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Abstract
In this paper, we investigate the peristaltic transport of a two layered fluid model consisting of a Jeffrey fluid in the core
region and a Newtonian fluid in the peripheral region. The channel is bounded by permeable heat conducting walls. The
analysis is carried out in the wave reference frame under the assumptions of long wave length and low Reynolds number.
The analytical expressions for stream function, temperature field, pressure-rise and the frictional force per wavelength
in both the regions are obtained. The effects of the physical parameters associated with the flow and heat transfer are
presented graphically and analyzed. It is noticed that the pressure rise decrease with increasing slip parameter β in the
pumping region (∆P > 0). The temperature field decreases with increasing Jeffrey number and the velocity slip parameter;
whereas the temperature field increases with increasing thermal slip parameter. Furthermore, the size of the trapped bolus
increases with increasing Jeffrey number and decreases with increasing slip parameter. We believe that this model can help
in understanding the behavior of two immiscible physiological fluids in living objects.

Keywords: Peristalsis, two-layer flow, trapping phenomenon, Jeffrey fluid, Newtonian fluid, heat transfer.
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1 Introduction

Peristalsis is an essential mechanism of fluid transport in biological processes. Mathematical models on peri-
staltic transport with single fluid and their applications to the physiological fluid mechanics have been reported
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extensively in the literature (see Refs. [6, 13, 14, 26, 30]). The flow of physiological fluids in different organs of
living body systems such as blood through micro-vessels, capillaries and veins; food through esophagus; chyme
through small intestine; and the urine through ureter has a wall like structure, which perform the pumping is
normally coated with a fluid of different properties from those fluids being pumped. In order to examine the in-
fluence of fluid coating on the transport, the single phase fluid analysis of peristaltic pumping has been extended
to two phase fluid analysis.

At low shear rate, the rheology of human blood in micro-circulation with connecting vessels of diameter
smaller than 500 µm obeys the properties of non-Newtonian fluids. It is speculated that the rheological behavior
of non-Newtonian physiological fluid exhibits the characteristics of Jeffrey model involving time derivatives
[7, 9, 11, 24, 36]. Several authors used this model for the blood flow through small vessels [17, 19], food bolus
through esophagus [21] and movement of chyme in small intestine [20].

The experimental investigations of Bugliarello and Sevilla [3], and Cokelet [4] reveal that the blood flow
in small vessels is a two layered model in which the core layer is a region of suspension of all erythrocytes
and the peripheral layer consisting of plasma. Srivastava and Srivastava [27, 28] reported the peristaltic flow of
two layered fluid model in non-uniform tubes and they have interpreted this model to the ductus efferentes of
reproductive tract and the blood flow in small vessels. Brasseur et al. [1] studied the influence of Newtonian
peripheral layer on another Newtonian fluid of different viscosity. Brasseur [2] also modelled the mucous coating
effects on the peristaltic esophageal food bolus transport with two-fluid model. Peristaltic flow of two immiscible
viscous fluids in a circular tube has been addressed by Ramachandra Rao and Usha [23]. Also, Ramachandra
Rao and Usha [32] extended their model to two layered Power-law fluids. Some investigators have engaged in
the progress of peristaltic transport of two layered fluid models [15,29] and [33].Very recently, Kavitha et al. [10]
presented the peristaltic pumping of a Jeffrey fluid in contact with a Newtonian fluid in an inclined channel. All
these authors have been reported the effects of interface shape and pressure rise with the time averaged flux.

The energy transfer in biological living systems can be identified in metabolic heat generation, blood perfu-
sion, skin burning, hypothermia, fever, convectional heat exchange between blood and tissue. The variation of
temperature strongly influences the non-Newtonian behavior of blood in various parts of the circulatory system.
The results of heat transfer with peristaltic flow have many biomedical and bioengineering applications such as
hemodialysis, oxygenation and hypothermia therapy. Considering multi-fluid flow situations and heat transfer,
Umavathi et al. [31] studied the unsteady mixed convection flow of two immiscible viscous fluids through a
channel characterized by one irregular wall and one flat wall. Farooq et al. [5] analyzed the two layered flow of
third grade nano-fluids in a vertical channel with viscous dissipation effects. Very recently, Ponalagusamy and
Selvi [22] addressed the combined effects of plasma layer thickness, heat transfer and magnetic field on the flow
of blood through stenosed arteries.

In blood vessels, glycocalyx is a thin layer of glycoproteins and proteoglycans which covers the surface of
endothelial cells. The increased endothelial cell layer permeability facilitates the accumulation of low density
lipoproteins in the artery wall and accelerates atherosclerosis [12]. Investigations of peristaltic flow with porous
walls provide insight into the disease involved in arteries and gastrointestinal tract. Vajravelu et al. [34] examined
the influence of permeable wall on the peristaltic flow of a Casson fluid in contact with a Newtonian fluid in a
circular pipe by considering the Saffman slip [25] in the absence of heat transfer. The flow of non-Newtonian
fluids with slip effects and heat transfer has its wide range of applications in chemical and polymer processing.
Nadeem and Akram [16] obtained the exact and numerical solutions for slip effects on the peristaltic transport
of a Jeffrey fluid in an asymmetric channel under the influence of induced magnetic field. A few investigations
of the effects of velocity slip and temperature jump conditions on the peristaltic flow of generalized Newtonian
fluid models have been reported in [8, 18, 35].

In view of the above studies, an attempt is made in this paper to study the peristaltic transport of a two-
layered fluid model consisting of a core region with a Jeffrey fluid and a peripheral layer with a Newtonian
fluid. The effects of the velocity slip, temperature jump boundary conditions and the heat transfer in the channel
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are assessed. The results obtained throw light on the impact of peristalsis in the circulation of blood in small
blood vessels and further may be useful in understanding the transport of physiological fluids in esophagus and
gastrointestinal tract. Also, it is expected that the results obtained will not only provide useful information for
industrial applications but also complement the earlier works.

2 Mathematical formulation

The constitutive equations for an incompressible Jeffrey fluid are

τ =−pI +S (2.1)

S = µ1
1+λ1

(γ̇ +λ2γ̈) (2.2)

where τ and S represent Cauchy stress tensor and extra stress tensor respectively, p is the pressure, I is the
identity tensor, λ1 is the ratio of relaxation to retardation times, λ2 is the retardation time, γ̇ is shear rate, and a
dot over the quantities indicates differentiation with respect to time (for details see [17]).

We consider the peristaltic flow of incompressible and immiscible physiological fluids occupying core with
a Jeffrey fluid of viscosity µ1 and in surrounding peripheral layer with a Newtonian fluid of viscosity µ2. Let us
consider a two dimensional channel of width 2a. The channel walls are maintained at constant temperature T1
Effect of thin permeable layer (attached to the flexible walls) on the flow is investigated by taking into account
the velocity slip and the temperature jump conditions. Due to symmetry and for simplicity we analyze the flow
in half width of the channel as shown in Fig. 1.

Fig. 1 Physical Model

The wall deformation due to infinite sinusoidal wave train of peristaltic wave is given by

Y = H (X , t) = a+bsin 2π

λ
(X− ct) (2.3)

where b, λ , c and t represent the amplitude, wave length, wave speed and time respectively.
The subsequent deformation of the interface separating the core and the peripheral layer is denoted by

Y = H1 (X , t) , see Fig. 1 for details, which is not known a priori. The flow becomes steady in the wave frame
(x,y) moving with velocity away from the laboratory frame (X ,Y ) in the direction of wave propagation. We
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discuss the steady flow under the consideration of channel length is an integral multiple of the wavelength λ ,
the pressure difference across the ends of the channel is a constant and the periodicity of the interface is same as
that of the peristaltic wave.

(a) (b)

(c)

Fig. 2 The variation of shape of interface with µ = 0.1, Q̄ = 0.1, α = 0.7 for (a) φ = 0.4, β = 0.1, λ1 = 0.1, 10, 100, (b)
φ = 0.5, β = 0.1, µ = 0.1, 1.0, 10, (c) φ = 0.5, µ = 0.1, β = 0.00, 0.04, 0.10.

The transformation from fixed to wave frame of references are given by

x = X− ct, y = Y, u(x,y) =U (X− ct,Y )− c,
v(x,y) =V (X− ct,Y ) , p(x) = P(X , t) , ψ = Ψ−Y

}
(2.4)

where u, v, p and ψ are the velocity components, pressure and stream functions in the wave frame. U , V , P
and Ψ are the velocity components, pressure and stream functions in the fixed frame respectively.

We introduce the following non-dimensional quantities;

x̄ = x
λ
, ȳ = y

a , t̄ = ct
λ
, h̄ = H

a , h̄1 =
H1
a , p̄ = pa2

µ1λc , φ = b
a , q̄ = q

ac , F̄ = Fa
µ1λc ,

ψ̄(i) = ψ(i)

ac , ū(i) = u(i)
c = ∂ψ(i)

∂ ȳ , v̄(i) = v(i)λ
ac = ∂ψ(i)

∂ x̄ , µ̄ =

{
1, 0≤ ȳ≤ h̄1

µ, µ

(
= µ2

µ1

)
, h̄1 ≤ ȳ≤ h̄

,

Re = a2ρc
λ µ1

, S̄ = a
µ1c S, β =

√
kp

aσ
=
√

Da
σ

, θ (i) = T (i)−T0
T1−T0

, ν = µ1
ρ
, Ec = c2

Cp(T1−T0)
,

Pr = µ1Cp
k1

, k =

{
1, 0≤ ȳ≤ h̄1,

k, k
(
= k2

k1

)
, h̄1 ≤ ȳ≤ h̄.


(2.5)

Here superscript values (i = 1,2) refer to the core and the peripheral flow regions respectively. The quantities
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φ is the amplitude ratio, kp is the permeability of porous material of the wall, σ is the dimensionless constant
which depends on pore size of the permeable material, Da is the Darcy number,β is the slip parameter, T is the
temperature, T0 is the temperature at the center line of the channel, Cp is the specific heat at a constant pressure,µ̄
is the ratio of the viscosity, k is the ratio of thermal conductivities, Ec is the Eckert number, and Pr is the Prandtl
number.

Under the long wave length approximation (applicable in physiological flows), the Reynolds numberis small
and hence the curvature and inertia terms are negligible. Thus the governing equations of two layered fluid flow
reduce to(dropping bars)

∂

∂y

(
1

1+λ1

∂ 2ψ(1)

∂y2

)
= ∂ p

∂x 0≤ y≤ h1, (2.6)

∂

∂y

(
µ

∂ 2ψ(2)

∂y2

)
= ∂ p

∂x h1 ≤ y≤ h, (2.7)

0 = ∂ p
∂y , (2.8)

∂ 2θ (1)

∂y2 +Br
{

1
1+λ1

(
∂ 2ψ(1)

∂y2

)2
}
= 0 0≤ y≤ h1, (2.9)

∂ 2θ (2)

∂y2 + k.Br
{(

∂ 2ψ(2)

∂y2

)2
}
= 0 h1 ≤ y≤ h, (2.10)

Here λ1 is the Jeffrey parameter and Br = Ec.Pr is the Brinkman number. The corresponding dimensionless
boundary conditions are

ψ(1) = 0 at y = 0, (2.11)

∂ 2ψ(1)

∂y2 = 0 at y = 0, (2.12)

ψ(2) = q (aconstant) at y = h, (2.13)

∂ψ(2)

∂y +β
∂ 2ψ(2)

∂y2 =−1 at y = h, (2.14)

ψ(2) = ψ(1) = q1 (aconstant) at y = h1, (2.15)

1
1+λ1

∂ 2ψ(1)

∂y2 = µ
∂ 2ψ(2)

∂y2 at y = h1, (2.16)

∂θ (1)

∂y = 0 at y = 0, (2.17)

θ (2)+ γ
∂θ (2)

∂y = 1 at y = h, (2.18)

θ (1) = θ (2) at y = h1, (2.19)

∂θ (1)

∂y = k ∂θ (2)

∂y at y = h1, (2.20)

The velocity slip boundary condition Eq.(2.14) is used as in Saffman [25]. Further the velocity is continuous
at the fluid interface. The temperature jump boundary condition is given in Eq.(2.18),where γ represents the
dimensionless thermal slip parameter.

Here the total flux q is the sum of core layer flux q1 and peripheral layer flux q2 across any cross-section
in the wave frame. Further the velocity and the shear stress are continuous across the interface. Due to incom-
pressibility of the fluids and due to the lubrication theory, the fluxes q, q1 and q2 are independent of x.
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The non-dimensional average volume flow rate Q̄ over one wavelength η

(
= λ

c

)
of the sinusoidal peristaltic

wave is given by

Q̄ = q+1 (2.21)

(a) (b)

(c)

Fig. 3 The variation of ∆P with Q̄ at φ = 0.5, α = 0.7 for (a) µ = 10, β = 0.1, λ1 = 0.1, 1.0, 2.0, (b) λ1 = 1, β = 0.1,
µ = 0.8, 1.0, 1.4, (c) µ = 0.1, λ1 = 1, β = 0.0, 0.2, 0.4.

3 Solution of the problem

Solving Eqs. (2.6)-(2.10) together with boundary conditions (2.11) -(2.20), we get

ψ(1) =−y+
(

3(q+h)F2y−µ(1+λ1)(q+h)y3

2F3

)
for 0≤ y≤ h1 (3.1)

ψ(2) =−y+(q+h)+
(

3(q+h)h2y−(q+h)y3−(q+h)h3+3β (q+h)h(y−h)
2F3

)
for h1 ≤ y≤ h (3.2)

θ (1) =−3Brµ2(1+λ1)(q+h)2

4F2
3

y4 + 3Br(q+h)2(A1+A2)

4kF2
3

+1 for 0≤ y≤ h1 (3.3)

θ (2) = −3Brk(q+h)2

4F2
3

y4 +
3Br(q+h)2(k2−µ2(1+λ1))h3

1

kF2
3

y+ 3Br(q+h)2

4kF2
3

A1 +1 for h1 ≤ y≤ h, (3.4)

where
FJ = hJ +(µ (1+λ1)−1)hJ

1 + JhJ−1β , (J = 2,3)
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A1 = h3k2 (h+4γ)−4
(
k2−µ2 (1+λ1)

)
(h+ γ)h3

1

A2 =
(
3k2 +µ2 (1+λ1)(k−4)

)
h4

1.

As λ1→ 0 and β → 0 the results obtained in Eqs. (3.1) and (3.2) are found to be in agreement with the
corresponding results of Brasseuret al. [1].

(a) (b)

(c)

Fig. 4 The variation of ∆P0 with φ at α = 0.7 for (a) β = 0.1, µ = 10, λ1 = 0.1, 1.0, 10, (b) β = 0.1, λ1 = 1,
µ = 0.1, 1.0, 10100, (c) λ1 = 1, µ = 10, β = 0.0, 0.2, 0.3.

The axial pressure gradient is inferred from (2.6) or (2.7) as

d p
dx =−3µ(q+h)

F3
(3.5)

Integrating Eq. (3.5) over one wavelength, we get the pressure rise (drop) over one cycle of wave as

∆P =
1́

0

d p
dx dx =−3µ

(
Q̄−1

)
I1−3µI2 (3.6)

where I1 =
1́

0

1
F3

dx and I2 =
1́

0

h
F3

dx.

The time average flux at zero pressure rise is denoted by Q̄0 and it is given by
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Q̄0 = 1− I2
I1

(3.7)

and the pressure rise required to produce zero average flow rate is denoted by∆P0 and is given by
∆P0 = 3µ (I1− I2) . (3.8)

The dimensionless frictional force at the wall across one wavelength is given by

F =
1́

0
h
(
−d p

dx

)
dx = 3µ

(
Q̄−1

)
I2 +3µI3 (3.9)

where I3 =
1́

0

h2

F3
dx.

Fig. 5 The variation of F with Q̄ for different values of λ1 with fixed µ = 10, φ = 0.5, α = 0.7, β = 0.1.

4 The equation for the interface

The interface is also a stream line. For a given wave geometry and the time averaged flux Q̄, the unknown
interface h1 (x) is determined from (3.1) and (3.2) using the boundary condition (2.15). The fourthdegree alge-
braic equation governing the interface h1 (x) is given by

2(µ (1+λ1)−1)h4
1− ((q+h)(2µ (1+λ1)−3)−2q1 (µ (1+λ1)−1))h3

1
+
(
2h3−3(q+h)h2 +6βh2−6β (q+h)h

)
h1 +2q1h3 +6βq1h2 = 0.

(4.1)

Since q and q1 are independent of x, we choose the condition h1 = α at x = 0 in Eq. (4.1) to obtain q1 as

q1 =
2(1−µ(1+λ1))α

4+Q̄(2µ(1+λ1)−3)α3+(3Q̄+6β(Q̄−1)−2)α

2((µ(1+λ1)−1)α3+3β+1) . (4.2)
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(a) (b)

(c) (d)

(e) ( f )

Fig. 6 Temperature profiles at x = 0.5, φ = 0.6, α = 0.7 and Q̄ = 0.7 for (a) µ = 1, Br = 0.2, k = 0.9, β = 0.01,
γ = 0.01, λ1 = 0, 1, 2, 3, (b) λ1 = 1, µ = 0.1, Br = 0.1, k = 0.9, γ = 0.01, β = 0.00, 0.02, 0.06, 0.10, (c) λ1 = 1,
Br = 0.1, k = 0.8, β = 0.01, γ = 0.01, µ = 0.1, 1.0, 2.0, 5.0, (d) λ1 = 1, Br = 0.1, µ = 0.1, β = 0.01, γ = 0.01,
k = 0.8, 0.9,1.0, 1.1 (e) λ1 = 1, µ = 0.1, k = 1, β = 0.02, γ = 0.02, Br = 0.1, 0.2, 0.3, 0.4 (f) λ1 = 1, µ = 0.1, k = 0.8,
β = 0.1, Br = 0.1, γ = 0.01, 0.02, 0.03, 0.04.

5 Results and discussion

The shape of interface obtained from Eq. (4.1) is a stream line in the wave frame. The unique interface h1
is solved from Eq. (4.1) for each in the interval (0,h) with the help of Mathematica. The effects of the Jeffrey
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parameter λ1, viscosity ratio µ and the slip parameter on β the shape of interface are plotted in Fig.2. From
Fig. 2(a), we notice that the variation in shape of interface for large Jeffrey parameter gives rise to a thinner
peripheral layer in the dilated region. In Fig. 2(b), we found that as the viscosity ratio increases the thickness of
the peripheral layer decreases in the dilated region.From Fig. 2(c), we observe that the variation of the interface
shape for high slip parameter is associated with thinner peripheral layer in the constricted region. The uniform
sinusoidal shape is not seen for the interface.

Equation (3.6) gives the expression for the pressure rise ∆P in terms of time averaged flux Q̄. The effects
of λ1, µ and β on the variation of ∆P with Q̄ are computed by numerical quadrature formulae and shown
graphically in Fig 3. From Fig. 3(a), it is seen that for large value of viscosity ratio (µ = 10), the pumping
rate decreases with increasing λ1 for any appropriately chosen ∆P > 0.8 and the pumping curves coincides at
∆P = 0.8. Further, ∆P < 0.8, for the pumping rate increase with an increase in the Jeffrey parameter. Fig.
3(b) indicates that the pumping rate increases with increasing µ for any appropriately chosen ∆P >−0.2, the
pumping curves coincides at ∆P =−0.2 and below to this value the behavior is opposite. Fig. 3(c) illustrates
that for appropriately chosen ∆P >−0.02, the pressure rise decreases with increasing β and the trend reversed
below to the value of ∆P =−0.02.

Equation (3.8) represents the maximum pressure difference ∆P0. Fig.4 is plotted to analyze the effects of
λ1, β and µ on ∆P0 with amplitude ratio φ . From Figs. 4(a) and 4(b), we found that for a given amplitude
ratio, an increase in λ1 and β results in the decrease of ∆P0. Fig.4(c) depicts that for a fixed amplitude ratio, ∆P0
increases with increasing µ . Further in the limit of φ → 0, the peristaltic pump approaches to a pressure driven
channel flow and in the limit of φ → 1, ∆P0 becomes indefinitely large. Equation (3.9) gives the expression
for the frictional force at the wall F in terms of time averaged flux Q̄. The effect of Jeffrey parameter on the
frictional force is presented in Fig. 5 and from the figure we infer that the frictional force has opposite behavior
compared to pressure rise ∆P.

(a) (b)

(c) (d)

Fig. 7 Streamlines for (a) λ1 = 0.0 (b) λ1 = 0.1 (c) λ1 = 0.2 (d) λ1 = 0.3 with α = 0.8, φ = 0.5, Q̄ = 0.7, β = 0.02,
µ = 1.2.
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(a) (b)

(c) (d)

Fig. 8 Streamlines for (a) β = 0.00 (b) β = 0.01 (c) β = 0.02 (d) β = 0.03 with α = 0.8, φ = 0.5, Q̄ = 0.8, λ1 = 0.1,
µ = 1.2.

(a) (b)

(c) (d)

Fig. 9 Streamlines for (a) µ = 0.09 (b) µ = 1.0 (c) µ = 1.1 (d) µ = 1.2 with α = 0.8, φ = 0.5, Q̄ = 0.8, λ1 = 0.1,
β = 0.02.
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Temperature field in core and peripheral layers are calculated from Eqs.(3.3) and(3.4) in terms of y. Temper-
ature profiles are plotted in Figs.6. at an axial station x = 0.5, φ = 0.6 and Q̄ = 0.7 to study the effects of λ1, β ,
µ , ratio of thermal conductivity k, Brinkman number Br and thermal slip parameter γ ,the average thickness of
the peripheral layer α .Fig. 6 (a) and Fig. 6(b) represent the influence of λ1 and β on the variation of temperature
distribution θ . We find that the temperature decreases with increasing λ1 and β Fig. 6(c) and 6(d) display the
temperature behavior with the ratio of viscosity and ratio of thermal conductivity. It is observed that an increase
in µ and k results in the increase of θ . Fig. 6(e) depicts that the temperature field decreases with an increase in
Br. It is evident from Fig. 6(f) that the temperature increases withi ncreasing γ . Also, we observe that the curves
of temperature field are not intersecting at θ = 1 in presence of thermal slip parameter.

The wave frame stream lines for core and peripheral regions are determined from Eqs. (3.1) and (3.2).Figs.
7-9 are drawn to observe the influences of λ1, β and µ on the stream line patterns.The shape of interface in the
stream line patterns is marked by the dashed line. From Fig.7, we notice that the size of the trapping region
increases with an increase in the Jeffrey number. From Fig. 8, we see that the trapping bolus shrinks with an
increase in the slip parameter.Fig. 9 shows that the volume of the trapping bolus increases with an increase in
the viscosity ratio parameter.

6 Conclusions

The present article is concerned with the analysis of peristalsis and heat transfer on the physiological flow
of two-fluid model occupying the core region with a Jeffrey fluid and the peripheral region with a Newtonian
fluid in a symmetric channel bounded by permeable walls.Analytical solutions for the stream function and the
temperature field, interface, pressure rise, frictional force at the wall are determined. The obtained numerical
results are presented through graphs and are discussed in detail. We have highlighted here some of the interesting
observations.

1. The shape of interface for higher values of Jeffrey parameter λ1 leads to a thinner peripheral layer in the
dilated region.

2. In the pumping region (∆P > 0) , the pressure rise decreases with increasing slip parameter β .

3. For a given amplitude ratio, an increase in Jeffrey parameter λ1 and slip parameterβ results in a decrease
of maximum pressure difference ∆P0.

4. Temperature field decreases by increasing λ1 and β whereas the temperature field increases by increasing
thermal slip parameter.

5. An increase in the ratio of viscosity µ and ratio of thermal conductivity k results in the increase of tem-
perature field.

6. The results of no slip conditions can be deduced from this analysis when β = 0 and γ = 0.

7. The size of the trapped bolus increases with an increase in the non-Newtonian Jeffrey number and de-
creases with an increase in the slip parameter.

8. It is observed that when λ1→ 0 and β → 0, our results agree with those of Brasseur et al.[1] for peristaltic
transport of two immiscible Newtonian fluids.
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