slight different locations respectively. The black stars denote the locations of
the primaries m1 and m2.
On the other hand, during the out of plane (i.e. ξ = 0,η 6= 0,ζ 6= 0 ), we found three lagrangian points (Fig.4)
in all five cases. The points L1 and L3 lie left and right side of the origin respectively but the point L2 lies at the
origin. It is also observed from the Figure 4 that lagrangian points are moving away from the origin from the
first case to the variable mass case and then toward the origin in the other cases.

3.2 Poincaré Surface of Section

We also have drawn the Poincaré surface of sections for five cases in both the (ξ −ξ ′)−plane (Fig.5 (i)) and
the (η−η ′)−plane (Fig.5 (ii), Fig. 5 (iii)). It is observed that in the ξ −ξ ′-plane, the surfaces are shrinking and
in the η−η ′-plane, the surfaces first expanding and then shrinking.

3.3 Basins of attraction

In this section, we have drawn the basins of attraction for the circular restricted four variable bodies problem
in which we have taken one primary as solar radiation pressure due to which other two primaries produced
albedo and also one of the primaries as an oblate body, by using Newton-Raphson iterative method for the five
cases (i. Third primary is placed at one of the lagrangian points of the restricted three-body problem, ii. Variation
of mass case, iii. Solar radiation pressure effect, iv. Albedo effect, v. Oblateness effect). The algorithm of our
problem is given by 

ξn+1 = ξn−
(

UξUηη−UηUξ η

Uξ ξUηη−Uξ ηUηξ

)
(ξn,ηn)

,

ηn+1 = ηn−
(

UηUξ ξ−UξUηξ

Uξ ξUηη−Uξ ηUηξ

)
(ξn,ηn)

.
(9)

Where ξn,ηn are the values of ξ and η coordinates of the nth step of the Newton-Raphson iterative process. If the
initial point converges rapidly to one of the lagrangian points then this point (ξ ,η) is a member of the basin of
attraction of the root. This process stops when the successive approximation converges to an attractor. We used
color code for the classification of the lagrangian points on the (ξ ,η)−plane. In the first case (Fig. 6), L1,L2,L3
represent cyan color regions, L4,L5,L6 represents light blue color regions. The basins of attraction corresponding
to the lagrangian points L1,L2,L3,L4,L5,L6 extend to infinity. In the variable mass case (Fig. 7), L1 represents
cyan color region, L2,L3,L5 represent light blue color regions, L4 and L6 represent light green color regions. The
basins of attraction corresponding to the lagrangian point L1 cover finite area but corresponding to the lagrangian
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(a) (b)

(c) (d)

(e)

Fig. 2 The locations of lagrangian points during in-plane motion (i.e. ξ 6= 0,η 6= 0,ζ = 0) in five cases: (a). Third
primary is placed at one of the lagrangian points of the classical circular restricted three-body problem (points with blue
color), (b). Variation of masses (points with green color), (c). Solar radiation pressure (points with red color), (d). Albedo
effect (points with black color), (e). Oblateness effect (points with magenta color).
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(a) (b)

(c) (d)

(e)

Fig. 3 The locations of lagrangian points during out of plane motion (i.e. ξ 6= 0,η = 0,ζ 6= 0 ) in five cases: (a). Third
primary is placed at one of the lagrangian points of the classical circular restricted three-body problem (points with blue
color), (b). Variation of masses (points with green color), (c). Solar radiation pressure (points with red color), (d). Albedo
effect (points with black color), (e). Oblateness effect (points with magenta color).
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Fig. 4 The locations of lagrangian points during out of plane motion (i.e.ξ = 0,η 6= 0,ζ 6= 0) in five cases: (a). Third
primary is placed at one of the lagrangian points of the classical circular restricted three-body problem (points with blue
color), (b). Variation of masses (points with green color), (c). Solar radiation pressure (points with red color), (d). Albedo
effect (points with black color), (e). Oblateness effect (points with magenta color).

(i) (ii)

-0.02 -0.01 0.01 0.02 0.03
η

-4

-2

0

2

4

η'

(iii)
-0.001 0.000 0.001 0.002

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

η

η'

Fig. 5 Poincaré surface of sections for five cases: (a). Third primary is placed at one of the lagrangian points of the
classical circular restricted three-body problem (with blue color), (b). Variation of masses (with green color), (c). Solar
radiation pressure (with red color), (d). Albedo effect (with black color), (e). Oblateness effect (with magenta color). (i)
Poincaré surface of sections in ξ −ξ ′-plane, (ii) Poincaré surface of sections in η−η ′-plane, (iii) Zoomed part of figure
(ii) near the origin.

http://www.up4sciences.org


538 Abdullah A. Ansari Applied Mathematics and Nonlinear Sciences 2(2017) 529–542

(a) (b)

Fig. 6 (a): The basin of attraction for the case when third primary is placed at one of the lagrangian points of the classical
circular restricted three- body problem. (b): Zoomed image of (a) near the lagrangian configuration.

(a) (b)

Fig. 7 (a): The basin of attraction for the variable mass case. (b): Zoomed image of (a) near the lagrangian configuration.

points L2,L3,L4,L5,L6 extend to infinity. While in the rest three cases (Fig. 8, Fig. 9, Fig. 10), L1 represents
cyan color region, L2, L3 represent light blue, L5 represents blue color region and L4,L6,L7,L8 represent light
green color regions. The basins of attraction corresponding to the all lagrangian points L2,L3,L4,L5,L6,L7,L8
extend to infinity except L1 which covers finite area. In this way a complete view of the basin structures created
by the attractors. We can observe in detail from the zoomed part of all the figures in Fig. 6(b), Fig. 7(b), Fig.
8(b), Fig. 9(b), Fig. 10(b). The black points and black stars denote the location of the lagrangian points and the
primaries respectively.
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(a) (b)

Fig. 8 (a): The basin of attraction for the solar radiation pressure case. (b): Zoomed image of (a) near the lagrangian
configuration.

(a) (b)

Fig. 9 (a): The basin of attraction for the Albedo case. (b): Zoomed image of (a) near the lagrangian configuration.

(a) (b)

Fig. 10 (a): The basin of attraction for the oblateness case. (b): Zoomed image of (a) near the lagrangian configuration.

http://www.up4sciences.org


540 Abdullah A. Ansari Applied Mathematics and Nonlinear Sciences 2(2017) 529–542

4 Stability of the equilibrium points

We can examine the stability of the equilibrium points under the effect of Albedo and oblateness when all
the masses are varying, by taking ξ = ξ0 +ξd , η = η0 +ηd , ζ = ζ0 +ζd in system (3), we get

ξ ′′d −2 η ′d−α1ξ ′d = ξd U0
ξ ξ

+ηd U0
ξ η

+ζd U0
ξ ζ

η ′′d +2 ξ ′d−α1η ′d = ξd U0
ηξ

+ηd U0
ηη +ζd U0

ηζ

ζ ′′d −α1ζ ′d = ξd U0
ζ ξ

+ηd U0
ζ η

+ζd U0
ζ ζ

(10)

Where ξd , ηd and ζd are the small displacements of the infinitesimal body from the equilibrium point. The
superscript zero denotes the value at the equilibrium point.

To solve system (10), let ξd =C1eλτ , ηd =C2eλτ , ζd =C3eλτ , where C1,C2 and C3 are constant parameters.
Substituting these values in system (10) and rearranging, we get:

C1(λ
2−α1λ −U0

ξ ξ
)−C2(2λ +U0

ξ η
)−C3U0

ξ ζ
= 0,

C1(2λ −U0
ηξ

)+C2(λ
2−α1λ −U0

ηη)−C3U0
ηζ

= 0,
−C1U0

ζ ξ
−C2U0

ζ η
+C3(λ

2−α1λ −U0
ζ ζ
) = 0.

(11)

The system (11), will have a non-trivial solution for C1,C2 and C3 if∣∣∣∣∣∣∣
λ 2−α1λ −U0

ξ ξ
−(2λ +U0

ξ η
) −U0

ξ ζ

2 λ −U0
ηξ

λ 2−α1λ −U0
ηη −U0

ηζ

−U0
ζ ξ

−U0
ζ η

λ 2−α1λ −U0
ζ ζ

∣∣∣∣∣∣∣= 0,

which is equivalent to

λ 6−3α1λ 5 +λ 4(4+3α2
1 −U0

ξ ξ
−U0

ηη −U0
ζ ζ
)+α1λ 3(−4−α2

1 +2 U0
ξ ξ

+2 U0
ηη +2 U0

ζ ζ
)

+λ 2(−(U0
ξ η

)2− (U0
ξ ζ
)2 +U0

ξ ξ
U0

ηη − (U0
ηζ

)2−4U0
ζ ζ

+U0
ξ ξ

U0
ζ ζ

+U0
ζ ζ

U0
ηη −α2

1 U0
ξ ξ
−α2

1 U0
ηη −α2

1 U0
ζ ζ
)

+α1λ ((U0
ξ η

)2 +(U0
ξ ζ
)2−U0

ξ ξ
U0

ηη +(U0
ηζ

)2−U0
ξ ξ

U0
ζ ζ
−U0

ηη U0
ζ ζ
)

+(U0
ξ ζ
)2 U0

ηη −2 U0
ξ η

U0
ξ ζ

U0
ηζ

+U0
ξ ξ

(U0
ηζ

)2 +(U0
ξ η

)2 U0
ζ ζ
−U0

ξ ξ
U0

ηη U0
ζ ζ

= 0,
(12)

From the solution of the equation (12) we found that λ has complex values in all the cases and at least one
of them has positive real value. Hence all the equilibrium points are unstable.

5 Conclusions

In this paper, we have investigated the effect of Albedo and oblateness of the primary in the circular restricted
four-body problem with variable masses. We have determined the equations of motion, when the masses of
the primaries as well as the infinitesimal body vary, which are different from the classical case by the variation
parameters α1, k, oblateness factor σ and the radiations effect p1, p2, p3. Further the expression for the variation
of Jacobi integral constant have been evaluated which is also depending on the variation parameter α1. We have
plotted equilibrium points, Poincaré surface of sections and basins of attraction in five cases (i. Case when
third primary is placed at one of the lagrangian points of the classical circular restricted three-body problem,
ii. Variation of mass, iii. Solar radiation pressure effect, iv. Albedo effect, v. Oblateness effect) by using
Mathematica software. The equilibrium points during in-plane motion (Fig. 2), we found six equilibrium points
in which three are collinear and three are non-collinear equilibrium points in the first case, in the variable mass

http://www.up4sciences.org


Investigation of the effect of albedo and oblateness... 541

case, we got one is collinear and rest five are non-collinear, while in the cases solar radiation pressure, albedo
and oblateness, we found eight equilibrium points. During out-of-plane motions (i.e. ξ 6= 0,η = 0,ζ 6= 0)(Fig.
3)and (i.e. ξ = 0,η 6= 0,ζ 6= 0)(Fig. 4), we found three equilibrium points in all cases. The poincaré surface of
sections have been determined in two phase spaces (ξ −ξ ′ Fig. 5 (i) and η−η ′ Fig. 5 (ii) ). In ξ −ξ ′-plane, the
poincaré surface of sections are shrinking and η−η ′-plane, the poincaré surface of sections are first expanding
and then shrinking . The Newton-Raphson basins of attraction have been studied in all five cases (Fig. 6, Fig. 7,
Fig. 8, Fig. 9, Fig. 10). We used color code for the classification of the equilibrium points on the (ξ−η)−plane.
These points will be clearly visible in the zoomed part of all the figures near the lagrangian configuration (ie.
Fig. 6 b, Fig. 7 b, Fig. 8 b, Fig. 9 b, Fig. 10 b). Finally, we have examined the stability of the equilibrium points
in the circular restricted four variable bodies problem with oblateness and albedo effect and found that all the
equilibrium points are unstable.
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