

Applied Mathematics and Nonlinear Sciences

A note on strongly nonlinear parabolic variational inequalities

A.T. El-Dessouky!

Department of Mathematics, Faculty of Science, Helwan University, Cairo, EGYPT

Submission Info

Communicated by Elbaz I. Abouelmagd
Received 6th April 2017
Accepted 23th October 2017
Available online 23th October 2017

Abstract

We prove the existence of weak solutions of variational inequalities for general quasilinear parabolic operators of order $m=2$ with strongly nonlinear perturbation term. The result is based on a priori bound for the time derivatives of the solutions.

Keywords: Strongly nonlinear parabolic operators; variational inequalities
AMS 2010 codes: 35K86, 49J40

1 Introduction

Consider the parabolic initial-boundary value problem

$$
\begin{cases}u_{t}+A(u)+G(u)=f & \text { in } Q_{T} ; \\ u(0)=0 & \text { in } \Omega ; \\ D^{\alpha} u=0 & \text { on } \partial \Omega \times] 0, T[\text { for }|\alpha| \leq m-1\end{cases}
$$

on a cylinder $\left.Q_{T}=\Omega \times\right] 0, T\left[\right.$ over a bounded smooth domain $\Omega \subset \mathbb{R}^{N}$, where

$$
\begin{equation*}
A(u)=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} D^{\alpha} A_{\alpha}(x, t ; D u(x, t)), \quad G(u)=g(x, t ; u) \tag{1}
\end{equation*}
$$

and $D u=\left(D^{\alpha} u\right)_{|\alpha| \leq m}$. If the coefficients A_{α} satisfy at most polynomial growth conditions in u and its space derivatives while g obeys no growth in u, but merely a sign condition, Landes and Mustonen [6] proved that

[^0]the usual truncation can be utilized to obtain weak solutions of (1) when $m=1$. In [1], Brézis and Browder considered (1) but under stronger hypotheses on g. Roughly speaking, they required g to be controlled from above and below by the derivative of some convex function. In [5], Landes proved that this assumption is not necessary provided a certain a priori bound for the time derivative of solutions were needed. In [2], Browder and Breézis established an existence and uniqueness result for a general class of variational inequalities for (1) when g obeys no growth condition while A is a regular elliptic operator. Their proof is based on a type of compactness result. In this note, we extend the result of [5] to the corresponding class of variational inequalities under weaker assumptions.

2 Assumptions and the main result

We start by assuming the following hypotheses.
$\left.A_{1} A_{\alpha}(x, t, \xi): \Omega \times\right] 0, T\left[\times \mathbb{R}^{s} \rightarrow \mathbb{R}\right.$ is continuous in t and ξ for almost all x and measurable in x for all t and ξ. Moreover, there exist a constant c_{1} and a function $\lambda_{1} \in L^{p^{\prime}}\left(Q_{T}\right)$ with $\left.p \in\right] 1, \infty\left[, p^{\prime}=\frac{p}{p-1}\right.$ such that

$$
\left|A_{\alpha}(x, t, \xi)\right| \leq c_{1}|\xi|^{p-1}+\lambda_{1}(x, t) \text { for all }(x, t) \in Q_{T} \text { and } \xi \in \mathbb{R}^{s}
$$

$A_{2} \sum_{|\alpha| \leq m}\left[A_{\alpha}(x, t, \xi)-A_{\alpha}\left(x, t, \xi^{*}\right)\right]\left(\xi_{\alpha}-\xi_{\alpha}^{*}\right) \geq 0$ for all $(x, t) \in Q_{T}$ and $\xi \neq \xi^{*}$ in \mathbb{R}^{s}.
A_{3} There exists a constant $c_{2}>0$ and a function $\lambda_{2} \in L^{2}\left(Q_{T}\right)$ such that $\sum_{|\alpha| \leq m} A_{\alpha}(x, t, \xi) \xi_{\alpha} \geq c_{1}|\xi|^{p}-\lambda_{2}(x, t)$ for all $(x, t) \in Q_{T}$ and $\xi \in \mathbb{R}^{s}$.
A_{4} There is a function $F(x, t, \xi)$ continuous in ξ, measurable in x and differentiable in t such that $\frac{\partial F}{\partial \xi_{\alpha}}=A_{\alpha}$ for all $(x, t) \in Q_{T}$ and all α with $|\alpha| \leq m$.
$G \quad$ (i) $g(x, t, r) \Omega \times] 0, T[\times \mathbb{R} \rightarrow \mathbb{R}$ is continuous in t and r for almost all x and measurable in x for all t and ξ. Moreover,

$$
|g(x, t, r)| \leq \lambda_{4}(x, t) \psi(r)
$$

for some continuous function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ and $\lambda_{4} \in L^{1}\left(Q_{T}\right)$.
(ii) $g(x, t, r) r \geq-\lambda_{5}(x, t)$ for some function $\lambda_{5} \in L^{1}\left(Q_{T}\right)$.
D There exists a function $\tilde{f} \in L^{2}\left(Q_{T}\right)$ such that $(f, v)=\int_{Q_{T}} \tilde{f}(x, t) v(x, t) d x d t$.
The function spaces we shall deal with will be obtained by the completion of the space of smooth functions with respect to the appropriate norm. We denote by

$$
X=L^{p}\left(0, T ; W_{0}^{m, p}(\Omega)\right)=\mathscr{C}^{1} \overline{\left(0, T, \mathscr{C}_{0}^{\infty}(\Omega)\right)}\left\|^{\| ; m, p}, \quad L^{p}\left(Q_{T}\right)=\overline{\mathscr{C}}_{0}^{\infty}(\Omega)\right\|_{p ; p}
$$

where

$$
\begin{aligned}
\|u\|_{p ; m, p}^{p} & =\int_{0}^{T}\|u\|_{m, p}^{p} d t=\int_{0}^{T} \sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{p}^{p} d t \\
\|u\|_{p ; p} & =\int_{0}^{T}\|u\|_{P}^{P} d t \text { and }\|u\|_{P}^{P}=\int_{\Omega}|u|^{p} d x
\end{aligned}
$$

Put $W=X \cap C\left(0, T ; L^{2}(\Omega)\right)$. Finally, we choose a sequence $\left(\Phi_{i}\right)_{i=1}^{\infty} \subset \mathscr{C}_{0}^{\infty}(\Omega)$ such that $\cup_{n=1}^{\infty} V_{n}$ with $V_{n}=$ $\operatorname{span}\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{\mathrm{n}}\right)$ is dense in $W^{j, p}(\Omega): j p>m p+N$.

Denote by $Y_{n}=C\left(0, T ; V_{n}\right)$. Since the closure of $\cup_{n=1}^{\infty} Y_{n}$ with respect to the C^{m}-topology contains $\mathscr{C}_{0}^{\infty}\left(Q_{T}\right)$, then for $f \in L^{2}\left(Q_{T}\right)$ there exists $f_{k} \in \cup_{n=1}^{\infty} Y_{n}$ such that $f_{k} \rightarrow f$ in $L^{2}\left(Q_{T}\right)$ [4]. For simplicity, we fix the constant c throughout this note. Now we are in a position to give our result.

Theorem. Let K be a closed convex subset of $C\left(0, T ; L^{2}(\Omega)\right)$ with $0 \in K$. Let the hypotheses $A_{1}-A_{4}, G$, and D be satisfied. Then for a given $f \in W^{*}$ there exists a weak solution $u \in W \cap K$ with $u(0)=0$ such that

$$
\begin{equation*}
\langle\dot{u}, v-u\rangle+\langle A(u), v-u\rangle+\int_{Q_{T}} g(x, t, u)(v-u) d x d t \geq\langle f, v-u\rangle \text { for all } v \in C^{1}\left(0, T ; \mathscr{C}_{0}^{\infty}(\Omega)\right) \cap K . \tag{2}
\end{equation*}
$$

Proof. We shall give the proof in several steps. In many stages we may adopt the ideas of [5] and [6]. Let g_{k} be the truncation of g at level $k \in \mathbb{N}$:

$$
g_{k}(x, t ; u)= \begin{cases}k \frac{g(x, t ; u)}{|g(x, t ; u)|} & \text { if }|g(x, t ; u)|>k \\ g(x, t ; u) & \text { otherwise }\end{cases}
$$

Consider the truncated variational inequality

$$
\begin{equation*}
\langle\dot{u}, v-u\rangle+\langle A(u), v-u\rangle+\int_{Q_{T}} g_{k}(x, t, u)(v-u) d x d t \geq\langle\tilde{f}, v-u\rangle \text { for all } v \in W \cap K \tag{3}
\end{equation*}
$$

Firstly, we show the existence of a Galerkin solution $u_{\varepsilon} \in Y_{n} \cap K$ of (3) with

$$
\begin{equation*}
\left\|\dot{u}_{n}\right\|_{2 ; 2}+\left\|u_{n}\right\|_{2 ; 2}+\left\|u_{n}\right\|_{p ; m, p} \leq c \tag{4}
\end{equation*}
$$

where c is a constant not depending on ε, k, and n.
For this aim, let $A_{\alpha, \varepsilon}, g(\alpha, \varepsilon)$, and $\tilde{\tilde{f}}_{\varepsilon}$ be the Friedrich's mollification in the variables $(x, t) \in \mathbb{R}^{N+1}$ of A_{α}, g_{k}, and \tilde{f}, respectively. There exists a Galerkin solution $u_{\varepsilon} \in Y_{n} \cap K$ for the mollified variational inequality

$$
\begin{equation*}
\int_{0}^{\tau}\left(\dot{u}_{\varepsilon}, v-u_{\varepsilon}\right) d t+\int_{0}^{\tau} A_{\mathcal{\varepsilon}}\left(u_{\varepsilon}, v-u_{\varepsilon}\right) d t+\int_{Q_{T}} g_{k, \varepsilon}\left(x, t, u_{\varepsilon}\right)\left(v-u_{\varepsilon}\right) d x d t \geq \int_{Q_{T}} \tilde{f}_{\varepsilon}\left(v-u_{\varepsilon}\right) d x d t \tag{5}
\end{equation*}
$$

for all $v \in Y_{n} \cap K$ and all $\left.\tau \in\right] 0, T[$ with

$$
\left\|u_{\mathcal{E}}(t)\right\|_{2} \leq c
$$

(see [3,4]). Put $v=0$ in (5). Then we get from A_{3} and G the estimate

$$
\left\|u_{\varepsilon}\right\|_{p ; p} \leq c
$$

On the other hand, given $h>0, n \in \mathbb{N}$, and any $w_{\varepsilon} \in Y_{n} \cap K$, put $v=u_{\varepsilon}-h w_{\varepsilon}$ in (5). Then we get

$$
\int_{0}^{T}\left(\dot{u}_{\varepsilon}, w_{\varepsilon}\right) d t+\int_{0}^{T}\left(A_{\varepsilon}\left(u_{\varepsilon}\right), w_{\varepsilon}\right) d t+\int_{Q_{T}} g_{k, \varepsilon}\left(x, t, u_{e p s}\right) w_{\varepsilon} d x d t \leq \int_{Q_{T}} f_{\varepsilon} w_{\varepsilon} d x d t
$$

In particular,

$$
\begin{aligned}
\int_{0}^{T}\left(\dot{u}_{\varepsilon}(t), \frac{u_{\varepsilon}(t+h)-u_{\varepsilon}(t)}{h}\right) d & +\int_{0}^{T}\left(A_{\mathcal{\varepsilon}}\left(u_{\mathcal{E}}\right), \frac{u_{\varepsilon}(t+h)-u_{\varepsilon}(t)}{h}\right) d t \\
& +\int_{Q_{T}} g_{k, \varepsilon}\left(x, t, u_{\mathcal{\varepsilon}}(t)\right)\left(\frac{u_{\varepsilon}(t+h)-u_{\varepsilon}(t)}{h}\right) d x d t \\
& \leq \int_{0}^{T}\left(\tilde{f}_{\varepsilon}(t), \frac{u_{\varepsilon}(t+h)-u_{\varepsilon}(t)}{h}\right) d t
\end{aligned}
$$

Allowing $h \rightarrow 0$, keeping ε fixed, we have

$$
\begin{aligned}
\int_{0}^{T}\left(\dot{u}_{\mathcal{E}}(t), \dot{u}_{\mathcal{E}}(t)\right) d t & +\int_{0}^{T}\left(A_{\mathcal{E}}\left(u_{\mathcal{E}}\right), \dot{u}_{\mathcal{E}}(t)\right) d t+\int_{Q_{T}} g_{k, \varepsilon}\left(x, t, u_{\mathcal{E}}\right) \dot{u}_{\mathcal{E}}(t) d x d t \\
& \leq \int_{0}^{T}\left(\tilde{f}_{\mathcal{E}}(t), \dot{u}_{\mathcal{E}}(t)\right) d t
\end{aligned}
$$

By A_{4} and G, we obtain

$$
\int_{0}^{T}\left\|\dot{u}_{\varepsilon}(t)\right\|_{2}^{2} d t+\int_{0}^{T} \frac{\partial}{\partial t}\left[F_{\varepsilon}\left(x, t ; D u_{\varepsilon}(t)\right)+\Gamma_{k, \varepsilon}\left(x, t ; u_{\varepsilon}(t)\right)\right] d x d t \leq c \int_{0}^{T}\left\|\dot{u}_{\varepsilon}(t)\right\|_{2}^{2} d t
$$

We may write this inequality in the form

$$
\begin{aligned}
\int_{0}^{T}\left\|\dot{u}_{\varepsilon}(t)\right\|_{2}^{2} d t & +\frac{3}{2} \int_{0}^{T} \frac{\partial}{\partial t} \int_{\Omega}\left[F_{\varepsilon}\left(x, t ; D u_{\varepsilon}(t)\right)+\Gamma_{k, \varepsilon}\left(x, t ; u_{\varepsilon}(t)\right)\right] d x d t \\
& \leq \frac{1}{2} \int_{0}^{T} \frac{\partial}{\partial t} \int_{\Omega}\left[F_{\varepsilon}\left(x, t ; D u_{\varepsilon}(t)\right)+\Gamma_{k, \varepsilon}\left(x, t ; u_{\varepsilon}(t)\right)\right] d x d t+c \int_{0}^{T}\left\|\dot{u}_{\varepsilon}(t)\right\|_{2}^{2} d t
\end{aligned}
$$

From the mean value theorem for definite integrals, we get

$$
\begin{aligned}
\int_{0}^{T}\left\|\dot{u}_{\varepsilon}(t)\right\|_{2}^{2} d t & +c T \int_{\Omega}\left[\frac{\partial}{\partial t} F_{\varepsilon}\left(x, t ; D u_{\varepsilon}(t)\right)+\frac{\partial}{\partial t} \Gamma_{k, \varepsilon}\left(x, t ; u_{\varepsilon}(t)\right)\right] d x \\
& \leq c+c \int_{0}^{T} \int_{\Omega}\left[\frac{\partial}{\partial t} F_{\varepsilon}\left(x, t ; D u_{\varepsilon}(t)\right)+\frac{\partial}{\partial t} \Gamma_{k, \varepsilon}\left(x, t ; u_{\mathcal{\varepsilon}}(t)\right)\right] d x d t, \quad 0<t<T
\end{aligned}
$$

where

$$
\Gamma_{k, \varepsilon}(x, t ; \rho)=\int_{0}^{\rho} g_{k, \varepsilon}(x, t ; r) d r .
$$

We may invoke Gronwall's lemma to get the estimate

$$
\int_{\Omega}\left[\frac{\partial}{\partial t} F_{\varepsilon}\left(x, t ; D u_{\varepsilon}(t)\right)+\frac{\partial}{\partial t} \Gamma_{k, \varepsilon}\left(x, t ; u_{\varepsilon}(t)\right)\right] d x \leq c .
$$

Therefore,

$$
\left\|\dot{u}_{\varepsilon}\right\|_{L^{2}(Q)} \leq c
$$

and consequently,

$$
\begin{equation*}
\left\|\dot{u}_{\varepsilon}\right\|_{2 ; 2}+\left\|u_{\varepsilon}\right\|_{2 ; 2}+\left\|u_{\varepsilon}\right\|_{p ; m, p} \leq c, \tag{6}
\end{equation*}
$$

where the constant c is independent of ε, k, and n.
From (6) and in view of Arzelà-Ascoli's theorem, we get

$$
u_{\varepsilon} \rightarrow u_{n} \text { strongly in } Y_{n} \text { and } \dot{u}_{\varepsilon} \rightarrow \dot{u}_{n} \text { (weakly) in } L^{2}\left(Q_{T}\right) .
$$

Therefore, (5) yields

$$
\begin{equation*}
\int_{0}^{T}\left(\dot{u}_{n}, v-u_{n}\right) d t+\int_{0}^{T}\left(A\left(u_{n}\right), v-u_{n}\right) d t+\int_{Q_{T}} g_{k}\left(x, t, u_{n}\right)\left(v-u_{n}\right) d x d t \geq \int_{Q_{T}} \tilde{f}\left(v-u_{n}\right) d x d t, \tag{7}
\end{equation*}
$$

where $v \in Y_{n} \cap K$ and $u_{n}(0)=0$. By the lower-semicontinuity property of the norms in (6), we get (4).
From (4) and the fixes level of truncation, we get

$$
\left\{\begin{array}{l}
\dot{u}_{n} \rightharpoonup \dot{u}_{k}(\text { weakly }) \text { in } L^{2}\left(Q_{T}\right) \tag{8}\\
u_{n} \rightarrow u_{k} \text { strongly in } L^{p}\left(0, T ; W_{0}^{m-1, p}(\Omega)\right) \text { and weakly in } C\left(0, T, L^{2}(\Omega)\right) \\
A_{\alpha}\left(x, t ; D u_{n}\right) \rightharpoonup h_{\alpha}(x, t)\left(\text { weakly in } L^{p^{\prime}}\left(Q_{T}\right),|\alpha| \leq m\right. \\
g_{k}\left(x, t ; u_{n}\right) \rightarrow g_{k}\left(x, t ; u_{k}\right) \text { strongly in } L^{p^{\prime}}\left(Q_{T}\right) .
\end{array}\right.
$$

Secondly, we show that u_{k} is a weak solution of (3). For this purpose and in view of (6), it suffices to prove that

$$
\begin{equation*}
\limsup _{n} \int_{0}^{T}\left(A\left(u_{n}\right), u_{n}-u_{k}\right) d t \leq 0 \tag{9}
\end{equation*}
$$

This inequality holds true at least for one subsequence $\left(v_{k}\right) \subset \cup_{n=1}^{\infty} Y_{n}$. From (7), for any fixed k, we have

$$
\begin{equation*}
\int_{0}^{T}\left(\dot{u}_{n}, v_{k}-u_{n}\right) d t+\int_{0}^{T}\left(A\left(u_{n}\right), v_{k}-u_{n}\right) d t+\int_{Q_{T}} g_{k}\left(x, t, u_{n}\right)\left(v_{k}-u_{n}\right) d x d t \geq \int_{Q_{T}} \tilde{f}\left(v_{k}-u_{n}\right) d x d t \tag{10}
\end{equation*}
$$

Let v_{k} be the truncation at level k and the mollification with respect to the time and space variables, respectively, of the Galerkin's solution u_{n}, i.e., $v_{k}=\left(\left(u_{n}^{k}\right)_{\mu}\right)_{\sigma}$. Letting $n \rightarrow \infty$ in (10), taking (8) into account, and the strong convergence of $\left(\left(u_{n}^{k}\right)_{\mu}\right)_{\sigma}$ into u_{k} in X with respect to σ, μ, [6], we obtain (9) and hence, $u_{k} \in W \cap K$ is a weak solution of (3), i.e.,

$$
\begin{equation*}
\int_{0}^{T}\left(\dot{u}_{k}, v-u_{k}\right) d t+\int_{0}^{T}\left(A\left(u_{k}\right), v-u_{k}\right) d t+\int_{Q_{T}} g_{k}\left(x, t, u_{k}\right)\left(v-u_{k}\right) d x d t \geq \int_{Q_{T}} \tilde{f}\left(v-u_{k}\right) d x d t \tag{11}
\end{equation*}
$$

for all $v \in W \cap K$. Finally, to show (2), it remains to prove the following assertions:

$$
\begin{gather*}
\dot{u}_{k} \rightharpoonup \dot{u} \text { (weakly) in } L^{2}\left(Q_{T}\right) \tag{12}\\
u_{k} \rightarrow u(\text { strongly }) \text { in } L^{p}\left(0, T ; W_{0}^{m-1, p}(\Omega)\right) \tag{13}\\
\text { and (weakly) in } C\left(0, T ; L^{2}(\Omega)\right) \tag{14}\\
g_{k}\left(x, t ; u_{k}\right) \rightarrow g(x, t ; u) \text { (strongly) in } L^{1}\left(Q_{T}\right) \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
D^{\alpha} u_{k}(x, t) \rightarrow D^{\alpha} u(x, t) \text { a.e. in } Q_{T} \text { for all }|\alpha| \leq m \tag{16}
\end{equation*}
$$

Assertions (12-15) follow similarly as above and as in [5]. To show 16, it suffices to show

$$
\begin{equation*}
\limsup _{k} \int_{0}^{T}\left(A\left(u_{n}\right), u_{k}-u\right) d t \leq 0 \tag{17}
\end{equation*}
$$

Since for any $v \in X$ we may find a sequence $\left(v_{\ell}\right)$ converging weakly to u, we get from (11)

$$
\begin{aligned}
\int_{0}^{T}\left(\dot{u}_{k}, u_{k}\right) d t & +\int_{0}^{T}\left(A\left(u_{k}\right), u_{k}-v_{\ell}\right) d t+\int_{Q_{T}} g_{k}\left(x, t ; u_{k}\right) u_{k} d x d t \\
& \leq \int_{Q_{T}} g_{k}\left(x, t ; u_{k}\right) v_{\ell} d x d t+\int_{0}^{T}\left(\dot{u}_{k}, v_{\ell}\right) d t-\int_{0}^{T}\left(f, v_{\ell}-u_{k}\right) d t
\end{aligned}
$$

Letting $k \rightarrow \infty$, keeping ℓ fixed, taking into account Fatou's lemma, and then allowing $\ell \rightarrow \infty$, we obtain (17) and consequently, (2) follows.

References

[1] H. Brezis and F. E. Browder, (1979), Strongly nonlinear parabolic initial-boundary value problems, Proceedings of the National Academy of Sciences of the United States of America, 76, No 1, 38-40.
[2] F. E. Browder and H. Brézis, (1980), Strongly nonlinear parabolic variational inequalities, Proceedings of the National Academy of Sciences of the United States of America, 77, No 2, 713-715.
[3] A.T. Eldessouky, (1994), Strongly nonlinear parabolic variational inequalities, Journal of Mathematical Analysis and Applications, 181, No 2, 498-504. doi 10.1006/jmaa.1994.1039
[4] R. Landes, (1981), On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 89, No 3-4, 217-237. doi 10.1017/S0308210500020242
[5] R. Landes, (1990), A note on strongly nonlinear parabolic equations of higher order, Differential and Integral Equations, 3, No 5, 851-862.
[6] R. Landes and V. Mustonen, (1987), A strongly nonlinear parabolic initial boundary value problem, Arkiv för Matematik, 25, No 1-2, 29-40. doi 10.1007/BF02384435
©UP4 Sciences. All rights reserved.

[^0]: ${ }^{\dagger}$ Corresponding author.
 Email address: adeltohamy60@gmail.com

