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Abstract

We establish, for finitely generated abelian semigroups G of matrices on R”, and by using the extended limit sets (the
J-sets), the following equivalence analogous to the complex case: (i) G is hypercyclic, (i) Jg(vy) = R" for some vector vy
given by the structure of G, (iii) G(v,) = R". This answer a question raised by the author. Moreover we construct for any
n > 2 an abelian semigroup G of GL(n,R) generated by n+ 1 diagonal matrices which is locally hypercyclic (or J-class)
but not hypercyclic and such that Jg(e;) = R" for every k = 1,...,n, where (ey,...,e,) is the canonical basis of R”. This
gives a negative answer to a question raised by Costakis and Manoussos.
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AMS 2010 codes: 47A16.

1 Introduction

Let M, (R) be the set of all square matrices over R of order n > 1 and by GL(n,R) the group of invertible
matrices of M,(R). Let G be a finitely generated abelian sub-semigroup of M,(R). By a sub-semigroup of
M,(R), we mean a subset which is stable under multiplication and contains the identity matrix. For a vector
v € C", we consider the orbit of G through v: G(v) = {Av: A € G} C R". A subset E C R" is called G-invariant
if A(E) C E for any A € G. The orbit G(v) C R" is dense in R" if G(v) = R", where E denotes the closure of a
subset E C R”. The semigroup G is called hypercyclic if there exists a vector v € R” such that G(v) is dense in R”.
We refer the reader to the recent books [4] and [9] for a thorough account on hypercyclicity. In [7], [8], Costakis
and Manoussos localized the notion of hypercyclicity through the use of the J-sets, firstly for a single bounded
linear operator 7 acting on a complex Banach space X, and secondly extended to that of semigroup. Recall
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that T is called a J-class operator if for every non-zero vector x in X and for every open neighborhood U C X
of x and every non-empty open set V C X, there exists a positive integer n such that 7"(U) NV = 0. Recently,
there are much research that study or use J-class operators, We mention for instance, the series of papers by
Azimi and Miiller [3], Nasseri [10], Chan and Seceleanu [5]. Among properties, there are locally hypercyclic,
non hypercyclic operators and that finite dimensional Banach spaces do not admit locally hypercyclic operators
(see [7]).

In [8], Costakis and Manoussos extend the notion of J-class operator to that of a J-class of semigroup G
as follows: Suppose that G is generated by p matrices Ay,...,A, (p > 1) then we define the extended limit
set Jg(x) of x under G to be the set of y € R” for which there exists a sequence (x,), C R” and sequences of

non-negative integers {k,(,{) : meN}for j=1,2,...,p with k,(nl) —|—k,(,12) +--- +k,(,f) — +o0 such that x,, — x and
k(P)

ko) Ak
A" Ay ...Ap'" Xm — Y.
This describes the asymptotic behavior of the orbits of nearby points to x. Note that the condition k,(n1 ) + k,(n2 ) +
cee k,(f N +o0 is equivalent to having at least one of the sequences {k,g{ ) m € N} for j=1,2,...,p containing

an increasing subsequence tending to +oo. We say that G is locally hypercyclic (or J-class) if there exists a vector
v € R"\{0} such that J(v) = R". This notion is a “localization* of the concept of hypercyclicity, this can be
justified by the following: Jg(x) = R” if and only if for every open neighborhood U, C R" of x and every
nonempty open set V C R” there exists A € G such that A(U,) NV # 0.

As we have mentioned above, in C" or R”, no matrix can be locally hypercyclic. However, what is rather
remarkable is that in C" or R”", a pair of commuting matrices exists which forms a locally hypercyclic, non-
hypercyclic semigroup (see [8]).

In the present work, we show that G is hypercyclic if and only if there exists a vector v in an open set V/,
defined according to the structure of G, such that J(v) = R" (Theorem 1). This answer the question 1 raised
by the author in [2]. Furthermore, we construct for every n > 2, a locally hypercyclic abelian semigroup G
generated by matrices Ay,...,A,,; which is non-hypercyclic whenever Jg(u;) = R”", k = 1,...,n, for a basis
(uy,...,u,) of R" (Theorem 4), this answers negatively the question raised by Costakis and Manoussos in [8].
However, we prove that the question is true (see Proposition 5) for any abelian semigroup G consisting of lower
triangular matrices on R” with all diagonal elements equal.

Before stating our main results, let introduce the following notations and definitions.
Set N be the set of non negative integers and write No = N\ {0}. Let n € Ny be fixed. Denote by:
e By = (ey,...,e,) the canonical basis of R".
e ], the identity matrix on R".
Foreachm = 1,2,...,n, denote by:
» T, (R) the set of matrices over R of the form:

u 0
ap|
am1 - Amm—1 H

¢ S the set of matrices over R of the form

For each 1 <m < 7, denote by
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* B,,(R) the set of matrices of M, (R) of the form

C 0
G C

.. :C,C,-’jES,Zgigm,lgjgm—l
Gt -+ Coumn1 C

)

Let r, s € N. By a partition of n we mean a finite sequence of positive integers

(n1y..onyy my,...,mg)  ifrs #0,
n=\y (my,...,my) if r=0,
(n1,...,n,) ifs=0

such that (ny +--- 4+ n,) +2(mj + - -- + my) = n. In particular, we have r 4+ 2s < n. The number r+ 2s will be
called the length of the partition.
Given a partition n = (ny,...,n,; my,...,ms), denote by:

e HnR):=T, (R)®---&T, (R)®By, (R)®---®&B,, (R).

o Ay (R) := 2 (R)NGL(n, R), itis a sub-semigroup of GL(n, R). In particular:
-Ifr=1, s =0then %, (R) = T,(R) and n = (n).

-Ifr=0, s=1then J#;(R) =B, (R) and n = (m), n = 2m.

-Ifr=0, s > 1 then 4 (R) =B, (R)®--- ®B,, (R) and n = (my,...,m;).

For a row vector v € R”, we will be denoting by v the transpose of v.

Cup=lent,....en s fats---rfns]" €R, where forevery k=1,....r; [ =1,....s, enx = [1,0,...,0]T € R™,
fni=1[1,0,...,0]T € R¥™.
* We let . }
U= [J®R* xR% ") x [T ((R*\{(0,0)}) x R*™~2).

k=1 =1

It is plain that U is open and dense in R”".
Let G be an abelian sub-semigroup of M,,(R), we have the following “normal form of G”:
There exists a P € GL(n,R) such that P~'GP C .#; (R) for some partition 1 of n (see Proposition 6).

Given two integers r, s € N, we shall say that the semigroup G has “a normal form of length r +2s” if G has a
normal form in %5 (R) for some partition 1 with length r + 2s. For such a choice of matrix P, we let:

d Vr' :Pun
* V=P(U), itis a dense open set in R".

Our principal results are the following:

Theorem 1. Let G be a finitely generated abelian semigroup of matrices on R". If Jg(v) = R" for some v € V
then G(vy) =R".

Corollary 2. Under the hypothesis of Theorem 1, the following are equivalent:
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(i) G is hypercyclic.
(ii) Jg(vy) =R"

(iii) G(vy) = R".

Corollary 3. Under the hypothesis of Theorem 1, assume that G is not hypercyclic. Then
E:={xeR":Js(x)=R"} C kLZJlHkUlQIF,, (r+2s<n)

, where Hj (resp. F;) are G-invariant vector subspaces of R" of dimension n — 1 (resp. n—2).

Remark. If n =1, then v; = 1 and by Corollary 2, a sub-semigroup G of R is hypercylic if and only if it is
locally hypercyclic.

Theorem 4. Let n > 2 be an integer. Then there exists an abelian semigroup G generated by diagonal matrices
Ai,...,App1 € GL(n,R) which is not hypercyclic such that Jg(ex) = R" for everyk =1,...,n.

Proposition 5. Let G be a finitely generated abelian sub-semigroup of T,(R). If there exists a basis (¢é},...,e),)

e,
of R" such that J;(e,) = R" for every k =1,...,n, then G is hypercyclic.

2 Notation and some results

Recall first the following proposition.

Proposition 6. ( [/], Proposition 2.2) Let G be an abelian sub-semigroup of M,(R). Then there exists a
P € GL(n,R) such that P~'GP is an abelian sub-semigroup of #;(R), for some partition 1 of n.

Notation.
o If G is a sub-semigroup of T, (K) (K =R or C), denote by

Fg =vect({(B—upl,)e; €K": 1 <i<n—1, BEG})

the vector subspace generated by the family of vectors {(B —upl)e; € K": 1<i<n—1,Be€ G}.
- rank(Fg) the rank of Fi;. We have rank(Fg) <n— 1.

o If G is an abelian sub-semigroup of B,,(R), (n = 2m), denote by:
Fg = vect ({(E—Cln)e,- eR": 1<i<n—1,Be G})

, Where

C 0
~ Gy C
B= . 2C,CMGS,i:2,...,m,j:1,...,m—1.

Cm,l e Cm,m—l Cc
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* If G is an abelian sub-semigroup of %, (R), then for every B € %7 (R), we have B =diag(By, ..., B;; Bi,...,By)
with B, € T, (R), B; € B,,,(R), k=1,...,r,1 =1,...,s. Denote by:

- Gy={By : B€ G}, k=1,...,r, itis an abelian sub-semigroup of T, (R).
- Gi={B, : BEG},I=1,...,s, itis an abelian sub-semigroup of B, (R).

For every x = [x1,...,X:1X1,...,%]7 € R", where x; = [ag1,...,ax,)" € R* xR 5 = [by1,....b1 )" €
(R2\{(0,0)}) x R>™ 2, we let:

- [:lek:ka+FGk’k: 1,...,r.
- Hg =¢x,+Fg,l=1,...,s, where ¢ = {diag(C,...,C) : C€S}.

r s~
- Hx = @ka @ @Hf]
k=1 =1
We start with the following lemmas:

Lemma 7. Let G be an abelian sub-semigroup of %y (R). Under the notations above, for every x € R", Hy is
G-invariant.

Proof. It suffices to prove that Hy, is Gy-invariant (resp. PNI;Z is (~}l—invariant): write for short G = Gy and x = x;
(resp. G = G and x = ;). One has H, = Rx+ Fg (resp. I-Ix =Ex+Fg).
n—1
-Ifw=[wy,...,w,|T € H, and B € G with eigenvalue u € R, then Bw = uw+ (B —ul,)w=puw+ ¥, wi(B—
i=1
ul,)e; € Hy (since w, (B— ul,)e; € Hy and H, is a vector space).
n

~ —1 ~
-Ifw=[wi,...,w,]T € H, and B € G, then we have Bw = Cw + (B — CI,)w = Cw+ Y, wi(B — Cl,)e; € H,
=1

l
(since Cw, (B—ClI,)e; € Hy and H, is a vector space).

Proposition 8. Let G be an abelian sub-semigroup of 7y (R). If Jg(u) = R" for some u € U, then rank(Fg, ) =
e — 1 andrank(Fél) =2m;—2, foreveryk=1,....r; [ =1,...,s.
Proof. Letu=[uy,...,u; uy,...,is)" € R", where u; € R™, u; € R?™ foreveryk=1,....,r; [ =1,...,s.

i) First, we will show that Jg, (1) = R™ and Jal(ﬁl) = R?™. For this, let x; € R*, x; € R*™ and set
Y=[V15-- Y V1,---,¥5)] € R" such that

 JoeRrm, if itk
T if i=k.

and

_ foeRrMm, if ikl

T 5 if =1

As Jg(u) = R", there exist two sequences (z,;), C R" and (B,),» C G such that

lim z, =u and lim Bz, =y. (2)
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Write z,,, = [Zm,l, e Tmyrs Z/,ZI, .. ,E,ZE]T with Zmk € R, Zf,,:l c Rzm’, and B,, :diag(Bml,. .. ,BmJ; Bm71, . 7Bm,s)
with By g € Ty (R), Byoy € By (R), k=1,....r, [ =1,....5
By (2), we have

lim zp =ug, lim z,,; =u
m—y4-o0 m—yoo -

and

im By xZmx = Yk = Xk, hm B iZmi =y = X
m—+oo o0

Therefore x; € Jg, (ux) and x; € J(h (up). It follows that Jg, (uy) = R™ and 151 (i) = R?™,

ii) Second, one can then suppose that G C T, (R) and u € R* x R"~! (resp. G C B,,(R)) and u € (R*\ {(0,0)}) x
R?"=2 Tt is clear that u ¢ Fg.

* Assume that G C T,(R). By Lemma 7, H,, = Re; + Fg is G-invariant.
Suppose that R"\H,, # 0, so there exist y € R"\H,, and two sequences (x), C R" and (By,), C G such
that lim x, =e; and lim B,x, =y. Let H,, = Rx,, + Fg for every m € N. By Lemma 7, H, is G-invariant,

m—s oo M—s oo "
s0 Byx,, € Hy,, for every m € N. Write By,x,, = QX + Zim, Oy € R and z,,, € F. We distinguish two cases:

- If (an)m is bounded, one can suppose by passing to a subsequence, that (04,),>1 is convergent, say
llI}’rl a,, = a € R. It follows that hm Im =y —au € Iz and so y € H,,, a contradiction.
M— o0

- If (a4, ) m 1s not bounded, one can suppose by passing to a subsequence, that lirJrrl |0ty | = 4o, then hm oTZm =
m—y—+o0 m

—u € Fg, a contradiction. We conclude that H,, = R" and so dim(Fg) =n— 1.

* Assume that G C B,,(R), (n =2m). By Lemma 7, H,, = €’e| + Fg is G-invariant. Suppose that R"\H,, # 0

and let y € R"\H,,. Then there exist two sequences (xx)r C R" and (By)x C G such that klim Xy = e1 and
oo

klim Bixi =y. Let Hy, = €x; + Fg for every k € N. By Lemma 7, H,, is G-invariant, so Bix; € H,,, for every
—+oo

Otk Bk] ,and z; € Fg. Take
k

k € N. Write Byx; = Cixy + zx, with G, = diag(Rk, ... ,Rk), R, = |: ﬁ o
Pk

ICkll = ||Rk|| = sup (|ow|,|Bk|) . We distinguish two cases:
- If (||Ck]|)x is bounded, one can suppose by passing to a subsequence, that (o) and (f); converge, say
lim o = o € R and 11m ﬁk B €R. As lim Cre; = ey — Bex = Cey, where C = diag(R,...,R) with
R = [ aB g] , and as Byxy = Cixg + 7% = Cr(xx — e1) + Crer + 2, then klim 7zt = y— Cey € Fg and therefore
— —r oo
y € Ce; + Fg C H,,, a contradiction.

- If (||Ck||)x is not bounded, one can suppose by passing to a subsequence, that lim ||Ck|| = +oo, then Cy is

invertible for k large, so from Byxy = Crxy + 2% = Cr(xr — e1) + Creq + 2k, We have [ HCkel + hm HC e = 0.

In particular, we get lim Hg—’k‘” = lim Hgil\ =0, this is a contradiction with ||Cy|| = sup (]og], ] ﬁk|)

k—> o0 k—4-o0
We conclude that H,, = R" and so dim(Fg) =n— 1.

3 Proof of Theorem 1, Corollaries 2 and 3

Lemma 9. Let G be an abelian sub-semigroup of T,(K) (K =R or C) such that rank(Fg) =n—1. Let
u, v € K* x K"\, If two sequences (up)men in K* x K"™! and (By)men in G such that lir_r& Uy = u and
M——+oo0
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lim Byu,, = v then (By,)men is bounded.
m—y—+oo

Proof. The proof is down in ( [2], Lemma 3.4) if K = C and the same proof works if K = R.
Now consider the following basis change:
Assume that n = 2m, m € Ny. Forevery k =1,...,m, we let:
e, = w and 6o = (€},...,el, €),...,e},), where & = [Z7,...,Z)" is the conjugate of u = [z1,...,2m]".

Then % is a basis of C*”. Denote by Q € GL(2m,C) the matrix of basis change from % to ¢y. Then a simple
calculation yields that:

Lemma 10. Under the notation above, for every B € B,,(R), Q~'BQ = diag(B, B)), where B} € T,,(C).

Lemma 11. Let G be an abelian sub-semigroup of B,,(R) such that
rank(Fg) = 2m—2. Let u, v € (R*\{(0,0)}) x R?"~2, If two sequences (tt)men C (R*\{(0,0)}) x R*"~2 and
(Bm)men C G such that lim wu,, = u and lim B,,u,, = v then (By)men is bounded.

m—»—+oo m—»—+oo
Proof.  For B € G, we have Q~'BQ = diag(B), B)), where B} € T,,(C). Write G| = {B} : B € G} and
G = {B) : B€ G}. Then G| (resp. G}) is an abelian sub-semigroup of T,,(C).

First we prove that rank(Fg; ) =m — 1. Write C = diag(R,...,R) with R = [aﬁ g] and 4 = a+if. One
has

0 '(Fg) = vect ({(Q'BQ—Q 'COLy)Q 'ej: 1 <i<n—1, BeG})
= vect ({(diag( \, B)) —diag(ul,, il,))ei: 1<i<n—1, B) € G’l})

As rank(Fg) = 2m — 2 then rank(Q ! (Fg)) =2m—2 = 2rank(Fg;, ). So rank(Fg:) =m— 1.

Second, we letu, = Q~'u,, = (4115 “;n,z]T’ W' =0 tu=[u},ub)" andv' = Q 'v=[v|,v,]7, where Upy i U Vi €

C™, i=1,2. As u,v,u, € (R*\{(0,0)}) x R?"~2 then Uy, Vi, Uy, | € CF C™!. We have lim u/, = u’ and so

m—y—+oo

lim w, | = u;. Take B, = Q"'B,Q. By Lemma 10, B, = diag(B,, , B), ), where B, | € T,(C). Then

m—r+oo

B, €G) and mliIEmBi"u’," =V So mlirile%lu,’ml =V}. By Lemma 9, (B,, | )men is bounded, so is (Bj,)men-

We conclude that (B,y,)men is bounded.

It follows from Lemmas 9 and 11, the following:

Corollary 12. Let G be a finitely generated abelian sub-semigroup of J#y (R). Suppose that rank(Fg, ) = ni — 1,
rank(Fél) =2m—2k=1,....r; 1=1,...,s. Ifx, y € U and two sequences (By)men C G and (xp)men C R"

such that lim x, =xand lim Byx, =y then (By)nucnN is bounded.
m—4-oo m——oo

Proposition 13. [8] Let G be a finitely generated abelian sub-semigroup of M,,(R). Then G is hypercyclic if
and only if Jg(x) = R" for every x € R".

Proof. [Proof of Theorem 1] One can assume, by Proposition 6, that G is a sub-semigroup of %, (R). Suppose
that Jg(u) = R". Then by Proposition 8, rank(Fg, ) = n — 1 and rank(Fg ) =2m; —2, forevery k=1,...,r; [ =
1,...,s. Let y € U, then there exist two sequences (By,)men C G and (X,)meny C R” satisfying:

lim x,, =u and lim B,x, =y.
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So by Corollary 12, (By,)men is bounded: ||B,|| < M for some M > 0, where ||.|| is the Euclidean norm on
R”". Then

| Bt — y|| = || Bt — B ~+ BinXm — ¥ ||
< 1Bt = Bunxm|| + || Buxm — ¥
< Bl |t = xm|[ + [|Binxim — |
< Ml|u— x| + [ Bnxim — |

Thus lirE Byu=yandsoy € G(u). It follows that U C G(u). Since U = R", we get G(u) = R".
m—s—+oo

Proof of Corollary 2. (i) = (ii) follows from Proposition 13.
(ii) == (iii) results from Theorem 1. (iif) = (i) is clear. O

Proof of Corollary 3. If G is not hypercyclic then by Theorem 1,
r N
Je(v) #R" for any v € V. Thus VNE = 0 and therefore E C R"\V = P(J HyU U F;), where
k=1 I=1

Hy = {u: wy, ... up; 0y, ... 07 € R uj € R, uy € {0} x R™—1, lgj;ékgr}

and Fp:={u=[ur,...,us; uy,...,.u)" €R": ;€ {(0,0)} x R*™~2 1 <[<s}. O

4 Proof of Theorem 4 and Proposition 5

| is irrational. Then the set

1
Lemma 14 ( [6], Lemma 2.6). Let a,b € R with —1 <a <0, b > 1 and lofgb
{a*b! : k,1 € N} is dense in R.
Proof. [Proof of Theorem 4] Consider the abelian sub-semigroup G of GL(n,R) generated by B,Ay,...,A,,
where B = bl,, and Ay = diag(1,...... ;L,a,1...,1), k=1,...,n. Then G is a sub-semigroup of %7’ (R) with
———

(k—1)—terms
r=nandn =(1,...,1). One has up = [1,...,1]7.
o First, we will show that G is not hypercyclic: for this, it is equivalent to prove, by Corollary 2, that G(uy, ) # R":
We have

G(upy) = {[bmakl; k. S b"dT s mky,. Lk, € N}
Observe that for every x = [x1,...,x,]" € G(uy), we have M _ gk Since the set {a?: p € Z} is not dense
X2

in IR, the orbit G(uy) cannot be dense in R”.

e Second, we will show that J(e;) = R” (the other ¢; work in the same way). Fix a vector y = [y, ..., yn]T eR"

such that y; # 0. By Lemma 14, choose two sequences of positive integers (i, )men and (ju)men With iy, jm, —

oo such that lim abin =y Letx(™ = (1,x3" ... x™) with 1™ = -2 k=2,... . Since —1 <a <0
m—r—+oo ampj.,a

and y; # 0, we see that lirJrrl x(m) = e1. On the other hand, consider
m—>—+oo
B, = Bj'"A’i’”Ag”erAg"er ...Alntm Then B, x(") = [ai'"bj"l,yz, ... ,yn] T and s0, lim B,x™ =y. We conclude

m—»—+-oo
that y € Jg(e;) and therefore Jg(e;) = R".
Proof of Proposition 5. Since (e},...,e,) is a basis of R", there exists ip € {1,...,n} such that €] €
R*xR" 1 AsV =U=R*xR" ! and
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Jg(e},) = R" then by Theorem 1, G(e; ) = R" and hence G is hypercyclic. O
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