
Applied Mathematics and Nonlinear Sciences 2(2) (2017) 465–472

Applied Mathematics and Nonlinear Sciences
http://journals.up4sciences.org

Conservation laws for a Boussinesq equation.

M.L. Gandarias†, M.S. Bruzón.

Department of Mathematics, University of Cádiz.
Spain

Submission Info

Communicated by Juan L.G. Guirao
Received 8th May 2017

Accepted 12th November 2017
Available online 12th November 2017

Abstract
In this work, we study a generalized Boussinesq equation from the point of view of the Lie theory. We determine all the
low-order conservation laws by using the multiplier method. Taking into account the relationship between symmetries
and conservation laws and applying the multiplier method to a reduced ordinary differential equation, we obtain directly a
second order ordinary differential equation and two third order ordinary differential equations.
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1 Introduction

There have been several generalizations of the Boussinesq equation such as the modified Boussinesq equa-
tion, or the dispersive water wave. The following generalization of the Boussinesq equation

utt −auxx− (um+1)xx−b(u(um)xx)xx = 0 (1)

was introduced in [1]by P. Rosenau to extend the Boussinesq equation

utt −uxx− cuxxxx− (u2)xx = 0, (2)

in order to include nonlinear dispersion to the effect that the new equations support compact and semi-compact
solitary structures in higher dimensions, where a and b are arbitrary constants. Eq.(1) describe for a = 0 the
vibrations of a purely an harmonic lattice and support travelling structures with a compact support [1, 2].
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In [3] Bruzón and Gandarias made a full analysis of equations (1), by using classical symmetries, nonclassical
symmetries and nonclassical potential symmetries, and they obtained new solutions. The authors also obtained
some Type-II hidden symmetries of equation (1) with m = 1 and a = λ 2.
The Boussinesq equation (2), where u = u(x, t) is a sufficiently often differentiable function, belongs to the KdV
family of equations and describes motions of long waves in shallow water under gravity propagating in both
directions, which for c = −1 gives the good Boussinesq or well-posed equation, while for c = 1 the bad or
ill-posed classical equation.
Clarkson et al studied the symmetry reductions and exact solutions of some Boussinesq equations [4–8]. In [6]
the authors presented some new similarity reductions of equation (2). The symmetries were determined by using
a direct method and cannot be obtained by using the Lie group method for finding group-invariant solutions.
Bruzón and Gandarias applied the theory of groups transformations and the nonclassical method to derive exact
solutions of some Boussinesq equations [9–13].
Symmetry reductions and exact solutions have several different important applications in the context of dif-
ferential equations. Since solutions of partial differential equations asymptotically tend to solutions of lower-
dimensional equations obtained by symmetry reduction, some of these special solutions will illustrate important
physical phenomena. In particular, exact solutions arising from symmetry methods can often be used effectively
to study properties such as asymptotics and “blow-up”. Furthermore, explicit solutions (such as those found by
symmetry methods) can play an important role in the design and testing of numerical integrators; these solutions
provide an important practical check on the accuracy and reliability of such integrators, [8].
It is known that conservation laws play a significant role in the solution process of an equation or a system of
differential equations. Although not all of the conservation laws of partial differential equations (PDEs) may
have physical interpretation they are essential in studying the integrability of the PDEs. For variational problems,
the Noether theorem can be used for the derivation of conservation laws. For non variational problems there are
different methods for the construction of conservation laws. In [14, 15], Anco and Bluman gave a general
algorithmic method to find all conservations laws for evolution equations like Eq. (1).
In this work, in order to derive conservation laws for equation (1) we will apply the multipliers method. We
use these conservation laws to obtain associated potential systems. We use of the resulting potential systems
to investigate nonlocal symmetries of equation (1). Furthermore, taking into account the relationship between
symmetries and conservation laws and applying the multiplier method to a reduced ordinary differential equa-
tion, we obtain directly a second order ordinary differential equation and two third order ordinary differential
equations.

2 Conservation laws

Anco and Bluman gave a general treatment of a direct conservation law method for partial differential
equations expressed in normal form. An Nth-order PDE is in normal form if it can be expressed in a solved
form for some leading derivative of u such that all the other terms in the equation contain neither the leading
derivative nor its differential consequences. For (1) a conservation law can be expressed in an equivalent form
by a divergence identity

DtT +DxX = (utt −auxx− (um+1)xx−b(u(um)xx)xx)Q

this identity is called the characteristic equation for the conserved density and flux. The nontrivial conservation
laws are characterized by a multiplier

Q(t,x,u,ut ,ux,utx,uxx,uxxx)

with no dependence on utt . The corresponding conserved densities and fluxes depend at most on

t,x,u,ut ,ux,uxx,utx,uxx,uxxx
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The determining equation for all multipliers Q(t,x,u,ut ,ux,uxx,utx,uxx,uxxx) of low-order conservation laws ad-
mitted by the equation consists of

Eu
(
utt −auxx− (um+1)xx−b [u(um)xx]xx

)
Q = 0

which arises from the property that the variational derivative (Euler operator)

Eu = ∂u−Dx∂ux−Dt∂ut +D2
x∂uxx +D2

t ∂utt +DxDt∂uxt − . . .

annihilates an expression identically if and only if it is a space-time divergence.

• This condition can be split with respect to and all the t and x derivatives yielding an equivalent overdeter-
mined system of equations on Q.

• For any solution Q of the multiplier determining equation, corresponding conserved density and fluxes
can be recovered through integration of the characteristic equation.

There is a one-to-one correspondence between equivalence classes of non-trivial low-order conservation laws
and non-zero low-order multipliers. We get the following classification result. The generalized Bousinesq
equation admits the following low-order multipliers: For m arbitrary m 6= 0, b 6= 0

Q1 = 1, Q2 = t
Q3 = x, Q4 = tx

(3)

Associated to the multipliers we obtain the corresponding conserved densities and fluxes are the following:

1. For the multiplier Q1 = 1, we obtain the following conservation law:

T1 = ut ,

X1 =−mumbuxxx−3 uxxbuxm2um

u +2 uxxbuxmum

u −umux−aux− bux
3m3um

u2 +2 bux
3m2um

u2 − bux
3mum

u2 −mumux.

2. For the multiplier Q2 = t, we obtain the following conservation law:

T2 = tut −u,
X2 =− tbux

3m3um

u2 +2 tbux
3m2um

u2 − tbux
3mum

u2 −3 tbuxuxxm2um

u +2 tmumbuxuxx
u − tmumbuxxx− tmumux

−tumux− taux.

3. For the multiplier Q3 = x, we obtain the following conservation law:

T3 = xut ,

X3 =−xbmumuxxx−3 uxxxbuxm2um

u +2 uxxxbuxmum

u +umbmuxx− xmumux +
bux

2m2um

u − bux
2mum

u +2 xbux
3m2um

u2

− xbux
3mum

u2 − xbux
3m3um

u2 − xumux− xaux +uum +au.

4. For the multiplier Q4 = tx, we obtain the following conservation law:

T4 = x(tut −u) ,
X4 =− txbux

3m3um

u2 +2 txbux
3m2um

u2 − txbux
3mum

u2 −3 tuxxxbuxm2um

u +2 tuxxxbuxmum

u − txbmumuxxx +
tbux

2m2um

u

− tbux
2mum

u + tumbmuxx− txmumux− txumux− txaux + tuum +aut.
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3 Classical Potential Symmetries

Associated to conservation laws (T1,X1), (T2,X2), (T3,X3) and (T4,X4) we get the corresponding associated
systems:

vx =−ut , (4)

vt = aux +
(
um+1)

x +b [u(um)xx]x .

vx =−tut +u, (5)

vt =
tbux

3m3um

u2 −2
tbux

3m2um

u2 +
tbux

3mum

u2 +3
tbuxuxxm2um

u
−2

tmumbuxuxx

u
+ tmumbuxxx + tmumux

+ tumux + taux.

vx =−xut , (6)

vt = xbmumuxxx +3
uxxxbuxm2um

u
−2

uxxxbuxmum

u
−umbmuxx + xmumux−

bux
2m2um

u
+

bux
2mum

u

−2
xbux

3m2um

u2 +
xbux

3mum

u2 +
xbux

3m3um

u2 + xumux + xaux +uum +au.

vx =−x(tut −u) , (7)

vt =
txbux

3m3um

u2 −2
txbux

3m2um

u2 +
txbux

3mum

u2 +3
tuxxxbuxm2um

u
−2

tuxxxbuxmum

u
+ txbmumuxxx

− tbux
2m2um

u
+

tbux
2mum

u
− tumbmuxx + txmumux + txumux + txaux + tuum−aut.

The basic idea for obtaining classical potential symmetries is to require that the infinitesimal generator

X = ξ (x, t,u,v)
∂

∂x
+ τ(x, t,u,v)

∂

∂ t
+φ1(x, t,u,v)

∂

∂u
+φ2(x, t,u,v)

∂

∂v
(8)

leaves invariant the set of solutions of (4). This yields to an overdetermined, non linear system of equations for
the infinitesimals ξ (x, t,u,v), τ(x, t,u,v), φ1(x, t,u,v) and φ2(x, t,u,v). We obtain classical potential symmetries
if

(ξv)
2 +(τv)

2 +(φ1,v)
2 6= 0. (9)

The classical method applied to (4), (5), (6) and (7) leads to the classical symmetries.

4 Nonclassical Potential Symmetries

The basic idea for obtaining nonclassical potential symmetries is that the potential system (4) is augmented
with the invariance surface conditions

ξ ux + τut −φ1 = 0, ξ vx + τvt −φ2 = 0, (10)

which is associated with the vector field

X1 = ξ (x, t,u,v)
∂

∂x
+ τ(x, t,u,v)

∂

∂ t
+φ1(x, t,u,v)

∂

∂u
+φ2(x, t,u,v)

∂

∂v
. (11)
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By requiring that both (4) and (10) are invariant under the transformations with infinitesimal generator (11)
one obtains an overdetermined, nonlinear system of equations for the infinitesimals ξ (x, t,u,v), τ(x, t,u,v),
φ1(x, t,u,v) and φ2(x, t,u,v).
In the case τ 6= 0, without loss of generality, we may set τ(x, t,v) = 1. The nonclassical method applied to (4)
yields to the classical symmetries.
In the case τ = 0, without loss of generality, we may set ξ = 1 and we obtain overdetermined non linear system
of equations for the infinitesimals φ1 and φ2 which is solve by making ansatz on the form of φ1(x, t,u,v) and
φ2(x, t,u,v). In this way we have found one solution.
For a = 0 and m =−1 we obtain the infinitesimal generators

ξ = 1, τ = 0, φ1 = k uψ(v), φ2 = ω(x,v),

where k is constant and ω and ψ satisfies −k ψ ω + ∂ω

∂x +ω
∂ω

∂v = 0.
In the case that ω = ω(v) the infinitesimal generators are:

ξ = 1, τ = 0, φ1 = u
dω

d v
, φ2 = ω(v).

We obtain the nonclassical potential symmetry reduction

z = t, u = exp
(

kx
dω

d v

)
h1(t)

and v is given by
ˆ

dv
ω(v)

= kx+h2(t).

5 Double reduction

Conservation laws that are symmetry invariant have some important applications. It is well known that
when a differential equation admits a Noether symmetry, a conservation law is associated with this symmetry,
and furthermore that a double reduction can be achieved as a result of this association. Moreover, any symmetry-
invariant conservation law will reduce to a first integral for the ODE obtained by symmetry reduction of the given
PDE when symmetry-invariant solutions u(x, t) are sought. In [16–18] the relationship between symmetries and
conservation laws, has been used to find a double reduction of partial differential equations with two independent
variables. This provides a direct reduction of order of the ODE.
A powerful application of conservation laws taking into account the relationship between Lie symmetries and
conservation laws it is the so called double reduction method [18]. This method allow us to reduce directly Eq.
(1) to a third order ordinary differential equation. In [18] Sjöberg introduced a method in order to get solutions
of a qth partial differential equation from the solutions of an ordinary differential equation of order q−1 called
double reduction method. This method can be applied when a symmetry v is associated to a conserved vector
T [16,18]. In [19] a further connection between symmetries and conservation laws by focusing on conservation
laws that are invariant (or, more generally, homogeneous) under the action of a given set of symmetries has been
explored. Some applications of symmetry-invariant conservation laws will also be discussed.
The notion of symmetry invariance of a conservation law has be defined and studied. This main result yields
a direct condition for invariance (and homogeneity) formulated in terms of multipliers. Some applications
to finding symmetry-invariant conservation laws and finding symmetry-invariant solutions of PDEs has been
outlined. In [19], simple conditions are given for characterizing when a conservation law and its associated
conserved quantity are invariant (and, more generally, homogeneous) under the action of a symmetry.
In the case m = 1 the reduced ODE by traveling waves u = h(x− ct) is

−bhh′′′′−2bh′h′′′−bh′′2 + c2h′′−ah′′−2hh′′−2h′2 = 0
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Searching for multipliers Q(z,h,h′) we find two multipliers Q1 = z Q2 = 1 and the corresponding conservation
laws

Dz(h2 +
((
−bh′′′−2h′

)
z+bh′′− c2 +a

)
h− zh′

(
bh′′− c2 +a

)
= 0,

Dz(
(
−bh′′+ c2−a−2h

)
h′−bhh′′′) = 0.

Consequently
(h2 +

((
−bh′′′−2h′

)
z+bh′′− c2 +a

)
h− zh′

(
bh′′− c2 +a

)
− k1 = 0

and
(
(
−bh′′+ c2−a−2h

)
h′−bhh′′′)− k2 = 0.

Solving both equations in h′′′ we get directly the reduced second order ODE

h′′ =
c2

b
− a

b
− k2 z

bh
− h

b
+

k1

bh
.

Setting k1 = k2 = 0 we get the exact solution

h(z) = e
z√
b c2 + e−

z√
b c1− c2−a.

6 Conclusions

For the generalized Boussinesq equation (1) we have derived all the low-order conservation laws by using
the multiplier method. Moreover we have considered potential and nonclassical potential symmetries for some
of the associated systems. Taking into account the relationship between symmetries and conservation laws and
applying the multiplier method to a reduced ordinary differential equation, we have obtained a second order
ordinary differential equation and two third order ordinary differential equations.
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