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Abstract
We establish, for finitely generated abelian semigroups G of matrices on Rn, and by using the extended limit sets (the
J-sets), the following equivalence analogous to the complex case: (i) G is hypercyclic, (ii) JG(vη) =Rn for some vector vη

given by the structure of G, (iii) G(vη) = Rn. This answer a question raised by the author. Moreover we construct for any
n ≥ 2 an abelian semigroup G of GL(n,R) generated by n+1 diagonal matrices which is locally hypercyclic (or J-class)
but not hypercyclic and such that JG(ek) = Rn for every k = 1, . . . ,n, where (e1, . . . ,en) is the canonical basis of Rn. This
gives a negative answer to a question raised by Costakis and Manoussos.

Keywords: Hypercyclic semigroup, locally hypercyclic, J-class operator, extended limit set, dense orbit, semigroup.
AMS 2010 codes: 47A16.

1 Introduction

Let Mn(R) be the set of all square matrices over R of order n ≥ 1 and by GL(n,R) the group of invertible
matrices of Mn(R). Let G be a finitely generated abelian sub-semigroup of Mn(R). By a sub-semigroup of
Mn(R), we mean a subset which is stable under multiplication and contains the identity matrix. For a vector
v ∈Cn, we consider the orbit of G through v: G(v) = {Av : A ∈G} ⊂Rn. A subset E ⊂Rn is called G-invariant
if A(E)⊂ E for any A ∈ G. The orbit G(v)⊂ Rn is dense in Rn if G(v) = Rn, where E denotes the closure of a
subset E ⊂Rn. The semigroup G is called hypercyclic if there exists a vector v∈Rn such that G(v) is dense in Rn.
We refer the reader to the recent books [4] and [9] for a thorough account on hypercyclicity. In [7], [8], Costakis
and Manoussos localized the notion of hypercyclicity through the use of the J-sets, firstly for a single bounded
linear operator T acting on a complex Banach space X , and secondly extended to that of semigroup. Recall
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that T is called a J-class operator if for every non-zero vector x in X and for every open neighborhood U ⊂ X
of x and every non-empty open set V ⊂ X , there exists a positive integer n such that T n(U)∩V = /0. Recently,
there are much research that study or use J-class operators, We mention for instance, the series of papers by
Azimi and Müller [3], Nasseri [10], Chan and Seceleanu [5]. Among properties, there are locally hypercyclic,
non hypercyclic operators and that finite dimensional Banach spaces do not admit locally hypercyclic operators
(see [7]).

In [8], Costakis and Manoussos extend the notion of J-class operator to that of a J-class of semigroup G
as follows: Suppose that G is generated by p matrices A1, . . . ,Ap (p ≥ 1) then we define the extended limit
set JG(x) of x under G to be the set of y ∈ Rn for which there exists a sequence (xm)m ⊂ Rn and sequences of
non-negative integers {k( j)

m : m ∈ N} for j = 1,2, . . . , p with k(1)m + k(2)m + · · ·+ k(p)
m →+∞ such that xm→ x and

Ak(1)m
1 Ak(2)m

2 . . .Ak(p)
m

p xm→ y.

This describes the asymptotic behavior of the orbits of nearby points to x. Note that the condition k(1)m + k(2)m +

· · ·+k(p)
m →+∞ is equivalent to having at least one of the sequences {k( j)

m : m∈N} for j = 1,2, . . . , p containing
an increasing subsequence tending to +∞. We say that G is locally hypercyclic (or J-class) if there exists a vector
v ∈ Rn\{0} such that JG(v) = Rn. This notion is a “localization“ of the concept of hypercyclicity, this can be
justified by the following: JG(x) = Rn if and only if for every open neighborhood Ux ⊂ Rn of x and every
nonempty open set V ⊂ Rn there exists A ∈ G such that A(Ux)∩V 6= /0.

As we have mentioned above, in Cn or Rn, no matrix can be locally hypercyclic. However, what is rather
remarkable is that in Cn or Rn, a pair of commuting matrices exists which forms a locally hypercyclic, non-
hypercyclic semigroup (see [8]).

In the present work, we show that G is hypercyclic if and only if there exists a vector v in an open set V ,
defined according to the structure of G, such that JG(v) = Rn (Theorem 1). This answer the question 1 raised
by the author in [2]. Furthermore, we construct for every n ≥ 2, a locally hypercyclic abelian semigroup G
generated by matrices A1, . . . ,An+1 which is non-hypercyclic whenever JG(uk) = Rn, k = 1, . . . ,n, for a basis
(u1, . . . ,un) of Rn (Theorem 4), this answers negatively the question raised by Costakis and Manoussos in [8].
However, we prove that the question is true (see Proposition 5) for any abelian semigroup G consisting of lower
triangular matrices on Rn with all diagonal elements equal.

Before stating our main results, let introduce the following notations and definitions.
Set N be the set of non negative integers and write N0 = N\{0}. Let n ∈ N0 be fixed. Denote by:

•B0 = (e1, . . . ,en) the canonical basis of Rn.
• In the identity matrix on Rn.
For each m = 1,2, . . . ,n, denote by:
• Tm(R) the set of matrices over R of the form:

µ 0

a2,1
. . .

...
. . . . . .

am,1 . . . am,m−1 µ


• S the set of matrices over R of the form [

α β

−β α

]

For each 1≤ m≤ n
2 , denote by
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• Bm(R) the set of matrices of M2m(R) of the form
C 0

C2,1 C
...

. . . . . .
Cm,1 . . . Cm,m−1 C

 : C, Ci, j ∈ S, 2≤ i≤ m,1≤ j ≤ m−1

Let r, s ∈ N. By a partition of n we mean a finite sequence of positive integers

η =


(n1, . . . ,nr; m1, . . . ,ms) if rs 6= 0,
(m1, . . . ,ms) if r = 0,
(n1, . . . ,nr) if s = 0

such that (n1 + · · ·+ nr)+ 2(m1 + · · ·+ms) = n. In particular, we have r+ 2s ≤ n. The number r+ 2s will be
called the length of the partition.
Given a partition η = (n1, . . . ,nr; m1, . . . ,ms), denote by:

• Kη(R) := Tn1(R)⊕·· ·⊕Tnr(R)⊕Bm1(R)⊕·· ·⊕Bms(R).
• K ∗

η (R) := Kη(R)∩GL(n, R), it is a sub-semigroup of GL(n, R). In particular:
- If r = 1, s = 0 then Kη(R) = Tn(R) and η = (n).
- If r = 0, s = 1 then Kη(R) = Bm(R) and η = (m), n = 2m.
- If r = 0, s > 1 then Kη(R) = Bm1(R)⊕·· ·⊕Bms(R) and η = (m1, . . . ,ms).

For a row vector v ∈ Rn, we will be denoting by vT the transpose of v.

• uη = [eη ,1, . . . ,eη ,r; fη ,1, . . . , fη ,s]
T ∈ Rn, where for every k = 1, . . . ,r; l = 1, . . . ,s, eη ,k = [1,0, . . . ,0]T ∈ Rnk ,

fη ,l = [1,0, . . . ,0]T ∈ R2ml .

• We let

U :=
r

∏
k=1

(R∗×Rnk−1)×
s

∏
l=1

(
(R2\{(0,0)})×R2ml−2) .

It is plain that U is open and dense in Rn.

Let G be an abelian sub-semigroup of Mn(R), we have the following “normal form of G”:
There exists a P ∈ GL(n,R) such that P−1GP⊂Kη(R) for some partition η of n (see Proposition 6).

Given two integers r, s ∈ N, we shall say that the semigroup G has “a normal form of length r+2s” if G has a
normal form in Kη(R) for some partition η with length r+2s. For such a choice of matrix P, we let:

• vη = Puη .
• V = P(U), it is a dense open set in Rn.

Our principal results are the following:

Theorem 1. Let G be a finitely generated abelian semigroup of matrices on Rn. If JG(v) = Rn for some v ∈ V
then G(vη) = Rn.

Corollary 2. Under the hypothesis of Theorem 1, the following are equivalent:
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(i) G is hypercyclic.

(ii) JG(vη) = Rn.

(iii) G(vη) = Rn.

Corollary 3. Under the hypothesis of Theorem 1, assume that G is not hypercyclic. Then

E := {x ∈ Rn : JG(x) = Rn} ⊂
r
∪

k=1
Hk∪

s
∪

l=1
Fl, (r+2s≤ n)

, where Hk (resp. Fl) are G-invariant vector subspaces of Rn of dimension n−1 (resp. n−2).

Remark. If n = 1, then vη = 1 and by Corollary 2, a sub-semigroup G of R is hypercylic if and only if it is
locally hypercyclic.

Theorem 4. Let n≥ 2 be an integer. Then there exists an abelian semigroup G generated by diagonal matrices
A1, . . . ,An+1 ∈ GL(n,R) which is not hypercyclic such that JG(ek) = Rn for every k = 1, . . . ,n.

Proposition 5. Let G be a finitely generated abelian sub-semigroup of Tn(R). If there exists a basis (e′1, . . . ,e
′
n)

of Rn such that JG(e′k) = Rn for every k = 1, . . . ,n, then G is hypercyclic.

2 Notation and some results

Recall first the following proposition.

Proposition 6. ( [1], Proposition 2.2) Let G be an abelian sub-semigroup of Mn(R). Then there exists a
P ∈ GL(n,R) such that P−1GP is an abelian sub-semigroup of Kη(R), for some partition η of n.

Notation.
• If G is a sub-semigroup of Tn(K) (K= R or C), denote by

FG = vect
(
{(B−µBIn)ei ∈Kn : 1≤ i≤ n−1, B ∈ G}

)
the vector subspace generated by the family of vectors

{
(B−µBIn)ei ∈Kn : 1≤ i≤ n−1, B ∈ G

}
.

- rank(FG) the rank of FG. We have rank(FG)≤ n−1.

• If G is an abelian sub-semigroup of Bm(R), (n = 2m), denote by:

FG = vect
(
{(B̃−CIn)ei ∈ Rn : 1≤ i≤ n−1, B̃ ∈ G}

)
, where

B̃ =


C 0

C2,1 C
...

. . . . . .
Cm,1 . . . Cm,m−1 C

 : C, Ci, j ∈ S, i = 2, . . . ,m, j = 1, . . . ,m−1.

http://www.up4sciences.org


J-class abelian semigroups 523

• If G is an abelian sub-semigroup of Kn(R), then for every B∈Kη(R), we have B= diag(B1, . . . ,Br; B̃1, . . . , B̃s)
with Bk ∈ Tnk(R), B̃l ∈ Bml (R), k = 1, . . . ,r, l = 1, . . . ,s. Denote by:

- Gk = {Bk : B ∈ G}, k = 1, . . . ,r, it is an abelian sub-semigroup of Tnk(R).

- G̃l = {B̃l : B ∈ G}, l = 1, . . . ,s, it is an abelian sub-semigroup of Bml (R).

For every x = [x1, . . . ,xr; x̃1, . . . , x̃s]
T ∈ Rn, where xk = [ak,1, . . . ,ak,nk ]

T ∈ R∗×Rnk−1, x̃l = [bl,1, . . . ,bl,ml ]
T ∈

(R2\{(0,0)})×R2ml−2, we let:

- Hxk = Rxk +FGk , k = 1, . . . ,r.
- H̃x̃l = C x̃l +FG̃l

, l = 1, . . . ,s, where C = {diag(C, . . . ,C) : C ∈ S}.

- Hx =
r⊕

k=1
Hxk

⊕ s⊕
l=1

H̃x̃l .

We start with the following lemmas:

Lemma 7. Let G be an abelian sub-semigroup of Kη(R). Under the notations above, for every x ∈ Rn, Hx is
G-invariant.

Proof. It suffices to prove that Hxk is Gk-invariant (resp. H̃x̃l is G̃l-invariant): write for short G = Gk and x = xk

(resp. G = G̃l and x = x̃l). One has Hx = Rx+FG (resp. H̃x = C x+FG).

- If w= [w1, . . . ,wn]
T ∈Hx and B∈G with eigenvalue µ ∈R, then Bw= µw+(B−µIn)w= µw+

n−1
∑

i=1
wk(B−

µIn)ei ∈ Hx (since w, (B−µIn)ei ∈ Hx and Hx is a vector space).

- If w̃ = [w̃1, . . . , w̃s]
T ∈ H̃x and B ∈ G, then we have Bw̃ =Cw̃+(B−CIn)w̃ =Cw̃+

n−1
∑

i=1
w̃k(B−CIn)ei ∈ H̃x

(since Cw̃, (B−CIn)ei ∈ H̃x and H̃x is a vector space).

Proposition 8. Let G be an abelian sub-semigroup of Kη(R). If JG(u) = Rn for some u ∈U, then rank(FGk) =
nk−1 and rank(FG̃l

) = 2ml−2, for every k = 1, . . . ,r; l = 1, . . . ,s.

Proof. Let u = [u1, . . . ,ur; ũ1, . . . , ũs]
T ∈ Rn, where uk ∈ Rnk , ũl ∈ R2ml , for every k = 1, . . . ,r; l = 1, . . . ,s.

i) First, we will show that JGk(uk) = Rnk and JG̃l
(ũl) = R2ml . For this, let xk ∈ Rnk , x̃l ∈ R2ml and set

y = [y1, . . . ,yr; ỹ1, . . . , ỹs]
T ∈ Rn such that

yi =

{
0 ∈ Rni , if i 6= k
xk, if i = k.

and

ỹl =

{
0 ∈ R2ml , if i 6= l
x̃l, if i = l.

As JG(u) = Rn, there exist two sequences (zm)m ⊂ Rn and (Bm)m ⊂ G such that

lim
m→+∞

zm = u and lim
m→+∞

Bmzm = y. (2)

http://www.up4sciences.org


524 Habib Marzougui. Applied Mathematics and Nonlinear Sciences 2(2017) 519–528

Write zm = [zm,1, . . . ,zm,r; z̃m,1, . . . , z̃m,s]
T with zm,k ∈Rnk , z̃m,l ∈R2ml , and Bm = diag(Bm,1, . . . ,Bm,r; B̃m,1, . . . , B̃m,s)

with Bm,k ∈ Tnk(R), B̃m,l ∈ Bml (R), k = 1, . . . ,r, l = 1, . . . ,s.
By (2), we have

lim
m→+∞

zm,k = uk, lim
m→+∞

z̃m,l = ũl

and
lim

m→+∞
Bm,kzm,k = yk = xk, lim

m→+∞
B̃m,l z̃m,l = ỹl = x̃l.

Therefore xk ∈ JGk(uk) and x̃l ∈ JG̃l
(ũl). It follows that JGk(uk) = Rnk and JG̃l

(ũl) = R2ml .

ii) Second, one can then suppose that G⊂Tn(R) and u∈R∗×Rn−1 (resp. G⊂Bm(R)) and u∈ (R2\{(0,0)})×
R2m−2. It is clear that u /∈ FG.

• Assume that G⊂ Tn(R). By Lemma 7, He1 = Re1 +FG is G-invariant.
Suppose that Rn\He1 6= /0, so there exist y ∈ Rn\He1 and two sequences (xm)m ⊂ Rn and (Bm)m ⊂ G such

that lim
m→+∞

xm = e1 and lim
m→+∞

Bmxm = y. Let Hxm = Rxm +FG for every m ∈ N. By Lemma 7, Hxm is G-invariant,

so Bmxm ∈ Hxm , for every m ∈ N. Write Bmxm = αmxm + zm, αm ∈ R and zm ∈ FG. We distinguish two cases:

- If (αm)m is bounded, one can suppose by passing to a subsequence, that (αm)m≥1 is convergent, say
lim

m→+∞
αm = a ∈ R. It follows that lim

m→+∞
zm = y−au ∈ FG and so y ∈ He1 , a contradiction.

- If (αm)m is not bounded, one can suppose by passing to a subsequence, that lim
m→+∞

|αm|=+∞, then lim
m→+∞

1
αm

zm =

−u ∈ FG, a contradiction. We conclude that He1 = Rn and so dim(FG) = n−1.

• Assume that G⊂Bm(R), (n = 2m). By Lemma 7, He1 =C e1+FG is G-invariant. Suppose that Rn\He1 6= /0
and let y ∈ Rn\He1 . Then there exist two sequences (xk)k ⊂ Rn and (Bk)k ⊂ G such that lim

k→+∞

xk = e1 and

lim
k→+∞

Bkxk = y. Let Hxk = C xk +FG for every k ∈ N. By Lemma 7, Hxk is G-invariant, so Bkxk ∈ Hxk , for every

k ∈ N. Write Bkxk =Ckxk + zk, with Ck = diag(Rk, . . . ,Rk), Rk =

[
αk βk
−βk αk

]
, and zk ∈ FG. Take

‖Ck‖= ‖Rk‖= sup (|αk|, |βk|) . We distinguish two cases:

- If (‖Ck‖)k is bounded, one can suppose by passing to a subsequence, that (αk)k and (βk)k converge, say
lim

k→+∞

αk = α ∈ R and lim
k→+∞

βk = β ∈ R. As lim
k→+∞

Cke1 = αe1− βe2 = Ce1, where C = diag(R, . . . ,R) with

R =

[
α β

−β α

]
, and as Bkxk = Ckxk + zk = Ck(xk− e1)+Cke1 + zk, then lim

k→+∞

zk = y−Ce1 ∈ FG and therefore

y ∈Ce1 +FG ⊂ He1 , a contradiction.

- If (‖Ck‖)k is not bounded, one can suppose by passing to a subsequence, that lim
k→+∞

‖Ck‖ = +∞, then Ck is

invertible for k large, so from Bkxk =Ckxk + zk =Ck(xk− e1)+Cke1 + zk, we have 1
‖Ck‖Cke1 + lim

k→+∞

1
‖Ck‖zk = 0.

In particular, we get lim
k→+∞

αk
‖Ck‖ = lim

k→+∞

βk
‖Ck‖ = 0, this is a contradiction with ‖Ck‖= sup (|αk|, |βk|).

We conclude that He1 = Rn and so dim(FG) = n−1.

3 Proof of Theorem 1, Corollaries 2 and 3

Lemma 9. Let G be an abelian sub-semigroup of Tn(K) (K = R or C) such that rank(FG) = n− 1. Let
u, v ∈ K∗×Kn−1. If two sequences (um)m∈N in K∗×Kn−1 and (Bm)m∈N in G such that lim

m→+∞
um = u and
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lim
m→+∞

Bmum = v then (Bm)m∈N is bounded.

Proof. The proof is down in ( [2], Lemma 3.4) if K= C and the same proof works if K= R.
Now consider the following basis change:

Assume that n = 2m, m ∈ N0. For every k = 1, . . . ,m, we let:
e′k =

e2k−1−ie2k
2 and C0 = (e′1, . . . ,e

′
m, e′1, . . . ,e′m), where u = [z1, . . . ,zm]

T is the conjugate of u = [z1, . . . ,zm]
T .

Then C0 is a basis of C2m. Denote by Q ∈ GL(2m,C) the matrix of basis change from B0 to C0. Then a simple
calculation yields that:

Lemma 10. Under the notation above, for every B ∈ Bm(R), Q−1BQ = diag(B′1, B′1), where B′1 ∈ Tm(C).

Lemma 11. Let G be an abelian sub-semigroup of Bm(R) such that
rank(FG) = 2m−2. Let u, v ∈ (R2\{(0,0)})×R2m−2. If two sequences (um)m∈N ⊂ (R2\{(0,0)})×R2m−2 and
(Bm)m∈N ⊂ G such that lim

m→+∞
um = u and lim

m→+∞
Bmum = v then (Bm)m∈N is bounded.

Proof. For B ∈ G, we have Q−1BQ = diag(B′1, B′1), where B′1 ∈ Tm(C). Write G′1 = {B′1 : B ∈ G} and
G′1 = {B′1 : B ∈ G}. Then G′1 (resp. G′1) is an abelian sub-semigroup of Tm(C).

First we prove that rank(FG′1
) = m− 1. Write C = diag(R, . . . ,R) with R =

[
α β

−β α

]
and µ = α + iβ . One

has

Q−1(FG) = vect
(
{(Q−1BQ−Q−1CQI2m)Q−1ei : 1≤ i≤ n−1, B ∈ G}

)
= vect

(
{(diag(B′1, B′1)−diag(µIm,µIm))e′i : 1≤ i≤ n−1, B′1 ∈ G′1}

)
= FG′1

⊕FG′1

As rank(FG) = 2m−2 then rank(Q−1(FG)) = 2m−2 = 2rank(FG′1
). So rank(FG′1

) = m−1.

Second, we let u′m =Q−1um = [u′m,1,u
′
m,2]

T , u′=Q−1u= [u′1,u
′
2]

T and v′=Q−1v= [v′1,v
′
2]

T , where u′m,i,u
′
i,v
′
i ∈

Cm, i = 1,2. As u,v,um ∈ (R2\{(0,0)})×R2m−2 then u′1,v
′
1,u
′
m,1 ∈ C∗×Cm−1. We have lim

m→+∞
u′m = u′ and so

lim
m→+∞

u′m,1 = u′1. Take B′m = Q−1BmQ. By Lemma 10, B′m = diag(B′m,1, B′m,1), where B′m,1 ∈ Tm(C). Then

B′m,1 ∈ G′1 and lim
m→+∞

B′mu′m = v′. So lim
m→+∞

B′m,1u′m,1 = v′1. By Lemma 9, (B′m,1)m∈N is bounded, so is (B′m)m∈N.

We conclude that (Bm)m∈N is bounded.

It follows from Lemmas 9 and 11, the following:

Corollary 12. Let G be a finitely generated abelian sub-semigroup of Kη(R). Suppose that rank(FGk) = nk−1,
rank(FG̃l

) = 2ml−2, k = 1, . . . ,r; l = 1, . . . ,s. If x, y ∈U and two sequences (Bm)m∈N ⊂ G and (xm)m∈N ⊂ Rn

such that lim
m→+∞

xm = x and lim
m→+∞

Bmxm = y then (Bm)m∈N is bounded.

Proposition 13. [8] Let G be a finitely generated abelian sub-semigroup of Mn(R). Then G is hypercyclic if
and only if JG(x) = Rn for every x ∈ Rn.

Proof. [Proof of Theorem 1] One can assume, by Proposition 6, that G is a sub-semigroup of Kη(R). Suppose
that JG(u) =Rn. Then by Proposition 8, rank(FGk) = nk−1 and rank(FG̃l

) = 2ml−2, for every k = 1, . . . ,r; l =
1, . . . ,s. Let y ∈U , then there exist two sequences (Bm)m∈N ⊂ G and (xm)m∈N ⊂ Rn satisfying:

lim
m→+∞

xm = u and lim
m→+∞

Bmxm = y.
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So by Corollary 12, (Bm)m∈N is bounded: ‖Bm‖ ≤M for some M > 0, where ‖.‖ is the Euclidean norm on
Rn. Then

‖Bmu− y‖= ‖Bmu−Bmxm +Bmxm− y‖
≤ ‖Bmu−Bmxm‖+‖Bmxm− y‖
≤ ‖Bm‖‖u− xm‖+‖Bmxm− y‖
≤M‖u− xm‖+‖Bmxm− y‖

Thus lim
m→+∞

Bmu = y and so y ∈ G(u). It follows that U ⊂ G(u). Since U = Rn, we get G(u) = Rn.

Proof of Corollary 2. (i) =⇒ (ii) follows from Proposition 13.
(ii) =⇒ (iii) results from Theorem 1. (iii) =⇒ (i) is clear.

Proof of Corollary 3. If G is not hypercyclic then by Theorem 1,

JG(v) 6= Rn for any v ∈V . Thus V ∩E = /0 and therefore E ⊂ Rn\V = P(
r⋃

k=1
Hk∪

s⋃
l=1

Fl), where

Hk :=
{

u = [u1, . . . ,ur; ũ1, . . . , ũs]
T ∈ Rn; u j ∈ Rn j ,uk ∈ {0}×Rnk−1, 1≤ j 6= k ≤ r

}
and Fl :=

{
u = [u1, . . . ,ur; ũ1, . . . , ũs]

T ∈ Rn : ũl ∈ {(0,0)}×R2ml−2, 1≤ l ≤ s
}
.

4 Proof of Theorem 4 and Proposition 5

Lemma 14 ( [6], Lemma 2.6). Let a,b ∈ R with −1 < a < 0, b > 1 and
log |a|
logb

is irrational. Then the set

{akbl : k, l ∈ N} is dense in R.

Proof. [Proof of Theorem 4] Consider the abelian sub-semigroup G of GL(n,R) generated by B,A1, . . . ,An,
where B = bIn and Ak = diag(1, . . . . . . ,1︸ ︷︷ ︸

(k−1)−terms

,a,1 . . . ,1), k = 1, . . . ,n. Then G is a sub-semigroup of K ∗
η (R) with

r = n and η = (1, . . . ,1). One has uη = [1, . . . ,1]T .

• First, we will show that G is not hypercyclic: for this, it is equivalent to prove, by Corollary 2, that G(uη) 6=Rn:
We have

G(uη) =
{
[bmak1 ; bmak2 ; . . . . . . ; bmakn ]T : m,k1, . . . ,kn ∈ N

}
Observe that for every x = [x1, . . . ,xn]

T ∈ G(uη), we have
x1

x2
= ak1−k2 . Since the set {ap : p ∈ Z} is not dense

in R, the orbit G(uη) cannot be dense in Rn.

• Second, we will show that JG(e1) =Rn (the other ek work in the same way). Fix a vector y = [y1, . . . ,yn]
T ∈Rn

such that y1 6= 0. By Lemma 14, choose two sequences of positive integers (im)m∈N and ( jm)m∈N with im, jm→
+∞ such that lim

m→+∞
aimb jm = y1. Let x(m) = (1,x(m)

2 , . . . ,x(m)
n ) with x(m)

k = yk
aim b jm am , k = 2, . . . ,n. Since−1< a< 0

and y1 6= 0, we see that lim
m→+∞

x(m) = e1. On the other hand, consider

Bm := B jmAim
1 Aim+m

2 Aim+m
3 . . .Aim+m

n . Then Bmx(m) =
[
aimb jm ,y2, . . . ,yn

]T and so, lim
m→+∞

Bmx(m) = y. We conclude

that y ∈ JG(e1) and therefore JG(e1) = Rn.
Proof of Proposition 5. Since (e′1, . . . ,e

′
n) is a basis of Rn, there exists i0 ∈ {1, . . . ,n} such that e′i0 ∈

R∗×Rn−1. As V =U = R∗×Rn−1 and
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JG(e′i0) = Rn then by Theorem 1, G(e′i0) = Rn and hence G is hypercyclic.
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