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Abstract
The purpose of this note is to report on the recent work [2, 3], where new structural optimization strategies are proposed so
that the optimized designs are free of overhang regions, which jeopardize their constructibility by additive manufacturing
technologies. After showing numerical evidence that the intuitive angle-based criteria alone are insufficient to overcome
this difficulty, a new constraint functional of the domain is introduced, which aggregates the self-weights of all the inter-
mediate structures appearing in the course of the layer by layer assembly of the total structure. The mathematical analysis
of this constraint is outlined and an algorithm is proposed to accelerate the significant computational effort entailed by the
implementation of these ideas. Eventually, a numerical validation and several concrete examples are discussed.

Keywords: Shape optimization, additive manufacturing, level set method, shape derivative.
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1 Introduction

The additive manufacturing technologies have recently demonstrated a unique potential in constructing struc-
tures with a high degree of complexity, thereby allowing to process almost directly the designs predicted by
topology optimization algorithms. These breakthroughs however come along with new challenges. One of them
is to overcome the difficulty of building shapes showing large overhangs, i.e. regions hanging over void without
sufficient support from the lower structure.

To give a hint of why such regions are problematic from the point of view of additive manufacturing, a few
generalities about these technologies are in order; see [10] or the introduction in [6] for further details. Additive
manufacturing is a common label for a whole range of processes, which all begin by a decomposition (or slicing)
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of the produced shape into a series of two-dimensional layers; these are then constructed successively, one on top
of the other; see Figure 1.

Fig. 1 Sketch of the slicing procedure, at the beginning of all additive manufacturing processes.

The construction of each individual layer may be achieved owing to quite different technologies; for instance:

• Material extrusion methods, such as the well-known Fused deposition modeling (FDM) technique, proceed
by extruding a molten filament from a nozzle, which is deposed under the form of rasters;

• Powder bed fusion methods, such as Electron Beam Melting (EBM) or Selective Laster Melting (SLM),
rely on a laser to bind the grains of a (metallic) powder together.

The physical origin of the problems caused by overhangs during the construction process depends on the
particular technology: in the case of material extrusion methods, assembling a large overhang feature implies
that the machine tool has to depose material over void; in the case of powder-bed fusion technologies, overhangs
induce large residual stresses, which eventually entail warpage.

The prevailing remedy in the literature to the issue of overhangs consists in erecting a scaffold structure
alongside with the assembly of the desired shape; see e.g. [8]. This auxiliary, sacrificial structure has to be
removed at the end of the construction process, which is costly and cumbersome.

A different idea is to impose since the design optimization investigations that the shape should be self-
supporting - that is, free of overhangs. In this direction, ad hoc criteria, based on a minimum angle between
the structural boundary and the horizontal directions, have been used hitherto in order to tackle this issue [11, 13,
14, 19].

In the recent journal articles [2, 3], we have introduced new formulations to deal with overhang constraints
in shape and topology optimization algorithms. The purpose of the present note is to give an introduction to this
model; as such, it does not contain any original result. The reader is referred to the aforementionned articles
for a complete mathematical exposition, and for the discussion of efficient numerical strategies dedicated to the
treatment of overhang constraints.

The key idea of our work is to introduce a new constraint functional Psw(Ω) for shape optimization problems,
which appraises the constructibility of the shape Ω at each stage of its layer by layer assembly; in particular,
overhang constraints are naturally addressed by this formulation. To achieve this, in the setting of the optimiza-
tion problem, we distinguish the mechanical situation where the final (completed) shape Ω is utilized, on which
the optimization criterion is based, and that where Ω, and all the associated intermediate shapes Ωh, are under
construction, which guides the definition of our constraint functional.

This note is organized as follows. In Section 2, we introduce the shape optimization problem at stake. In
Section 3, we describe the intuitive attempt to rely on geometric functionals to deal with overhang constraints,
and explain why it proves insufficient for this purpose. Then, in Section 4, we present our mechanical model of
the context in which Ω is constructed, and we formulate our manufacturing constraint functional Psw(Ω) accord-
ingly. Several details of its mathematical analysis are outlined, notably the calculation of its shape derivative, and
an algorithm taking advantage of its intrinsic structure is proposed, which allows to accelerate significantly the
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(costly) calculations entailed by the evaluation of Psw(Ω) and its derivative. Eventually, a numerical validation
and several examples are provided in Section 5.

2 Presentation of the shape optimization problem

A shape is a bounded, regular domain Ω ⊂ Rd , d = 2,3, filled with a linear elastic material with Hooke’s
law A. In the context of its final utilization, Ω is clamped on a subset ΓD ⊂ ∂Ω, and it is submitted to surface
loads f ∈ L2(ΓN)

d applied on a region ΓN of ∂Ω disjoint from ΓD. The remaining part Γ := ∂Ω \ΓD∪ΓN is
traction-free. The elastic displacement uΩ is the unique solution in H1

ΓD
(Ω)d :=

{
u ∈ H1(Ω)d , u = 0 on ΓD

}
to

the mechanical system: 
−div(Ae(uΩ)) = 0 in Ω,

uΩ = 0 on ΓD,
Ae(uΩ)n = 0 on Γ,
Ae(uΩ)n = f on ΓN .

(1)

For simplicity, the criterion J(Ω) measuring the performance of shapes is the compliance:

J(Ω) =

ˆ
Ω

Ae(uΩ) : e(uΩ)dx =
ˆ

ΓN

f ·uΩ ds. (2)

Our optimization problem then reads:

min
Ω∈Uad

J(Ω), such that P(Ω)≤ α, (3)

in which

• Uad is a set of (smooth) admissible shapes Ω, whose boundaries enclose the non optimizable regions ΓD,
ΓN , and another one, Γ0, which may overlap ΓD or ΓN , and which is defined in Section 4 below;

• P(Ω) is a constraint functional, meant to enforce the constructibility of shapes by additive processes, whose
device is the central issue of the present note;

• α is a tolerance threshold.

Obviously, other constraints could be added to (3), e.g. constraints on the volume Vol(Ω) :=
´

Ω
dx, or the perime-

ter Per(Ω) :=
´

∂Ω
ds of shapes.

Most popular optimization algorithms for the numerical resolution of (3) rely on the derivatives of J(Ω)
and P(Ω) with respect to the domain; these are understood in the framework of Hadamard’s method (see e.g.
[1, 15, 18, 21]): a function F(Ω) of the domain is shape differentiable if the underlying mapping

θ 7→ F(Ωθ ), where Ωθ := (Id+θ)(Ω), (4)

from W 1,∞(Rd ,Rd) into R, is Fréchet differentiable at θ = 0; the corresponding derivative is denoted by F ′(Ω)(θ).
Often, the deformations θ in (4) are restrained to a subset of W 1,∞(Rd ,Rd); in the following, we shall consider
the sets

Θ
k =

{
θ ∈ C k,∞(Rd ,Rd), θ = 0 on ΓD∪ΓN ∪Γ0

}
,

where k≥ 1 and C k,∞(Rd ,Rd) is the set of k times continuously differentiable functions from Rd into itself, whose
derivatives up to order k are uniformly bounded.

For example, the shape derivative of (2) reads, for deformations θ ∈Θk, k ≥ 1 (see e.g. [5]):

J′(Ω)(θ) =−
ˆ

Γ

Ae(uΩ) : e(uΩ)θ ·n ds.
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3 The geometric attempt to deal with overhang constraints

3.1 Definition of the geometric functionals

The perhaps most intuitive way to account for overhang constraints - and the most common one in the literature
- relies on criteria involving the angle between the normal vector n≡ nΩ to the structural boundary and the build
direction of the additive machine tool. In this section, for simplicity and without loss of generality, this direction is
chosen to be the d-th vector ed of the canonical basis of Rd . In other terms, this geometric description of overhang
features brings into play anisotropic perimeter functionals of the form:

Pg(Ω) =

ˆ
∂Ω

ϕ(nΩ)ds, (5)

where ϕ : Rd → R is a given function of class C 1. Two particular instances of such functions ϕ may be thought
off:

• The choice
ϕa(n) := (n · ed + cosν)2

−, where (s)− := min(s,0), (6)

and ν is a threshold angle, penalizes the regions of ∂Ω where the angle between the normal vector n and
the negative vertical direction −ed is smaller than ν .

• The choice

ϕp(n) =
m

∏
i=1

(
n−nψi

)2
, (7)

where the ψi : Rd → R, i = 1, ...,m are given pattern functions, and nψi := ∇ψi
|∇ψi| are the corresponding

normalized gradients, compels n to be close to at least one of the directions nψi .

When it comes to the shape derivative of (5), the result of interest is the following [7].

Proposition 1. The function Pg(Ω) defined by (5) is shape differentiable at any admissible shape Ω ∈Uad when
deformations θ are in Θk, k ≥ 1. Its shape derivative reads:

P′g(Ω)(θ) =

ˆ
Γ

κ ϕ(n)θ ·n ds−
ˆ

Γ

∇∂Ω(ϕ(n)) ·∇∂Ω(θ ·n)ds,

where κ : ∂Ω→ R is the mean curvature of ∂Ω and ∇∂Ωψ := ∇ψ − (∇ψ · n)n is the tangential gradient of a
smooth enough function ψ : ∂Ω→ R.

3.2 Insufficiency of the geometric constraint functionals: the ‘dripping effect’

In spite of their simplicity, purely geometric criteria of the form (5) generally fail to prevent the appearance of
overhang features.

To illustrate this point, let us anticipate a little on Section 5 where our numerical setting is presented in
more details, and consider the benchmark two-dimensional MBB Beam example, as depicted in Figure 2. In
a computational domain D with size 6× 1, the structure is anchored at its bottom-right corner, and the vertical
displacement is set to 0 at its bottom-left corner. A unit vertical load f = (0,−1) is applied at the middle of its
upper side. From the manufacturing point of view, the shape is assembled from bottom to top, i.e. Γ0 coincides
with the lower side of D. Taking advantage of the symmetry of the mechanical problem, only half the working
domain D is considered during the optimization process; it is meshed by using 300×100 Q1 elements.

Starting from the initial shape Ω0 of Figure 3 (top), we solve the compliance minimization problem

min
Ω

J(Ω)

s.t. Vol(Ω)≤ αvVol(D)
(8)
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Fig. 2 Setting of the two-dimensional MBB beam example.

Fig. 3 (Top) initial and (bottom) optimized shapes for Problem (8) in the two-dimensional MBB Beam test-case of Section
3.2.

with the threshold αv = 0.3 for the volume constraint. The resulting optimized design Ω∗ is depicted in Figure
3 (bottom) and contains large overhanging regions. These overhangs are of great physical significance for the
performance of Ω∗; hence, it is expected that their removal will prove difficult.

The results displayed in Figure 4 are typical of the ‘optimized’ shapes resulting from the use of geomet-
ric functionals such as Pa(Ω) or Pp(Ω) to penalize the overhangs formed by members of such great structural
significance. They are obtained by solving the new problem

min
Ω

(1−αg)
J(Ω)
J(Ω∗) +αg

Pg(Ω)
Pg(Ω∗)

s.t. Vol(Ω)≤ αvVol(D)
, (9)

with the parameter αg = 0.50, using

• the function ϕa given by (6) and the threshold angle ν = 45° as for Figure 4 (top),

• the function ϕp given by (7) and the pattern functions ψi : R2 → R defined as follows, as for Figure 4
(bottom):

ψi(x) := nψi · x, where nψi = (cosνi,sinνi) and νi =−
π

4
+

6iπ
40

, i = 0, ...,10; (10)

in other terms, the constraint functional Pp(Ω) imposes that the orientation of the boundary ∂Ω should
comply with that of one of the straight lines with normal vector nψi . These directions nψi are uniformly
sampled among the set of those making an angle with the negative vertical direction comprised in [π

4 ,
5π

4 ].

One first observes that several parts in the resulting designs do comply with the desired orientation, but these
are the parts whose structural significance is negligible.
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More importantly, oscillations arose on the boundaries of some members, in particular those which are close
to horizontal and bear a great part of the loading. This dripping effect has already been observed in the litera-
ture; see for instance [19]. In the present situation, the structure contains regions where the minimization of the
compliance J(Ω) urges the formation of large horizontal features; the oscillatory patterns have little impact on
the mechanical performance (at least when it is measured in terms of the compliance), but they lead to a dramatic
decrease in the values of the geometric functionals Pa(Ω) and Pp(Ω). Obviously, the algorithm prefers creating
oscillating boundaries than rearranging the large horizontal bars, which would undermine significantly the struc-
tural performance of the shape. In this sense, the geometric criteria are not ‘strong enough’ to steer the algorithm
to a different optimization path.

Fig. 4 Optimized shapes resulting from Problem (9) in the two-dimensional MBB Beam example, using (top) ϕ ≡ ϕa and
the threshold angle ν = 45°, and (bottom) ϕ ≡ ϕp and the pattern functions ψi defined in (10).

4 Description and analysis of the mechanical constraint functionals

Assessing the drawbacks of the geometric functionals of Section 3.2, we now introduce a new mechanical
constraint functional Psw(Ω), which relies on a simplified model for the additive construction process.

4.1 Definition of the self-weight manufacturing compliance Psw(Ω)

The constraint Psw(Ω) relies on the mechanical situation of Ω in the course of the manufacturing process: Ω

is enclosed in a box D = S× (0,H), S ⊂ Rd−1, representing the build chamber with a vertical build direction ed .
For h ∈ (0,H),

Ωh := Ω∩
{

x = (x1, ...,xd) ∈ Rd , 0 < xd < h
}

is the intermediate shape describing the stage where Ω is assembled up to height h. The boundary ∂Ωh is here
decomposed in a somewhat different fashion from that of Section 2:

∂Ωh = Γ0∪Γ
l
h∪Γ

u
h,

where:

• Γ0 = { f ∈ ∂Ωh, xd = 0} is the contact region between Ω and the build table,

• Γu
h = { f ∈ ∂Ωh, xd = h} is the upper side of the intermediate structure,

• Γl
h = ∂Ωh \Γ0∪Γu

h is the lateral surface.

Eventually, we define `h := {x ∈ ∂Ω, xd = h}, the part of the boundary ∂Ω that lies at height h; see Figure 5.
Each intermediate shape Ωh is clamped on Γ0, and is subjected to gravity effects, accounted for by a body

http://www.up4sciences.org


Structural optimization under overhang constraints 391

D

h

e1
e2

e3

�u
h

�0

�l
h

`h

Fig. 5 Intermediate shape Ωh at height h during the construction of the final structure Ω: the red zone is the lower
boundary Γ0 and the blue zone is the upper boundary Γu

h.

force g ∈ H1(Rd)d . Its elastic displacement uc
Ωh
∈ H1

Γ0
(Ωh)

d satisfies:
−div(Ae(uc

Ωh
)) = g in Ωh,

uc
Ωh

= 0 on Γ0,

Ae(uc
Ωh
)n = 0 on Γl

h∪Γu
h,

(11)

so that the self-weight cΩh of Ωh reads:

cΩh =

ˆ
Ωh

Ae(uc
Ωh
) : e(uc

Ωh
)dx =

ˆ
Ωh

g ·uc
Ωh

dx. (12)

Our constraint Psw(Ω) of the total structure Ω aggregates the self-weights of all the intermediate shapes, and
therefore deserves the name of self-weight manufacturing compliance:

Psw(Ω) =

ˆ H

0
j(cΩh)dh, (13)

where j : R→ R is a smooth function (in practice, we use j(s) = s).

Remark 1. Let us point out an important bias in this model for the manufacturing process: it implicitly relies on
the assumption that every layer of material is constructed instantaneously (and so, it does not take into account the
way each such layer is assembled). This feature has important consequences on the interpretation of the numerical
results, as we shall see in Section 5.

4.2 Shape derivative of Psw(Ω)

The statement of our main result about the shape differentiability of Psw(Ω) requires additional notations. In
this section, Ω ∈ Uad is a given admissible shape. We introduce two open sets O1 b O2 in Rd and a smooth
function χ : Rd → R such that:{

x ∈ ∂Ω\Γ0, n(x) · ed =±1
}
⊂O1, 0≤ χ ≤ 1, χ ≡ 0 on O1, and χ ≡ 1 on Rd \O2.

http://www.up4sciences.org
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In other words, O1 is a neighborhood of the ‘flat regions’ of ∂Ω \Γ0, and χ is a cutoff function whereby these
regions will be ignored in the analysis.

In this context, the relevant sets for perturbations of Ω are the Banach spaces

Xk =
{

θ = χθ̃ , θ̃ ∈Θ
k
}
, equipped with the quotient norm ||θ ||Xk= inf

{
||θ̃ ||C k,∞(Rd ,Rd), θ = χθ̃

}
. (14)

In particular, vector fields θ ∈ Xk vanish at the points of ∂Ω\Γ0 where the normal vector n is parallel to ed .

Theorem 2. The functional Psw(Ω) given by (13) is shape differentiable at Ω, in the sense that the mapping
θ 7→ Psw(Ωθ ), from Xk into R is differentiable for k ≥ 1. Its derivative is:

∀θ ∈ Xk, P′sw(Ω)(θ) =

ˆ
∂Ω\Γ0

DΩ θ ·n ds, (15)

where the integrand DΩ is defined by, for a.e. x ∈ ∂Ω\Γ0:

DΩ(x) =
ˆ H

xd

j′(cΩh)
(
2g ·uc

Ωh
−Ae(uc

Ωh
) : e(uc

Ωh
)
)
(x)dh. (16)

Sketch of the proof: The study of the dependence of Psw(Ω) with respect to the domain Ω is not standard since
it involves a continuum of domains Ωh, h ∈ (0,H), obtained from Ω by truncation at fixed heights h. The proof
proceeds in three steps:

(i) At first, we prove that θ 7→ Psw(Ωθ ) is differentiable when variations θ are horizontal, i.e.

θ ∈ Xk
H , Xk

H :=
{

θ ∈ Xk, θ · ed = 0
}
,

and we prove that (15) - (16) hold in this case. This is possible since, in this case, the truncation at level
h (Ωθ )h of the deformed shape Ωθ coincides exactly with the deformation (Id+ θ)(Ωh) of the truncated
domain Ωh. Hence, in this particular case, Theorem 2 follows almost directly from classical techniques
from shape optimization, as in e.g. [12, 21].

(ii) We prove that an arbitrary deformation θ ∈ Θk can be equivalently represented by a horizontal one ξ (θ) ∈
Xk

H , in the sense that
(Id+θ)(Ω) = (Id+ξ (θ))(Ω),

and we analyze the properties of the mapping θ 7→ ξ (θ) (in particular, we calculate its derivative). This
relies on the implicit function theorem after rewriting an identity of the form Ωθ = Ωξ under the form
F (θ ,ξ ) = 0, for θ ,ξ ∈ Xk and an appropriate mapping F .

(iii) Theorem 2 follows from the conclusions of Steps (i) and (ii) by an application of the chain rule.

�

Remark 2. Formulas (15) and (16) have a quite intuitive structure: the shape gradient DΩ(x) of Psw(Ω) at some
point x ∈ ∂Ω\Γ0 involves the shape gradients of all the self-weights cΩh of the intermediate structures Ωh lying
above x, i.e. such that h > xd .

4.3 Practical calculation of the mechanical constraint and its derivative

The numerical evaluations of Psw(Ω) and P′sw(Ω)(θ), or equivalently DΩ, rely on a discretization of the height
interval (0,H) with a sequence 0 = h0 < h1 < ... < hN = H. The intuitive, ‘0th-order’ method to calculate approx-
imations P0

N and D0
N of Psw(Ω) and DΩ consists in replacing cΩh and uc

Ωh
by piecewise constant quantities on each

interval Ii := (hi,hi+1) before applying (13) or (15):

cΩh ≈ cΩhi+1
and uc

Ωh
≈ uc

Ωhi+1
on Ωh, for h ∈ Ii.
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Because this procedure is low-order, the subdivision {hi}i=0,...,N of (0,H) has to be quite fine so that the accuracy
of this approximation process is guaranteed; this brings about many numerical resolutions of the elasticity system
(11) for the uc

Ωhi
, which is very costly.

The computational efficiency of this ‘0th-order’ method can be improved by constructing a higher-order ap-
proximation of the mappings h 7→ cΩh and h 7→ uc

Ωh
on each interval Ii; this is achieved by an interpolation proce-

dure based on the values and the derivatives of these mappings at the hi, which have then to be calculated.

4.3.1 Derivatives of h 7→ cΩh and h 7→ uc
Ωh

Consider a fixed shape Ω ∈Uad , and a height h ∈ (0,H) satisfying:

For any x ∈ `h, the normal vector n(x) is not parallel to ed . (17)

Our first result is about the derivative of h 7→ cΩh ; see [2] for the proof.

Proposition 3. In the above context, the mapping h 7→ cΩh is differentiable at h and:

d
dh

(cΩh)

∣∣∣∣
h
=

ˆ
Γu

h

(2g ·uc
Ωh
−Ae(uc

Ωh
) : e(uc

Ωh
))ds. (18)

We now turn to the issue of differentiating the mapping h 7→ uc
Ωh

, an operation which has yet to be given an
adequate meaning. In this direction, we prove in [2] that (see also [1, 16] for related notions):

• There exists t0 > 0 and a mapping (−t0, t0) 3 t 7→ φt satisfying the following properties:

(i) For t ∈ (−t0, t0), φt is a diffeomorphism of Rd , mapping Ωh onto Ωh−t such that
φt(Γ0) = Γ0,

(ii) The mapping t 7→ (φt − Id), from (−t0, t0) into W 1,∞(Rd ,Rd) is of class C 1,

(iii) Introducing V (x) := dφt(x)
dt |t=0∈W 1,∞(Rd ,Rd), one has,

For x ∈ Γ
u
h, V (x) · ed =−1, and for x ∈ Γ

l
h, V (x) ·n(x) = 0.

(19)

• The mapping t 7→ uΩc
h−t
◦φt is differentiable from (−t0, t0) into H1

Γ0
(Ωh)

d . Its derivative at t = 0 is called the
Lagrangian derivative YΩh of h 7→ uΩc

h
. In general, YΩh depends on the mapping φt used in its definition.

• The quantity UΩh := YΩh −∇uΩc
h
V , which we identify as the Eulerian derivative of h 7→ uc

Ωh
is the natural

candidate for defining its ‘derivative’. UΩh is the solution in H1
Γ0
(Ωh)

d to the system:
−div(Ae(UΩh)) = 0 in Ωh,

UΩh = 0 on Γ0,
Ae(UΩh)n = 0 on Γl

h,

Ae(UΩh)n = ∂

∂n

(
(Ae(uΩc

h
)n
)

on Γu
h.

(20)

In particular, UΩh is independent of the mapping φt as long as it fulfills (19).

4.3.2 Practical interpolation algorithm for the calculation of Psw(Ω) and DΩ

The considerations of Section 4.3.1 suggest the following interpolation procedure for calculating first-order
approximations, say P1

N and D1
N , of Psw(Ω) and DΩ respectively. This allows for an accurate and computationally

efficient calculation of these quantities, which uses a coarser subdivision {hi}i=1,...,N of (0,H) than what is needed
for the calculation of the 0th-order approximate values P0

N and D0
N .

1. For i = 0, ...,N, calculate the compliances cΩhi
as (12) and the displacements uc

Ωhi
by solving (11).
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2. For i = 0, ...,N, calculate the derivative d
dh(cΩh)

∣∣
h=hi

of the compliance owing to Proposition 3.

3. For i = 1, ...,N, calculate the Eulerian derivative UΩhi
at hi by using (20).

4. On each interval Ii, i = 0, ...,N− 1, the compliance cΩh is approximated by a cubic spline c̃i(h) which is
uniquely (and explicitly) determined by the data:

c̃i(hi) = cΩhi
, c̃i(hi+1) = cΩhi+1

, c̃i
′(hi) =

d
dh

(cΩh)

∣∣∣∣
hi

, and c̃i
′(hi+1) =

d
dh

(cΩh)

∣∣∣∣
hi+1

. (21)

5. For i = 0, ...,N−1 and h ∈ Ii, uc
Ωh

is approximated by the function ũh defined for a.e. x ∈Ωh by:

ũh(x) = uc
Ωhi+1

(x)+(hi+1−h)UΩhi+1
(x); (22)

notice that the above relation does make sense for x ∈Ωh regardless of the height h ∈ (hi,hi+1) since uc
Ωhi+1

and UΩhi+1
are both well-defined on Ωh ⊂Ωhi+1 .

4.4 Alternative mechanical models for the behavior of intermediate shapes

Our definition of the constraint Psw(Ω) in Section 4.1 is guided by the description (11) of the physical behavior
of the intermediate shapes Ωh during the construction process: they are only subjected to gravity effects.

Interestingly, different mechanical models could be considered instead of (11), including fictitious ones,
thereby giving different focuses to the constraint functional. For instance, one may imagine replacing the uni-
form gravity load g in (11) by an artificial force, applied only on the upper region of each intermediate shape Ωh:
Ωh is now subjected to a body force gh defined by:

gh(x) =
{

g if xd ∈ (h−δ ,h),
0 otherwise,

(23)

where δ > 0 is a small parameter, and g ∈H1(Rd)d is a given function. The elastic displacement ua
Ωh

of Ωh in this
context is the unique solution in H1

Γ0
(Ωh)

d to the system:
−div(Ae(ua

Ωh
)) = gh in Ωh,

ua
Ωh

= 0 on Γ0,

Ae(ua
Ωh
)n = 0 on Γl

h∪Γu
h.

(24)

The related upper-weight of Ωh then reads:

ca
Ωh

=

ˆ
Ωh

Ae(ua
Ωh
) : e(ua

Ωh
)dx =

ˆ
Γu

h

g ·ua
Ωh

ds,

and the corresponding upper-weight manufacturing compliance is defined by:

Puw(Ω) =

ˆ H

0
j(ca

Ωh
)dh. (25)

As we shall see in Section 5, this formulation is well-suited when it comes to penalizing more specifically the
upper region of each intermediate shape Ωh.

As far as the shape derivative of Puw(Ω) is concerned, the exact same proof as that of Theorem 2 can be
worked out, taking advantage of the definition (23) of gh, and the conclusions of this Theorem extend verbatim to
this new case. Also, using a similar analysis to that of Section 4.3 (and working out similar calculations as in [2]),
it is possible to calculate the ‘derivatives’ of the mappings h 7→ ca

Ωh
and h 7→ ua

Ωh
, which results in expressions

similar to (18) and (20), up to additional terms accounting for the dependence of the load gh on h.

Let us eventually emphasize that our choice of the linearized elasticity systems (11) or (24) for the description
of the behavior of the intermediate shapes is merely incidental. One could for instance rely on a similar con-
struction, involving instead the heat equation, so as to model cooling effects within the intermediate shapes, and
thereby residual stresses; see [4] about this idea.
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5 Numerical illustrations

We end this note with several illustrations of the above theoretical considerations; in Section 5.2, we test the
algorithms of Section 4.3 for the evaluation of the constraint Psw(Ω) and its derivative; the subsequent examples
(Section 5.3 and below) discuss several numerical strategies for preventing the appearance of overhang features
during the shape optimization process. Before entering the core of the matter, we briefly outline our numerical
setting.

5.1 A few words about the numerical implementation

In all our examples, we rely on the level set method on a fixed computational mesh to represent shapes and their
deformations; see [17,20] about the level set method, and [5,22] about its use in shape and topology optimization.
In a nutshell, one shape Ω, enclosed in a larger, fixed working domain D, is regarded as the negative subdomain
of a scalar ‘level set’ function φ : D→ R, that is:

φ(x)< 0 if x ∈Ω,
φ(x) = 0 if x ∈ ∂Ω,

φ(x)> 0 if x ∈ D\Ω.
(26)

The evolution in time of a shape Ω(t), driven by a velocity field with normal component V (t,x), can be modeled
by the following Hamilton-Jacobi equation, the solution φ(t,x) of which, is a level set function for Ω(t):

∂φ

∂ t
(t,x)+V (t,x)|∇φ(t,x)|= 0, t > 0, x ∈ D. (27)

In our applications, the (scalar) velocity field V (t,x) stems from the resolution of Problem (3) by means of an
SLP-type optimization algorithm similar to that presented in [9], and the (pseudo-) time t represents the descent
step.

From a numerical point of view, the working domain D is a box in two or three space dimensions; it is
discretized by means of a Cartesian mesh G , i.e. G is composed of square elements in 2d and cubes in 3d. The
level set function φ is discretized at the vertices of G and the Hamilton-Jacobi equation (27) is solved by using an
explicit second-order upwind scheme on G , as presented e.g. in [20].

Since the computational mesh G is fixed throughout the optimization process of the shape Ω, no mesh of Ω

is available for the Finite Element resolution of linearized elasticity systems of the form (1). To circumvent this
difficulty, we rely on the so-called ‘ersatz-material’ approximation which consists in filling the void D\Ω with a
very soft material with Hooke’s tensor εA (in practice ε = 10−3), thus transferring a system posed on Ω into an
approximate one posed on D; see for instance [5].

In all examples, the Young’s modulus of the considered elastic material is normalized as E = 1 and the
Poisson’s ratio is set to ν = 0.33.

5.2 Validation of the approximations of Section 4.3

Our first numerical example aims to assess the computational efficiency of the first-order interpolation algo-
rithm proposed in Section 4.3 for the calculation of the constraint Psw(Ω) and its derivative DΩ.

Let us consider again the two-dimensional MBB Beam described in Section 3.2. At first, we calculate the
functional Psw(Ω) and its shape derivative DΩ in the particular case where Ω = Ω0 (the shape displayed in Figure
3 (top)), by using a uniform subdivision of (0,H) made of 100 layers and the 0th-order approximation scheme, i.e.
we evaluate P0

100 and D0
100, which serve as reference values for the comparisons in this section. We then calculate

the 0th- and 1st-order approximations Pi
N and D i

N , i = 0,1 associated to several subdivisions of (0,H) made of N
intervals with equal length. We are interested in the behavior of the relative errors:

err(P,N, i) =
|Pi

N−P0
100|

P0
100

, and err(D ,N, i) =
||D i

N−D0
100||L2(∂Ω\Γ0)

||D0
100||L2(∂Ω\Γ0)

.
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The results are displayed on Figure 6 (bottom): while the 1st-order approximation method does not bring a lot of
improvement when it comes to evaluating the constraint functional P(Ω), it allows for a substantial gain (i.e. a
faster convergence with respect to the number N of subdivisions) in the evaluation of its derivative.

0 10 20 30 40 50 60

number of layers N
10−4

10−3

10−2

10−1

100

101

er
r(
P
,N
,i

)

0th-order approximation (i = 0)
1st-order approximation (i = 1)

0 10 20 30 40 50 60

number of layers N
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10−2

10−1

100

101

er
r(
D
,N
,i

)

0th-order approximation (i = 0)
1st-order approximation (i = 1)

Fig. 6 Relative errors of the 0th- and 1st-order approximations of (top) Psw(Ω0) and (bottom) its derivative DΩ0 .

5.3 Optimization of the two-dimensional MBB Beam using a constraint on the self-weight manufacturing
compliance Psw(Ω)

Still in the context of the two-dimensional MBB Beam described in Section 3.2, we turn to the compliance
minimization problem under volume constraint:

min
Ω

J(Ω)

s.t. Vol(Ω)≤ αvVol(D)
, where J(Ω) is the compliance (2). (28)

We first solve (28), starting from the initial design Ω0 of Figure 3 (top), with threshold value αv = 0.3. For
the reader’s convenience, the resulting design Ω∗ is reprinted from Figure 3 (bottom) in Figure 7 (a).

We then add our mechanical constraint Psw(Ω) to the problem (28), and now solve:

min
Ω

J(Ω)

s.t. Vol(Ω)≤ αvVol(D),
Psw(Ω)≤ αcPsw(Ω

∗),

(29)

for different values of the parameter αc; the results are represented on Figure 7 (b)-(d). Understandingly, decreas-
ing values of αc result in structures which are more rigid from a manufacturing point of view (i.e. with lower
values of Psw(Ω)) and more compliant from a structural perspective (i.e. with higher values of J(Ω)).

Let us observe however that the optimized shapes still contain overhangs, which are mainly concentrated on
their upper regions. This phenomenon arises for mainly two reasons:

1. As mentioned in Remark 1, the fact that each layer is assumed to be deposited instantaneously has an impact
on the values of the self-weights cΩh given by (12): the rigidity of completely flat overhangs (as those
appearing in figures 7 (b)-(d)) is actually overestimated; roughly speaking, our modeling only involves the
intermediate stages of the construction process where each layer is completely assembled, and where these
flat regions are thereby connected to the lower structure. Hence, all the situations where these regions
are hanging over void (for instance, at the moments when they are only half-constructed, and when the
self-weight would typically take large values) are overlooked.

2. Secondly, considering a uniform self-weight loading for each intermediate shape Ωh leads to a concentration
of the shape gradient of J(Ω) at regions closer to Γ0. Intuitively, this comes from the fact that such regions
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(a)

(b)

(c)

(d)

Fig. 7 Optimized shapes for the two-dimensional MBB Beam example of Section 5.3: (a) optimized shape Ω∗ for Problem
(8) (i.e. without additive manufacturing constraints), and optimized shapes for Problem (29) using parameters (b)
αc = 0.50, (c) αc = 0.30, and (d) αc = 0.10.

appear in a greater number of intermediate shapes, which is reflected on the shape derivative of Psw(Ω); see
Theorem 2. Thus, the algorithm favours the elimination of the overhangs located in these regions, while
upper parts are comparatively less influenced by this requirement.

One remedy for the former issue would consist in using a more precise, ‘pixel by pixel’ model of the con-
struction process introduced in Section 4.1: one could indeed consider the trajectory of the machine tool during
the assembly of each layer of the shape, and take as ‘intermediate shapes’ several snapshots in the assembly of
each layer. Unfortunately, beyond difficult modeling issues, relying on this idea would cause the computational
cost (which is already significant) of the constraint functional to increase dramatically. Therefore, this proposition
is not examined in the present article.

A second remedy amounts to changing the mechanical problem (11) characterizing the behavior of the in-
termediate shapes. More precisely, as proposed in Section 4.4, we consider fictitious body forces applied on the
upper region of these shapes, thus better penalizing thin horizontal patterns in the intermediate shapes Ωh. This is
the purpose of the next section.
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5.4 Improvement brought by the upper-weight manufacturing compliance Puw(Ω)

We now take on the two-dimensional MBB Beam example of Section 5.3, replacing the self-weight manufac-
turing compliance Psw(Ω) with the upper-weight manufacturing compliance Puw(Ω) in the formulation (29) of the
optimization problem, with the expectation that it shows a better ability when it comes to removing overhanging
features.

The thickness δ of the regions where g is applied in the definition (23) of the body force gh is of the order of
the mesh size: δ = ∆x.

One observes that the algorithm tends to add more features oriented along the build direction and to connect
them together by creating small archs, which have optimal rigidity for self-weight loadings. The results are much
more satisfying than those obtained by using the functional Psw(Ω) when it comes to removing overhanging
features.

(a)

(b)

(c)

(d)

Fig. 8 Optimized shapes for the two-dimensional MBB Beam example of Section 5.4, solving Problem (29) with the
upper-weight manufacturing compliance Puw(Ω) and parameters (a) αc = 0.30, (b) αc = 0.10, (c) αc = 0.05, and (d)
αc = 0.03.
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5.5 A three-dimensional example

Our last example is about the optimization of a three-dimensional bridge, as depicted in Figure 9: the dimen-
sions of the working domain D are 6× 1× 1. The structure is clamped at its lower-right corners, while at its
lower-left corners, the vertical displacement is prevented. A uniform load f = (0,0,−1) is applied on the upper
side of the structure. From the manufacturing point of view, the shape is constructed from top to bottom, i.e. Γ0
coincides with the upper side of D (i.e. the deck of the bridge). Due to the double symmetry of the mechanical
problem, only one quarter of D is meshed and the cubic grid G is composed of 90×15×30 elements.

We start by minimizing the structural compliance J(Ω) of the bridge under volume constraint, taking the full
working domain D as initial shape; i.e. we solve (8) with αv = 0.10. Figure 10 (left column) shows the resulting

1

1
6

f

Fig. 9 Setting of the three-dimensional bridge test-case.

optimized shape Ω∗, which presents several overhangs of significant structural importance.
We then add a constraint on the upper-weight manufacturing compliance Puw(Ω), but instead of solving (29)

we rather consider the following optimization problem:

min
Ω

Vol(Ω),

s.t. J(Ω)≤ J(Ω∗),
Puw(Ω)≤ αcPuw(Ω

∗),

(30)

where we look for a shape having at least the same rigidity as Ω∗, but which is also more rigid from a manufac-
turing perspective. Figures 10 (right column) and 11 (left column) show the optimized shapes for αc = 0.70 and
αc = 0.10 respectively. For αc = 0.70 only slight changes are observed: the upper bar becomes thinner and the
central bars become thicker and are relocated closer to Γ0. For αc = 0.10 the changes are drastic and the same
trend as in the two-dimensional MBB beam example is observed.
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Fig. 10 Optimized designs for the three-dimensional bridge example of Section 5.5, (left) without manufacturing
constraints, (right) solving Problem (30) with αc = 0.7.
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Fig. 11 (Left) Different views of the optimized shape for the three-dimensional bridge example of Section 5.5, solving
Problem (30) with αc = 0.1; (right) another view on the three-dimensional bridges for Problem (30) with (top) no
manufacturing constraint, (middle) αc = 0.7 and (bottom) αc = 0.1.
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