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Abstract
In the framework of the restricted three–body problem when both primaries are triaxial rigid bodies, for different cases
of Euler’s angles, the locations of the triangular points, and the stability conditions of motion in the proximity of these
points are constructed. The numerical solution is obtained by using a fourth order Runge–Kutta–Gill integrator with some
graphical investigations.
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1 Introduction

Restricted three–body problem (RTBP) plays very important role in celestial mechanics and space sci-
ence. [12, 15] and [23] are very good books in celestial mechanics which explains importance of RTBP in
space dynamics. Classical RTBP is explained in detailed in [15]. [2, 3, 6, 8] have studied RTBP with different
perturbations like solar radiation pressure, oblateness, air drug etc. With both primaries as point masses. [7]
have studied numerical integration with Lie series in the case of RTBP.

It is well known that the classical planar restricted three body problem (CRTBP) possesses five liberation
or stationary points. These points are known as Lagrangian points. Out of these five points three points are
collinear which are unstable where as two points are triangular which are stable in nature. [1, 4, 5, 11] studied
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existence and stability of these Lagrangian points for the perturbed RTBP. Recently, [16–19] studied different
family of periodic orbits and its stability using Poincaré surface section for perturbed RTBP. In recent times
many perturbing forces i.e., oblateness and radiation forces of the primaries, Coriolis and centrifugal forces,
variation of masses of the primaries and of the infinitesimal mass etc., have been included in the study of the
restricted three body problem.

For the case, where the bigger primary is an oblate spheroid whose equatorial plane coincides with the
plane of motion, [22] have studied the stability of the liberation points. A similar problem has been studied
by [13]. [10] have studied existence and stability of the equilibrium points of the triaxial rigid body which is
moving around another triaxial rigid body. [9] have studied the non-linear stability of triangular point L4 in the
RTBP when the bigger primary is a triaxial rigid body with its equatorial plane coincident with the plane of
motion.

[14] have studied the problem when the smaller primary is a triaxial rigid body. Also [20, 21] have stud-
ied the problem when both the primaries are triaxial rigid bodies in the case of stationary rotational motion
(θi = ψi = φi = 0). In this paper we consider the restricted three body problem when both the primaries are triax-

ial rigid bodies in two cases of stationary rotational motion:
(

θi = φi =
π

2
,ψi = 0

)
and

(
θi = 0,ψi +φi =

π

2

)
.

Also for Euler’s angles
(

θi =
π

2
,φi = ψi = 0

)
, and (θi = 0,ψi +φi = 0) we can do similar kind of analysis from

Case–I and Case–II respectively.

2 Equations of motion

We shall adopt the notation and terminology of [23]. As a consequence, the distance between the primaries
does not change and is taken equal to one; the sum of masses of the primaries is also taken one. The unit of
time is chosen so as to make the gravitational constant unity. Besides this the principle axes of the primaries
are oriented to the synodic axes by Euler’s angels (θi,ψi,φi (i = 1,2)). Since the axes are supposed to rotate
with the same angular velocity as that of the rigid bodies and the bodies are moving around their center of mass
without rotation, the Euler’s angles remain constant throughout the motion. Using dimensionless variables, the
equations of motion of the infinitesimal mass m3 in a synodic coordinate system (x,y) are

ẍ−2nẏ =
∂Ω

∂x
,

ÿ+2nẋ =
∂Ω

∂y
.

(1)

where,

Ω =
n2

2
[
(1−µ)r2

1 +µr2
2
]
+

(1−µ)

r1

+
µ

r2
+

(1−µ)

2m1r3
1
[I1 + I2 + I3−3I]

+
µ

2m2r3
2
[I′1 + I′2 + I′3−3I′] ,

(2)

r2
1 = (x−µ)2 + y2,

r2
2 = (x+1−µ)2 + y2.

(3)

Here µ is the ratio of mass of the smaller primary to the total mass of primaries and 0 ≤ µ ≤ 1
2

, i.e., µ =

m2

m1 +m2
≤ 1

2
with m1 ≥ m2 being the masses of the primaries. I1, I2, I3 are the principal moments of inertia of
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the triaxial rigid body of mass m1 at its center of mass, with a,b,c as its axes. I is the moment of inertia about a
line joining the center of the rigid body of mass m1 and the infinitesimal body of mass m3 and is given by

I = I1l
′2
1 + I2m

′2
1 + I3n

′2
1 (4)

where l
′
1,m

′
1 and n

′
1 are the directional cosines of the line respect to its principal axes. I

′
1, I

′
2, I

′
3 are the principal

moments of inertia of the triaxial rigid body of mass m2 at its center of mass, with a
′
,b
′
,c
′

as its axes. I
′

is the
moment of inertia about a line joining the center of the rigid body of mass m2 and the infinitesimal body of mass
m3 and is given by

I
′
= I

′
1l
′2
2 + I

′
2m

′2
2 + I

′
3n
′2
2 (5)

where l
′
2,m

′
2 and n

′
2 are the directional cosines of the line respect to its principal axes. We denote the unit vectors

along the principle axes at p1 (orp2) by i, j,k and the unit vectors parallel to the synodic axes by I,J,K with the
help of Euler’s angles (θi,ψi,φi), (i = 1,2).

I = a1i î+b1i ĵ+ c1ik̂,

J = a2i î+b2i ĵ+ c2ik̂,

K = a3i î+b3i ĵ+ c3ik̂,

(6)

(i = 1,2), where
a1i =−sinφi sinψi + cosθi cosφi cosψi,

a2i = cosφi sinψi + cosθi sinφi cosψi,

a3i =−sinθi cosψi,

b1i =−sinφi cosψi− cosθi cosφi sinψi,

b2i = cosφi cosψi− cosθi sinφi sinψi,

b3i = sinθi sinψi,

c1i = sinθi cosφi,

c2i = sinθi sinφi,

c3i = cosθi,

(7)

(i = 1,2).
The axes O(xyz) have been defined by [23]. Now, Ω in equation (2) can be written as

I = a1i î+b1i ĵ+ c1ik̂,

J = a2i î+b2i ĵ+ c2ik̂,

K = a3i î+b3i ĵ+ c3ik̂,

(8)

Ω =
n2

2
[
(1−µ)r2

1 +µr2
2
]
+

(1−µ)

r1
+

µ

r2

+
(1−µ)

2r3
1

2(A1 +A2 +A3)−3
1
r2

1


(A2 +A3)(a11 (x−µ)+a21y)2

+(A1 +A3)(b11 (x−µ)+b21y)2

+(A2 +A1)(c11 (x−µ)+ c21y)2




+
µ

2r3
2

2(A′1 +A′2 +A′3)−3
1
r2

2


(A′2 +A′3)(a12 (x+1−µ)+a22y)2

+(A′1 +A′3)(b12 (x+1−µ)+b22y)2

+(A′2 +A′1)(c12 (x+1−µ)+ c22y)2


 ,

(9)
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where

A1 =
a2

5R2 , A2 =
b2

5R2 , A3 =
c2

5R2 , (10)

A
′
1 =

a
′2

5R2 , A
′
2 =

b
′2

5R2 , A
′
3 =

c
′2

5R2 ,
(11)

and R is the distance between the primaries. The mean motion, n is given by,

n2 = 1+
3
2
[
2(A1 +A2 +A3)−3a2

11 (A2 +A3)−3b2
11 (A1 +A3)−3c2

11 (A2 +A1)
]

+
3
2
[
2(A′1 +A′2 +A′3)−3a2

12 (A
′
2 +A′3)−3b2

12 (A
′
1 +A′3)−3c2

12 (A
′
2 +A′1)

]
.

(12)

3 Locations of triangular points

Equation (1) permit an integral analogous to Jacobi integral

ẋ2 + ẏ2−2Ω+C = 0,

f (x,y, ẋ, ẏ) = ẋ2 + ẏ2−2Ω+C = 0.
(13)

The liberation points are the singularities of the manifold Therefore, these points are the solutions of the equa-
tions Ωx = 0, Ωy = 0 . We have Ωx and Ωy are established by [11, 12].

3.1 Case I: Euler’s angles are: θi = φi =
π

2
,ψi = 0

In the case of
(

θi = φi =
π

2
,ψi = 0

)
, with the help of (11) the components of the unit vectors in the direc-

tions of synodic coordinates are a3i =−1,b1i =−1,c2i = 1 and the other components are equal to zero.

Ωx = n2x− (1−µ)(x−µ)

r3
1

− µ (x+1−µ)

r3
2

−3(1−µ)(x−µ)

2r5
1

[
(2A2 +4A3−A1)−

5
r2

1

(
A3 (x−µ)2 +A2y2

)]
−3(µ)(x+1−µ)

2r5
2

[
(2A′2 +4A′3−A′1)−

5
r2

2

(
A′3 (x+1−µ)2 +A′2y2

)]
= 0,

Ωy = n2y− (1−µ)y
r3

1
− µy

r3
2

−3(1−µ)y
2r5

1

[
(4A2 +2A3−A1)−

5
r2

1

(
A3 (x−µ)2 +A2y2

)]
−3(µ)y

2r5
2

[
(4A′2 +2A′3−A′1)−

5
r2

2

(
A′3 (x+1−µ)2 +A′2y2

)]
= 0,

(14)

where

n2 = 1+
3
2
[(2A2−A1−A3)]+

3
2
[(

2A′2−A′1−A′3
)]
. (15)

We consider equation (14), Let the triaxial rigid body of mass m1, be nearly a sphere of radius R0, then

a' R0 +σ1, b' R0 +σ2, c' R0 +σ3,
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whereσ1,σ2,σ3� 1 . Therefore, using equation (10)

A1 = λ1 +µ1σ1, (16)

where,

λ1 =
R2

0
5R2 , µ1 =

2R0

5R2 .

Similarly, A2 = λ1 + µ1σ2, A3 = λ1 + µ1σ3 Again, let the triaxial rigid body of mass m2, be nearly a sphere
of radius R′0, using equation (11)

A′1 = λ
′
1 +µ

′
1σ1 (17)

where

λ
′
1 =

R
′2
0

5R2 , µ
′
1 =

2R′0
5R2

Similarly A′2 = λ ′1 +µ ′1σ ′2, A′3 = λ ′1 +µ ′1σ ′3 where σ ′1,σ
′
2,σ

′
3� 1. Therefore, equation (14) becomes,

Ωx = n2x− (1−µ)(x−µ)

r3
1

− µ (x+1−µ)

r3
2

−3(1−µ)µ1 (x−µ)

2r5
1

[
(2σ2 +4σ3−σ1)−

5
r2

1

(
σ3 (x−µ)2 +σ2y2

)]
−3(µ)µ ′1 (x+1−µ)

2r5
2

[
(2σ ′2 +4σ ′3−σ ′1)−

5
r2

2

(
σ ′3 (x+1−µ)2 +σ ′2y2

)]
= 0,

Ωy = n2y− (1−µ)y
r3

1
− µy

r3
2

−3(1−µ)µ1y
2r5

1

[
(4σ2 +2σ3−σ1)−

5
r2

1

(
σ3 (x−µ)2 +σ2y2

)]
−3(µµ ′1)y

2r5
2

[
(4σ ′2 +2σ ′3−σ ′1)−

5
r2

2

(
σ ′3 (x+1−µ)2 +σ ′2y2

)]
= 0.

(18)

The mean motion n, given in equation (12), becomes

n2 = 1+
3
2

µ1 [(2σ2−σ1−σ3)]+
3
2

µ
′
1
[(

2σ
′
2−σ

′
1−σ

′
3
)]
. (19)

The triangular points are the solutions of the equation (18) when (y 6= 0). Now we suppose that the solution for
equation (18) when σi,σ

′
i (i = 1,2,3) are not equal to zero as

r1 = 1+α,

r2 = 1+β . (20)

where α,β � 1. Putting the values of r1 and r2 from equation (20) in equation (3), we get,

x = µ− 1
2
+β −α,

y =±
√

3
2

[
1+

2
3
(β +α)

]
.

(21)
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Putting the values of r1 and r2 from equation (20) and x,y from equation (18), rejecting higher order terms, we
get

α =−1
8

[
11µ1 (σ2−σ3)+4µ ′1 (2σ ′2−σ ′1−σ ′3)+

4µµ ′1
(1−µ)

(σ ′3−σ ′2)

]
,

β =−1
8

[
4µ1 (2σ2−σ1−σ3)+11µ ′1 (σ

′
2−σ ′3)+

4(1−µ)µ1

µ
(σ3−σ2)

]
.

(22)

3.2 Case II:Euler’s angles are: θi = 0,ψi +φi =
π

2

In the case of
(

θi = 0,ψi +φi =
π

2

)
, the components of directions cosines are a2i = 1,b1i = −1,c3i = 1

while the other components are equal to zero.

Ωx = n2x− (1−µ)(x−µ)

r3
1

−µ (x+1−µ)

r3
2

− 3(1−µ)(x−µ)

2r5
1

[
(2A2 +4A1−A3)−

5
r2

1

(
A1 (x−µ)2 +A2y2

)]
−3(µ)(x+1−µ)

2r5
2

[
(2A′2 +4A′1−A′3)−

5
r2

2

(
A′1 (x+1−µ)2 +A′2y2

)]
= 0,

Ωy = n2y− (1−µ)y
r3

1

−µy
r3

2
− 3(1−µ)y

2r5
1

[
(4A2 +2A1−A3)−

5
r2

1

(
A1 (x−µ)2 +A2y2

)]
−3(µ)y

2r5
2

[
(4A′2 +2A′1−A′3)−

5
r2

2

(
A′1 (x+1−µ)2 +A′2y2

)]
= 0.

(23)

where,

n2 = 1+
3
2
[(2A2−A1−A3)]+

3
2
[(

2A′2−A′1−A′3
)]

(24)

Therefore, equation (23) becomes

Ωx = n2x− (1−µ)(x−µ)

r3
1

−µ (x+1−µ)

r3
2

− 3(1−µ)µ1 (x−µ)

2r5
1

[
(2σ2 +4σ1−σ3)− 5

r2
1

(
σ1 (x−µ)2 +σ2y2

)]
−3(µ)µ ′1 (x+1−µ)

2r5
2

[
(2σ ′2 +4σ ′1−σ ′3)−

5
r2

2

(
σ ′1 (x+1−µ)2 +σ ′2y2

)]
= 0,

Ωy = n2y− (1−µ)y
r3

1
− µy

r3
2

−3(1−µ)µ1y
2r5

1

[
(4σ2 +2σ1−σ3)−

5
r2

1

(
σ1 (x−µ)2 +σ2y2

)]
−3(µµ ′1)y

2r5
2

[
(4σ ′2 +2σ ′1−σ ′3)−

5
r2

2

(
σ ′1 (x+1−µ)2 +σ ′2y2

)]
= 0.

(25)

The mean motion n, given in equation (12), becomes

n2 = 1+
3
2

µ1 [(2σ2−σ1−σ3)]+
3
2

µ
′
1
[(

2σ
′
2−σ

′
1−σ

′
3
)]
. (26)
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Also the triangular points are the solutions of the equation (25) when y 6= 0. Putting the values of r1 and r2 from
equation (20) and x,y from equation (25), rejecting higher order terms, we get

α =−1
8

[
11µ1 (σ2−σ1)+4µ ′1 (2σ ′2−σ ′1−σ ′3)+

4µµ ′1
(1−µ)

(σ ′1−σ ′2)

]
,

β =−1
8

[
4µ1 (2σ2−σ3−σ1)+11µ ′1 (σ

′
2−σ ′1)+

4(1−µ)µ1

µ
(σ1−σ2)

]
.

(27)

4 Small oscillation around equilibrium solutions

The particular solutions may be obtained with any desired degree of numerical accuracy. The next question
is the examination of orbits in the vicinity of these particular solutions. In general, let Xo, Yo be the coordinates
correspond to any one of the particular solutions. They satisfy equations (1).

Ẍ0−2nẎ0 =

(
∂Ω

∂X

)
0
,

Ÿ0 +2nẊ =

(
∂Ω

∂Y

)
0
.

(28)

In which the subscript o indicates that the particular derivatives of Ω must be evaluated for X = Xo, Y = Yo. If
now X = X0 +ξ , Y = Y0 +η are substituted into the equations, there results,

ξ̈ −2nη̇ = Ω0
xxξ +Ω0

xyη ,

η̈ +2nξ̇ = Ω0
yxξ +Ω0

yyη .
(29)

The super script of second partial derivatives of Ω refers to their values at X = X0 and Y =Y0. Specific numerical
values may be obtained for any of the particular solutions. Let a solution of equations (29) be

ξ = Aexp(λ t) ,

η = Bexp(λ t) .
(30)

Substituting (30) into (29) gives for the equations that must be satisfied by the coefficients A and B

λ
4 +
(
4n2−Ω

0
xx−Ω

0
yy
)

λ
2 +Ω

0
xxΩ

0
yy− (Ω0

xy)
2 = 0 (31)

The character of the solution of the differential equations depends on the character of the solution for λ 2 from
this quadratic equation. The solution is stable only if the quadratic has two unequal negative roots for λ 2. Now,
we consider two cases of stationary rotational motion of the primaries.

4.1 The stability conditions of motion around triangular points

4.1.1 The stability conditions of case-I

From equation (30) we can easily obtain the stability conditions of L4 and L5. The triangular points of L4
and L5 are stable if the following conditions be satisfied (λi is pure imaginary)

Ω0
xx +Ω0

yy < 4n2,

Ω0
xxΩ0

yy > (Ω0
xy)

2,(
4n2−Ω0

xx−Ω0
yy
)2

> 4
(
Ω0

xxΩ0
yy− (Ω0

xy)
2
)
,

(32)
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where Ω0
xx, Ω0

yy and Ω0
xy are defined at L4 and L5 when the primaries are triaxial rigid bodies as,

Ω0
xx = n2− 1

4
(1−µ)(1−9α +12β )− 1

4
(µ)(1−9β +12α)

+
3
32

(1−µ)µ1 (41σ3−37σ2−4σ1)+
3
32

(µ)µ ′1 (41σ ′3−37σ ′2−4σ ′1) ,

Ω0
yy = n2 +

1
4
(1−µ)(5−21α +12β )+

1
4
(µ)(5−21β +12α)

+
3
32

(1−µ)µ1 (3σ3 +41σ2−44σ1)+
3
32

(µ)µ ′1 (3σ ′3 +41σ ′2−44σ ′1) ,

Ω0
xy =−(1−µ)

[
(1−3α)∓

√
3

4
(7α +4β −3)

]
−µ

[
(1−3β )∓

√
3

4
(3−4α−7β )

]

−3
2
(1−µ)µ1

(
1± 5

√
3

4

)
(2σ2 +4σ3−σ1)+

15
8
(1−µ1)µ

[(
1± 7

√
3

4

)
(3σ2 +σ3)∓2

√
3σ2

]

−3
2
(µ)µ ′1

(
1∓ 5

√
3

4

)
(2σ ′2 +4σ ′3−σ ′1)+

15
8
(µ ′1)µ

[(
1∓ 7

√
3

4

)
(3σ ′2 +σ ′3)±2

√
3σ ′2

]
.

(33)

where the upper sign denotes to L4 while the lower sign denotes to L5. By analyzing the inequality (32), the
stability conditions are

Ω0
xxΩ0

yy > Ω02
xy ,(

4n2−Ω0
xx−Ω0

yy
)2

> 4
(
Ω0

xxΩ0
yy−Ω02

xy
)
.

(34)

while the condition of unstable of these points is

4n2 < Ω
0
xx +Ω

0
yy (35)

4.1.2 The stability conditions of case-II

In this case the values of Ω0
xx, Ω0

yy and Ω0
xy at the triangular points of L4 and L5 are given by

Ω0
xx = n2− 1

4
(1−µ)(1−9α +12β )− 1

4
(µ)(1−9β +12α)

+
3
32

(1−µ)µ1 (41σ1−37σ2−4σ3)+
3
32

(µ)µ ′1 (41σ ′1−37σ ′2−4σ ′3)

Ω0
yy = n2 +

1
4
(1−µ)(5−21α +12β )+

1
4
(µ)(5−21β +12α)

+
3
32

(1−µ)µ1 (3σ1 +41σ2−44σ3)+
3
32

(µ)µ ′1 (3σ ′1 +41σ ′2−44σ ′3) .

Ω0
xy =−(1−µ)

[
(1−3α)∓

√
3

4
(7α +4β −3)

]
−µ

[
(1−3β )∓

√
3

4
(3−4α−7β )

]

−3
2
(1−µ)µ1

(
1± 5

√
3

4

)
(2σ2 +4σ1−σ3)+

15
8
(1−µ1)µ

[(
1± 7

√
3

4

)
(3σ2 +σ1)∓2

√
3σ2

]

−3
2
(µ)µ ′1

(
1∓ 5

√
3

4

)
(2σ ′2 +4σ ′1−σ ′3)+

15
8
(µ ′1)µ

[(
1∓ 7

√
3

4

)
(3σ ′2 +σ ′1)±2

√
3σ ′2

]
.

(36)

again the upper sign denotes to L4 while the lower sign denotes to L5, and the conditions of stability and insta-
bility are also given by the stated conditions in (34) and (35).
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5 Numerical solutions

To obtain numerical solution of the given system for equations of motion of infinitesimal mass, we will use
Runge–Kutta–Gill method with constant interval. This method is correct of order 4. Before applying method,
we are shifting location of both primaries towards positive x – axis. So, new location of bigger primary is at(x,
y) = (−µ , 0) and that of smaller primary is at (1−µ,0).

Since the standard Runge-Kutta–Gill fourth order method for first order differential equation ẏ = f (x,y) is
as follows.

yn+1 = yn +
1
6

[
k1 +(2−

√
2)k2 +(2+

√
2)k3 + k4

]
. (37)

where
k1 = h f (xn,yn),

k2 = h f (xn +
h
2
,yn +

k1

2
),

k3 = h f
[

xn +
h
2
,yn +

k1

2
(−1+

√
2)+(1− 1

2

√
2)k2

]
,

k4 = h f
[

xn +h,yn−
k2

2

√
2+(1+

1
2

√
2)k3

]
.

(38)

Here, h is the step size. The system of equations (1)is second order ordinary differential equations. To convert
equations (1) in to system of first order differential equations, consider, y1 = x, y2 = ẋ, y3 = y and y4 = ẏ. Thus,
equations (1) can be written as,

ẏ1 = y2,

ẏ2 = 2ny4 +n2y1−
(1−µ)(y1 +µ)

r3
1

−µ(y1 +µ−1)
[

1
r3

2

]
−1.5(1−µ)(y1 +µ)

r5
1

((2A2 +4A3−A1)−
5
r2

1
(A3((y1 +µ)2)+A2y2

3))

−1.5µ(y1 +µ−1)
r5

2
((2A2

′
+4A3

′−A1
′
)− 5

r2
2
(A3

′
(y1−1+µ)2 +A2

′
y2

3)),

ẏ3 = y4,

ẏ4 =−2ny2 +n2y3−
(1−µ)y3

r3
1

−µy3

[
1
r3

2

]
−1.5(1−µ)y3

r5
1

((4A2 +2A3−A1)− (
5
r2

1
)(A3((y1 +µ)2)+A2y2

3))

−1.5µy3

r4
2

((4A2
′
+2A3

′−A1
′
)− (

5
r2

2
(A3

′
(y1−1+µ)2 +A2

′
y2

3))).

(39)

We use Runge–Kutta–Gill fourth order method to integrate the system of first order differential equations. The
algorithm for this method is as follows:

1. The system of equations are given by

ẏ1 = f1(y1,y2,y3,y4),

ẏ2 = f2(y1,y2,y3,y4),

ẏ3 = f3(y1,y2,y3,y4),

ẏ4 = f4(y1,y2,y3,y4).
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2. Let h be the step size.

3. Evaluate the following quantity:
k1 = h f1(y1,y2,y3,y4),

l1 = h f2(y1,y2,y3,y4),

m1 = h f3(y1,y2,y3,y4),

n1 = h f4(y1,y2,y3,y4).

4. Now, update y1,y2,y3 and y4 as
y1 = y1 +0.5k1,

y2 = y2 +0.5l1,

y3 = y3 +0.5m1,

y4 = y4 +0.5n1.

5. Evaluate the following quantity:
k2 = h f1(y1,y2,y3,y4),

l2 = h f2(y1,y2,y3,y4),

m2 = h f3(y1,y2,y3,y4),

n2 = h f4(y1,y2,y3,y4).

6. Now, update y1,y2,y3 and y4 as

y1 = y1 +0.5k1(−1+
√

2)+ k2(1−0.5
√

2),

y2 = y2 +0.5l1(−1+
√

2)+ l2(1−0.5
√

2),

y3 = y3 +0.5m1(−1+
√

2)+m2(1−0.5
√

2),

y4 = y4 +0.5n1(−1+
√

2)+n2(1−0.5
√

2).

7. Evaluate the following quantity:
k3 = h f1(y1,y2,y3,y4),

l3 = h f2(y1,y2,y3,y4),

m3 = h f3(y1,y2,y3,y4),

n3 = h f4(y1,y2,y3,y4).

8. Now, update y1,y2,y3 and y4 as

y1 = y1−
[

k2√
2
+(1+

1√
2
)k3

]
,

y2 = y2−
[

l2√
2
+(1+

1√
2
)l3

]
,

y3 = y3−
[

m2√
2
+(1+

1√
2
)m3

]
,

y4 = y4−
[

n2√
2
+(1+

1√
2
)n3

]
.
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Fig. 1 Periodic orbit located at x = 0.69, T = 165 for C = 1.92, and µ = 0.01

9. Evaluate the following quantity:
k4 = h f1(y1,y2,y3,y4),

l4 = h f2(y1,y2,y3,y4),

m4 = h f3(y1,y2,y3,y4),

n4 = h f4(y1,y2,y3,y4).

10. Also, yi,1 = x, yi,2 = ẋ, yi,3 = y and yi,4 = ẏ

11. Then, obtain

yi+1,1 = yi,1 +
1
6

[
k1 +(2−

√
2)k2 +(2+

√
2)k3 + k4

]
. (40)

12. Obtain

yi+1,2 = yi,2 +
1
6

[
l1 +(2−

√
2)l2 +(2+

√
2)l3 + l4

]
. (41)

13. Obtain

yi+1,3 = yi,3 +
1
6

[
m1 +(2−

√
2)m2 +(2+

√
2)m3 +m4

]
. (42)

14. Obtain

yi+1,4 = yi,4 +
1
6

[
n1 +(2−

√
2)n2 +(2+

√
2)n3 +n4

]
. (43)

15. i = i+1.

16. Repeat the procedure till desire accuracy is obtained.

For obtaining periodic orbit, the values of different parameters for both cases are as follows: A1 = 0.01, A′1 =
0.006, A2 = 0.008, A′2 = 0.002, A3 = 0.002 and A′3 = 0.001.

5.1 Numerical solution for Case-I

Here θi = φi =
π

2
,ψi = 0. Figure 1 obtained using µ = 0.01 and C = 1.92. Periodic orbit is located at

x = 0.69 whose period is 165. Figure 2 obtained using µ = 0.1 and C = 1.1. Periodic orbit is located at
x = 0.7124 whose period is 173. both orbits are around both primary bodies.

http://www.up4sciences.org


506 Niraj Pathak and S. M. Elshaboury Applied Mathematics and Nonlinear Sciences 2(2017) 495–508

−30 −20 −10 0 10 20
−60

−40

−20

0

20

40

60

x

y

Fig. 2 Periodic orbit located at x = 0.7124, T = 173 for C = 1.1, and µ = 0.1
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Fig. 3 Periodic orbit located at x = 0.69, T = 165 for C = 1.92, and µ = 0.01

5.2 Numerical solution for Case-II

For obtaining periodic orbit, the values of different parameters are as following. θi = 0, ψi =
π

4
and φi =

π

4
.

Figure 3 obtained using µ = 0.01 and C = 1.92. Periodic orbit is located at x = 0.69 whose period is 165. Figure
4 obtained using µ = 0.1 and C = 1.1. Periodic orbit is located at x = 0.7124 whose period is 173. Both orbits
are around both primary bodies. It can be seen that periodic orbit located at x = 0.7124 passing through bigger
primary body very nearly whereas periodic orbit located at x = 0.69 passing through smaller primary body very
nearly. It is observed that for both different cases, there is no change in location of periodic orbits and its period
by considering value of C and µ same for both cases.

For the case of stationary rotational motion of the primaries which are triaxial rigid bodies
(

θi =
π

2
,φi = ψi = 0

)
.

During study this case, it is worthwhile pointing out the locations of the triangular points L4 and L5 and the con-
ditions of their stability can be obtained by interchanging the parameters σ2 and σ3 by σ ′2 and σ ′3 respectively
in the corresponding results given in the Case-I. In addition for the case of (θi = 0,ψi +φi = 0), the locations
of triangular points L4 and L5 and the conditions of their stability can be also obtained by interchanging the
parameters σ1 and σ2 by σ ′1 and σ ′2 respectively in the corresponding results given in the Case-II.
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Fig. 4 Periodic orbit located at x = 0.7124, T = 173 for C = 1.1, and µ = 0.1

6 Conclusion

In this work equations of motion of infinitesimal mass for CRTBP when both primaries are triaxial rigid
bodies are analyzed. Locations of triangular points and its stability is discussed for different four cases of Euler’s
angles: (1) θi = φi =

π

2
, ψi = 0 ; (2) θi = 0, ψi + φi =

π

2
; (3) θi =

π

2
,φi = ψi = 0; (4) θi = 0, ψi + φi = 0.

Particular the first two cases of Euler’s angles are analyzed in details, the locations of the triangular points
and their stability are studied. While we can do similar kind of analysis for the last two cases by using the
obtained results of the first two cases. In addition the numerical solution is obtained by using a fourth order
Runge–Kutta–Gill integrator with some graphical investigations.
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