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Abstract
We prove the existence of weak solutions of variational inequalities for general quasilinear parabolic operators of order
m = 2 with strongly nonlinear perturbation term. The result is based on a priori bound for the time derivatives of the
solutions.
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1 Introduction

Consider the parabolic initial-boundary value problem
ut +A(u)+G(u) = f in QT ;
u(0) = 0 in Ω;
Dαu = 0 on ∂Ω×]0,T [ for |α| ≤ m−1

on a cylinder QT = Ω×]0,T [ over a bounded smooth domain Ω⊂ RN , where

A(u) = ∑
|α|≤m

(−1)|α|DαAα(x, t;Du(x, t)), G(u) = g(x, t;u) (1)

and Du = (Dαu)|α|≤m. If the coefficients Aα satisfy at most polynomial growth conditions in u and its space
derivatives while g obeys no growth in u, but merely a sign condition, Landes and Mustonen [6] proved that
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the usual truncation can be utilized to obtain weak solutions of (1) when m = 1. In [1], Brézis and Browder
considered (1) but under stronger hypotheses on g. Roughly speaking, they required g to be controlled from
above and below by the derivative of some convex function. In [5], Landes proved that this assumption is not
necessary provided a certain a priori bound for the time derivative of solutions were needed. In [2], Browder and
Breézis established an existence and uniqueness result for a general class of variational inequalities for (1) when
g obeys no growth condition while A is a regular elliptic operator. Their proof is based on a type of compactness
result. In this note, we extend the result of [5] to the corresponding class of variational inequalities under weaker
assumptions.

2 Assumptions and the main result

We start by assuming the following hypotheses.

A1 Aα(x, t,ξ ) : Ω×]0,T [×Rs→ R is continuous in t and ξ for almost all x and measurable in x for all t and
ξ . Moreover, there exist a constant c1 and a function λ1 ∈ Lp′(QT ) with p ∈]1,∞[, p′ = p

p−1 such that

|Aα(x, t,ξ )| ≤ c1|ξ |p−1 +λ1(x, t) for all (x, t) ∈ QT and ξ ∈ Rs .

A2 ∑|α|≤m [Aα(x, t,ξ )−Aα(x, t,ξ ∗)] (ξα −ξ ∗α)≥ 0 for all (x, t) ∈ QT and ξ 6= ξ ∗ in Rs.

A3 There exists a constant c2 > 0 and a function λ2 ∈ L2(QT ) such that ∑|α|≤m Aα(x, t,ξ )ξα ≥ c1|ξ |p−λ2(x, t)
for all (x, t) ∈ QT and ξ ∈ Rs.

A4 There is a function F(x, t,ξ ) continuous in ξ , measurable in x and differentiable in t such that ∂F
∂ξα

= Aα

for all (x, t) ∈ QT and all α with |α| ≤ m.

G (i) g(x, t,r)Ω×]0,T [×R→ R is continuous in t and r for almost all x and measurable in x for all t and
ξ . Moreover,

|g(x, t,r)| ≤ λ4(x, t)ψ(r)

for some continuous function ψ : R→ R and λ4 ∈ L1(QT ).

(ii) g(x, t,r)r ≥−λ5(x, t) for some function λ5 ∈ L1(QT ).

D There exists a function f̃ ∈ L2(QT ) such that ( f ,v) =
´

QT
f̃ (x, t)v(x, t)dxdt.

The function spaces we shall deal with will be obtained by the completion of the space of smooth functions with
respect to the appropriate norm. We denote by

X = Lp(0,T ;W m,p
0 (Ω)) = C 1(0,T,C ∞

0 (Ω))
‖ ‖p;m,p

, Lp(QT ) = C ∞
0 (Ω)

‖ ‖p;p
,

where

‖u‖p
p;m,p =

ˆ T

0
‖u‖p

m,pdt =
ˆ T

0
∑
|α|≤m

‖Dαu‖p
pdt

‖u‖p;p =

ˆ T

0
‖u‖P

P dt and ‖u‖P
P =

ˆ
Ω

|u|pdx.

Put W = X ∩C(0,T ;L2(Ω)). Finally, we choose a sequence (Φi)
∞
i=1 ⊂ C ∞

0 (Ω) such that ∪∞
n=1Vn with Vn =

span(Φ1,Φ2, . . . ,Φn) is dense in W j,p(Ω) : jp > mp+N.
Denote by Yn =C(0,T ;Vn). Since the closure of ∪∞

n=1Yn with respect to the Cm−topology contains C ∞
0 (QT ),

then for f ∈ L2(QT ) there exists fk ∈ ∪∞
n=1Yn such that fk→ f in L2(QT ) [4]. For simplicity, we fix the constant

c throughout this note. Now we are in a position to give our result.

http://www.up4sciences.org


A note on strongly nonlinear parabolic variational inequalities 445

Theorem. Let K be a closed convex subset of C(0,T ;L2(Ω)) with 0 ∈ K. Let the hypotheses A1−A4,G, and D
be satisfied. Then for a given f ∈W ∗ there exists a weak solution u ∈W ∩K with u(0) = 0 such that

〈u̇,v−u〉+ 〈A(u),v−u〉+
ˆ

QT

g(x, t,u)(v−u)dxdt ≥ 〈 f ,v−u〉 for all v ∈C1(0,T ;C ∞
0 (Ω))∩K. (2)

Proof. We shall give the proof in several steps. In many stages we may adopt the ideas of [5] and [6]. Let gk be
the truncation of g at level k ∈ N:

gk(x, t;u) =

{
k g(x,t;u)
|g(x,t;u)| if |g(x, t;u)|> k

g(x, t;u) otherwise.

Consider the truncated variational inequality

〈u̇,v−u〉+ 〈A(u),v−u〉+
ˆ

QT

gk(x, t,u)(v−u)dxdt ≥ 〈 f̃ ,v−u〉 for all v ∈W ∩K. (3)

Firstly, we show the existence of a Galerkin solution uε ∈ Yn∩K of (3) with

‖u̇n‖2;2 +‖un‖2;2 +‖un‖p;m,p ≤ c, (4)

where c is a constant not depending on ε,k, and n.
For this aim, let Aα,ε ,g(α,ε), and ˜̃fε be the Friedrich’s mollification in the variables (x, t) ∈RN+1 of Aα ,gk,

and f̃ , respectively. There exists a Galerkin solution uε ∈ Yn∩K for the mollified variational inequality
ˆ

τ

0
(u̇ε ,v−uε)dt +

ˆ
τ

0
Aε(uε ,v−uε)dt +

ˆ
QT

gk,ε(x, t,uε)(v−uε)dxdt ≥
ˆ

QT

f̃ε(v−uε)dxdt (5)

for all v ∈ Yn∩K and all τ ∈]0,T [ with
‖uε(t)‖2 ≤ c

(see [3, 4]). Put v = 0 in (5). Then we get from A3 and G the estimate

‖uε‖p;p ≤ c.

On the other hand, given h > 0,n ∈ N, and any wε ∈ Yn∩K, put v = uε −hwε in (5). Then we get
ˆ T

0
(u̇ε ,wε)dt +

ˆ T

0
(Aε(uε),wε)dt +

ˆ
QT

gk,ε(x, t,ueps)wε dxdt ≤
ˆ

QT

fεwε dxdt.

In particular,
ˆ T

0

(
u̇ε(t),

uε(t +h)−uε(t)
h

)
dt +
ˆ T

0

(
Aε(uε),

uε(t +h)−uε(t)
h

)
dt

+

ˆ
QT

gk,ε(x, t,uε(t))
(

uε(t +h)−uε(t)
h

)
dxdt

≤
ˆ T

0
( f̃ε(t),

uε(t +h)−uε(t)
h

)dt.

Allowing h→ 0, keeping ε fixed, we have
ˆ T

0
(u̇ε(t), u̇ε(t))dt +

ˆ T

0
(Aε(uε), u̇ε(t))dt +

ˆ
QT

gk,ε(x, t,uε)u̇ε(t)dxdt

≤
ˆ T

0
( f̃ε(t), u̇ε(t))dt.
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By A4 and G, we obtain

ˆ T

0
‖u̇ε(t)‖2

2 dt +
ˆ T

0

∂

∂ t
[Fε(x, t;Duε(t))+Γk,ε(x, t;uε(t))]dxdt ≤ c

ˆ T

0
‖u̇ε(t)‖2

2 dt.

We may write this inequality in the form

ˆ T

0
‖u̇ε(t)‖2

2 dt +
3
2

ˆ T

0

∂

∂ t

ˆ
Ω

[Fε(x, t;Duε(t))+Γk,ε(x, t;uε(t))]dxdt

≤ 1
2

ˆ T

0

∂

∂ t

ˆ
Ω

[Fε(x, t;Duε(t))+Γk,ε(x, t;uε(t))]dxdt + c
ˆ T

0
‖u̇ε(t)‖2

2 dt.

From the mean value theorem for definite integrals, we get

ˆ T

0
‖u̇ε(t)‖2

2 dt + cT
ˆ

Ω

[
∂

∂ t
Fε(x, t;Duε(t))+

∂

∂ t
Γk,ε(x, t;uε(t))

]
dx

≤ c+ c
ˆ T

0

ˆ
Ω

[
∂

∂ t
Fε(x, t;Duε(t))+

∂

∂ t
Γk,ε(x, t;uε(t))

]
dxdt, 0 < t < T,

where

Γk,ε(x, t;ρ) =

ˆ
ρ

0
gk,ε(x, t;r)dr.

We may invoke Gronwall’s lemma to get the estimate
ˆ

Ω

[
∂

∂ t
Fε(x, t;Duε(t))+

∂

∂ t
Γk,ε(x, t;uε(t))

]
dx≤ c.

Therefore,
‖u̇ε‖L2(Q) ≤ c.

and consequently,
‖u̇ε‖2;2 +‖uε‖2;2 +‖uε‖p;m,p ≤ c, (6)

where the constant c is independent of ε,k, and n.
From (6) and in view of Arzelà-Ascoli’s theorem, we get

uε → un strongly in Yn and u̇ε → u̇n (weakly) in L2(QT ).

Therefore, (5) yields

ˆ T

0
(u̇n,v−un)dt +

ˆ T

0
(A(un),v−un)dt +

ˆ
QT

gk(x, t,un)(v−un)dxdt ≥
ˆ

QT

f̃ (v−un)dxdt, (7)

where v ∈ Yn∩K and un(0) = 0. By the lower-semicontinuity property of the norms in (6), we get (4).
From (4) and the fixes level of truncation, we get

u̇n ⇀ u̇k (weakly) in L2(QT )

un→ uk strongly in Lp(0,T ;W m−1,p
0 (Ω)) and weakly in C(0,T,L2(Ω))

Aα(x, t;Dun)⇀ hα(x, t) (weakly) in Lp′(QT ), |α| ≤ m
gk(x, t;un)→ gk(x, t;uk) strongly in Lp′(QT ).

(8)
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Secondly, we show that uk is a weak solution of (3). For this purpose and in view of (6), it suffices to prove that

limsup
n

ˆ T

0
(A(un),un−uk)dt ≤ 0. (9)

This inequality holds true at least for one subsequence (vk)⊂ ∪∞
n=1Yn. From (7), for any fixed k, we have

ˆ T

0
(u̇n,vk−un)dt +

ˆ T

0
(A(un),vk−un)dt +

ˆ
QT

gk(x, t,un)(vk−un)dxdt ≥
ˆ

QT

f̃ (vk−un)dxdt. (10)

Let vk be the truncation at level k and the mollification with respect to the time and space variables, respectively,
of the Galerkin’s solution un, i.e., vk = ((uk

n)µ)σ . Letting n→ ∞ in (10), taking (8) into account, and the strong
convergence of ((uk

n)µ)σ into uk in X with respect to σ ,µ , [6], we obtain (9) and hence, uk ∈W ∩K is a weak
solution of (3), i.e.,

ˆ T

0
(u̇k,v−uk)dt +

ˆ T

0
(A(uk),v−uk)dt +

ˆ
QT

gk(x, t,uk)(v−uk)dxdt ≥
ˆ

QT

f̃ (v−uk)dxdt (11)

for all v ∈W ∩K. Finally, to show (2), it remains to prove the following assertions:

u̇k ⇀ u̇ (weakly) in L2(QT ), (12)

uk→ u (strongly) in Lp(0,T ;W m−1,p
0 (Ω)), (13)

and (weakly) in C(0,T ;L2(Ω)), (14)

gk(x, t;uk)→ g(x, t;u) (strongly) in L1(QT ), (15)

and
Dαuk(x, t)→ Dαu(x, t)a.e. in QT for all |α| ≤ m. (16)

Assertions (12-15) follow similarly as above and as in [5]. To show 16, it suffices to show

limsup
k

ˆ T

0
(A(un),uk−u)dt ≤ 0. (17)

Since for any v ∈ X we may find a sequence (v`) converging weakly to u, we get from (11)
ˆ T

0
(u̇k,uk)dt +

ˆ T

0
(A(uk),uk− v`)dt +

ˆ
QT

gk(x, t;uk)uk dxdt

≤
ˆ

QT

gk(x, t;uk)v` dxdt +
ˆ T

0
(u̇k,v`)dt−

ˆ T

0
( f ,v`−uk)dt.

Letting k→ ∞, keeping ` fixed, taking into account Fatou’s lemma, and then allowing `→ ∞, we obtain (17)
and consequently, (2) follows.
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