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Abstract

In the present work, we analyze a technique designed by Geraci et al. in [1, 11] named the Truncate and Encode (TE)
strategy. It was presented as a non-intrusive method for steady and non-steady Partial Differential Equations (PDEs) in
Uncertainty Quantification (UQ), and as a weakly intrusive method in the unsteady case.
We analyze the TE algorithm applied to the approximation of functions, and in particular its performance for piecewise
smooth functions. We carry out some numerical experiments, comparing the performance of the algorithm when using
different linear and non-linear interpolation techniques and provide some recommendations that we find useful in order to
achieve a high performance of the algorithm.
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1 Introduction

Uncertainty Quantification (UQ) is the science that studies the quantification and the reduction of uncer-

tainties in real applications with an intensive computational component. An example would be the computation

of the fuel consumption of a car. Suppose we know how to compute the consumption as a function of some

parameters (car and wind velocity, wheel condition, car weight, etc.), but we do not know the exact value of

these parameters because they are random variables. Hence, the fuel consumption is also a random variable. UQ

studies how to infer the model of the fuel consumption random variable by assuming models for the parameters.

To carry out such study, many simulations of the consumption, changing the parameters among simulations,
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maybe required. These computations tend to be very expensive, because they may involve numerically solving

systems of partial differential equations.

One of the aims of UQ is to find the statistical moments of the random variable that provides the solution to a

given problem. In [1,11], the authors propose a new multi-scale technique, the Truncation and Encode approach

(TE henceforth) to be applied to lower the cost of the computation (by quadrature rules) of the moments of the

solution of the following stochastic PDE

∂tu(x, t,ξ )+∂x f (x, t,ξ ,u(x, t,ξ )) = 0,

where ξ ∈ R
N is a random vector, with known probabilistic distribution. Notice that for each ξ , a PDE must be

solved to compute uξ (x, t) = u(x, t,ξ ), namely

∂tuξ (x, t)+∂x fξ (x, t,uξ (x, t)) = 0.

Consequently, the calculation of these moments is a computationally intensive task, since function evaluations

for given parameter values usually require a complex numerical simulation. Many numerical methods have been

specially developed for this kind of UQ problems (for instance, methods generalizing or improving the classical

Monte Carlo method, or those based on the Polynomial Chaos representation [14]) and all of them try to use as

few function evaluations as possible.

The TE technique is specifically designed to meet a target accuracy in the computation of the desired integral,

by ensuring a predetermined accuracy in the required function evaluations. It is specially suited for the integra-

tion of functions which are only piecewise smooth, since in this case other alternatives such as the Polynomial

Chaos method may be highly inefficient.

In this paper we analyze a basic ingredient of the TE technique designed in [1, 11]: the influence of the

approximation method for piecewise smooth functions in the global efficiency of the TE technique. For this, we

consider a simplified framework in which we seek to compute integrals of the type

E =

ˆ 1

0

f (ξ )dξ

by means of a quadrature rule using point values on an equally spaced grid. For the sake of simplicity, let us

assume that we use the trapezoidal rule and a uniform mesh of grid-size hK = 2−K , i.e.

EK = 2−K(
1

2
vK

0 +
2K

∑
i=0

vK
i +

1

2
vK

2K ), vK
i = f (i2−K).

By standard results, we know that when f is sufficiently smooth

|E−EK|= O(2−2K)

while

|E−EK|= O(2−K)

when f is only piecewise smooth.

The TE algorithm seeks to replace as many as possible vK
i values, which require function evaluations of f ,

with modified v̂K
i values, so that

ÊK = 2−K(
1

2
v̂K

0 +
2K

∑
i=0

v̂K
i +

1

2
v̂K

2K )

satisfies

|E− ÊK| ≤ ε
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where ε is a user-dependent predetermined accuracy, even when f is only piecewise smooth.

Notice that

|EK− ÊK|= 2−K

∣

∣

∣

∣

∣

(
1

2
vK

0 +
2K−1

∑
i=1

v̂K
i +

1

2
vK

2K )− (
1

2
v̂K

0 +
2K−1

∑
i=1

v̂K
i +

1

2
v̂K

2K )

∣

∣

∣

∣

∣

≤ ‖vK− v̂K‖1 ≤ ‖v
K − v̂K‖∞,

where

‖vK − v̂K‖1 = 2−K
2K

∑
i=0

|vK
i − v̂K

i |, ‖vK − v̂K‖∞ = sup
0≤i≤2K

|vK
i − v̂K

i |.

Hence,

|E− ÊK| ≤ |E−EK|+ ||v̂
K− vK ||1. (1)

Thus, for a given (piecewise smooth) f , it is possible to ensure a target accuracy by choosing appropriately the

mesh (i.e. K) and the target accuracy ε so that ||v̂K − vK||∞ ≤ ε .

The TE algorithm in [1,11] is based on Harten’s Multiresolution Framework (MRF), which provides a set of

tools to manage data in a multi-scale setting. In the last two decades, the MRF has been successfully applied in

various contexts, and in particular in the design of adaptive schemes for the numerical solution of conservation

laws and systems [6–8,13]. The TE algorithm follows a strategy similar to that used in the cost-effective schemes

described in [7] and used in [6,8,13]. Both algorithms use the ideas in Harten’s MRF to compute a sequence v̂K

such that ||v̂K− vK || ≤ ε for a specified norm, with vK =
(

f (ξ K
i )

)2K

i=0
.

These strategies proceed from coarse to fine resolution levels as follows: At each resolution level k ≤ K,

(associated to a uniform grid with spacing 2−k), a vector v̂k is obtained, whose components either coincide with

or approximate the values of f on the corresponding grid, i.e. v̂k
i ≈ f (i2−k). Approximations are computed

in [1, 7, 11] via an interpolatory reconstruction. The TE authors also consider a multilevel thresholding strategy

(εk)K
k=0, which should be properly chosen to guarantee certain precision in the output v̂K :

‖vK− v̂K‖∞ / ε .

In this work we show that the simple strategy εk = ε , also considered in [7], is more effective than the one

proposed in [1, 11] for the current purpose, εk = 2K−kε . Another advantage of taking εk = ε is that K can be

taken as large as needed without increasing the number of function evaluations. Thus, |E −EK| can be made

arbitrary small in (1), which implies |E− ÊK|/ ε .

In this work we also analyze the use of high accuracy interpolation techniques, and we establish the growth

rate of the number of evaluations (neval ) respect to the precision (‖vK − v̂K‖∞):

neval = O(‖vK− v̂K‖−1/s
∞ ) ≡ ‖vK − v̂K‖∞ = O(n−s

eval),

where s is the approximation order of the interpolation technique. This result is independent of the smoothness

of f . That is, the number of function evaluations increases slowly even if f has some discontinuities. Hence the

TE algorithm is very convenient in such situations.

A comparison between linear and non-linear interpolation techniques is also carried out. Our numerical

results will show that non-linear techniques are dispensable in the TE strategy. Since linear ones are faster, com-

putationally speaking, they are preferable. In particular, we make the comparison between piecewise polynomial

Lagrange interpolation of degrees 1 and 3, and the nonlinear PCHIP interpolation developed in [5]. In [1,11], the

ENO interpolation was chosen instead of PCHIP, but PCHIP interpolation is monotone, non-oscillatory, stable

as a subdivision process and faster than the ENO technique.

The paper is organized as follows: In section 2 we recall Harten’s MRF and define the specific prediction

schemes to be considered for our study. In section 3 we recall the Truncation and Encode strategy described

in [1,11] and in section 4 we perform a series of numerical experiments that confirm our observations. We close

the paper with some conclusions and perspectives for future work.
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2 Harten’s Multiresolution Framework

2.1 Presentation

The TE technique is based on Harten’s Multiresolution Framework (MRF), which relies on two basic ele-

ments: discretization and (compatible) reconstruction operators. In this paper we only consider the interpolatory

framework for functions defined in the unit interval. The reader is referred to [3, 12] for a more complete de-

scription of Harten’s MRF.

In the interpolatory framework, the discretization operators (Dk)k≥0:

Dk : C ([0,1]) −→ R
nk+1, Dk f = ( f (ξ k

i ))
nk

i=0 ∈ R
nk+1

obtain the point values of a function f on a sequence of nested grids (ξ k)k≥0, i.e.

ξ k = (ξ k
i )

nk

i=0 ∈ R
nk+1, ξ k

0 = 0, ξ k
nk
= 1, ξ k

i < ξ k
i+1, ξ k

i = ξ k+1
2i , nk+1 = 2nk.

Together with the discretization operators, a sequence of interpolatory reconstruction operators (Rk)k≥0 is

considered, which verify

Rk : Rnk+1 −→ C ([0,1]), Rkvk ∈ C ([0,1]), Rkvk(ξ k
i ) = vk

i , i = 0,1, . . . ,nk,

with C ([0,1]) = { f : [0,1] −→ R, f continuous}.
Since Rk is interpolatory, the compatibility condition

DkRk = Ik (2)

is fulfilled, where Ik : Rnk+1 −→ R
nk+1 is the identity operator.

Note 1. An example of these concepts is the following. On the one hand, let be ξ k
i = i2−k, nk = 2k. Then

Dk f = ( f (i2−k))2k

i=0 ∈ R
2k+1.

On the other hand, we consider the reconstruction operators

Rkvk ∈ C ([0,1]), (Rkvk)(ξ ) = I1(ξ ;ξ k,vk),

where I1 is the 1st degree polynomial interpolation:

I1(ξ ;ξ k,vk) = vk
i+1

ξ −ξ k
i

ξ k
i+1−ξ k

i

− vk
i

ξ −ξ k
i+1

ξ k
i+1−ξ k

i

, ξ ∈ [ξ k
i ,ξ

k
i+1].

Actually, Rkvk is the unique polygonal satisfying (Rkvk)(i2−k) = vk
i , for all 0≤ i≤ nk.

Dk f is the representation of f at the resolution level k, and will be denoted by vk. In Lemma 3.1 of [12]

it is proved that the operator that sends vk+1 = Dk+1 f to vk = Dk f is well-defined and linear. It is called the

decimation operator and it is written Dk
k+1. Moreover, it can always be expressed as

Dk
k+1 = DkRk+1, (3)

although Rk+1 could be non-linear. In particular, for the point-valued discretization Dk, the decimation operator

is

Dk
k+1vk+1 = (vk+1

2i )
nk+1/2

i=0 . (4)
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Inversely, the prediction operator Pk+1
k gives an approximation of Dk+1 f from Dk f :

Pk+1
k : Rnk+1 −→ R

nk+1+1, Pk+1
k := Dk+1Rk.

Notice the similarity with (3). The error of Pk+1
k is measured as

δ k+1 := Dk+1 f −Pk+1
k Dk f .

By (4), (3) and (2), in this order,

(δ k+1
2i )

nk+1/2
i=0 = Dk

k+1δ k+1 = DkRk+1Dk+1 f −DkRk+1Dk+1RkDk f = Dk f −DkRkDk f = Dk f −Dk f = 0.

So the even values of δ k+1 are 0. Hence, we will pay attention exclusively to the odd values of δ k+1, which are

named the detail coefficients:

dk
i := δ k+1

2i+1 = f (ξ k+1
2i+1)− (Pk+1

k Dk f )2i+1, 0≤ i < nk+1/2 = nk.

For simplicity, let us denote vk := Dk f . Then

dk
i = vk+1

2i+1− (Pk+1
k vk)2i+1, 0≤ i < nk+1/2 = nk. (5)

Let be a ∈ R
α and b ∈ R

β . Let us denote by (a;b) ∈ R
α+β the concatenation of a and b. Since vk ∈

R
nk+1 =R

nk+1/2+1 and dk ∈Rnk+1/2, then (vk;dk) ∈R
nk+1+1. In fact, there exists a bijection between (vk;dk) and

vk+1 ∈R
nk+1+1:

vk+1 = Pk+1
k vk +δ k+1←→

{

vk = Dk
k+1vk+1

δ k+1 = vk+1−Pk+1
k vk

.

That is
{

vk+1
2i = vk

i

vk+1
2i+1 = (Pk+1

k vk)2i+1 +dk
i

←→

{

vk = Dk
k+1vk+1

dk
i = vk+1

2i+1− (Pk+1
k vk)2i+1

. (6)

Abusing of notation, we denote by (a1;a2;a3; . . .) the concatenation of many vectors. Note that (6) can be

applied recursively to obtain the following equivalences

vk↔ (vk−1;dk−1)↔ (vk−2;dk−2;dk−1)↔ ··· ↔ (v0;d0;d1; . . . ;dk−1) ∈R
nk+1.

The multiresolution decomposition of k levels, Mk, (or multiresolution transform) is defined as

Mkvk = (v0;d0;d1; . . . ;dk−1).

We denote its inverse, the inverse multiresolution transform, by

M−k(v0;d0;d1; . . . ;dk−1) = vk.

2.2 Interpolatory prediction operators

A classical approach to design prediction operators consists in using piecewise polynomial interpolation

techniques, I (ξ ;ξ k,vk). See for instance Remark 1. Given some values vk on a grid ξ k, they provide a function

of ξ satisfying

I (ξ k
i ;ξ k,vk) = vk

i .

The corresponding prediction operators are obtained by evaluating I ( · ;ξ k,vk) on the finer grid ξ k+1:

Pk+1
k vk = (I (ξ k+1

i ;ξ k,vk))
nk+1

i=0 .
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For equally-spaced grids, that is ξ k
i+1−ξ k

i = hk, the reconstruction technique can usually be expressed in terms

of a local rule I, as follows:

I (ξ k+1
2i ;ξ k,vk) = vk

i , I (ξ k+1
2i+1;ξ k,vk) = I(vk

i−l+1, . . . ,v
k
i , . . . ,v

k
i+r−1),

for some l,r > 0. In such case,

(Pk+1
k vk)2i = vk

i , (Pk+1
k vk)2i+1 = I(vk

i−l+1, . . . ,v
k
i , . . . ,v

k
i+r−1).

The accuracy of the interpolation technique is an important aspect to be taken into account. I has order of

approximation s if

‖I ( · ;ξ k,Dk f )− f‖∞ ≤Chs
k, ∀k ≥ 0,

for any f sufficiently smooth. It can be written in terms of the local rule as

I( f (ξ k
i−l+1), . . . , f (ξ k

i ), . . . , f (ξ k
i+r−1)) = f (ξ k+1

2i+1)+O(hs
k), ∀i,k. (7)

Note 2. Some examples of local rules are

• Polygonal rule or 1st degree polynomial rule:

I(vk
i ,v

k
i+1) =

1

2
vk

i +
1

2
vk

i+1.

• Cubic rule or 3rd degree polynomial rule:

I(vk
i−1,v

k
i ,v

k
i+1,v

k
i+2) =−

1

16
vk

i−1 +
9

16
vk

i +
9

16
vk

i+1−
1

16
vk

i+2.

• PCHIP rule:

I(vk
i−1,v

k
i ,v

k
i+1,v

k
i+2) =

1

2
vk

i +
1

2
vk

i+1−
1

8

(

H(vk
i+1− vk

i ,v
k
i+2− vk

i+1)−H(vk
i − vk

i−1,v
k
i+1− vk

i )
)

,

where H(x,y) = 2xy
x+y

if x,y have the same sign, H(x,y) = 0 otherwise.

Notice that the polygonal and cubic rules are linear, while the PCHIP rule is nonlinear. It can be proven that

the polygonal rule has approximation order 2, the cubic rule has order 4, and the PCHIP rule has order 4 if

(vk
i−1,v

k
i ,v

k
i+1,v

k
i+2) is strictly monotone but order 2 in general.

Prediction operators in Harten’s MRF define subdivision schemes. These are iterative process where denser

and denser sets of data are generated using recursively the local rules. A subdivision scheme is convergent if

this process converges to a continuous function. See for instance [4, 9, 10].

In [5] the subdivision scheme defined from the PCHIP rule was studied. Its authors found some advantages

respect to other subdivision schemes, such as the ENO scheme [2]. They proved that PCHIP is monotonicity

preserving, which means that it converges to a monotone function if monotone data is used. But also it is

Lipschitz stable (see [5] for specific definitions) which makes it more suitable as prediction operators in Harten’s

MRF than the non-linear Essentially Non Oscillatory (ENO) reconstruction techniques used in [1, 11]. The

monotonicity preserving property is particularly interesting when data coming from discontinuous functions

needs to be handled, because it avoids oscillatory behavior in the reconstructed data around jumps and steep

gradients (see [5]), just as the ENO reconstructions.

If f is sufficiently smooth, by (7)

dk
i = vk+1

2i+1− (Pk+1
k vk)2i+1 = f (ξ k+1

2i+1)− I( f (ξ k
i−l+1), . . . , f (ξ k

i+r)) = O(hs
k).
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So

dk+1
2i ≈ (

hk+1

hk

)sdk
i ≈ dk+1

2i+1.

We are assuming that (ξ k)k≥0 are nested and equal-spaced. Thus

O(hs
k) = O(2−ks), (

hk+1

hk

)s = 2−s.

If f has a discontinuity in its s0 derivative, 0≤ s0 ≤ s, then

dk
i = O(2−ks0), dk+1

2i ≈ 2−s0dk
i ≈ dk+1

2i+1.

3 The Truncation and Encode approach

In this section, we describe the TE method restricted to the approximation of functions.

Given a target error ε > 0, a piecewise smooth function f : [0,1]−→ R and a suitable finest resolution level

K, the goal is to obtain some v̂K ∈R
nK+1 such that

‖vK− v̂K‖∞ / ε , vK = DK f , (8)

using as few evaluations of f as we can.

The algorithm computes recursively v̂k, from the coarsest level k = 0 to the finest one k=K. The construction

of (v̂k)K
k=0 begins by evaluating f at ξ 0 and ξ 1: v̂0 = D0 f and v̂1 = D1 f . The details are computed using (5):

d̂0
j = v̂1

2 j+1− (P1
0 v̂0)2 j+1 = d0

j = v1
2 j+1− (P1

0 v0)2 j+1.

We compute v̂k, k > 1, iteratively: For each 0 ≤ i≤ nk, and for each 1 ≤ k ≤ K (K pre-fixed), we set v̂k+1
2i = v̂k

i

and

v̂k+1
2i+1 =

{

(Pk+1
k v̂k)2i+1, if |d̂k−1

j |< εk

f (ξ k+1
2i+1), if |d̂k−1

j | ≥ εk
, ∀i ∈ {2 j,2 j+1}, (9)

where

d̂k−1
j = v̂k

2 j+1− (Pk
k−1v̂k−1)2 j+1. (10)

Figure 1 shows a sketch of recurrence (9). It has a simple interpretation: On one hand, if |d̂k−1
j |< εk, then a

’small’ prediction error indicates that Pk
k−1 approximates well the function at ξ k

2 j+1; thus Pk+1
k may also provide

a good approximation at ξ k+1
2i+1, i ∈ {2 j,2 j+1}, and we do not need to evaluate f at these points.

On the other hand, |d̂k−1
j | ≥ εk means that Pk

k−1 did not provide a sufficiently ’good’ approximation to the

function values, hence we prefer to evaluate f to obtain v̂k+1
2i+1 as the exact value of vk+1

2i+1. It should be noted

that if |d̂k−1
j | < εk then d̂k

i = 0, and if |d̂k−1
j | ≥ εk then d̂k

i = f (ξ k+1
2i+1)− (Pk+1

k v̂k)2i+1, i ∈ {2 j,2 j + 1}. Also,

|d̂k−1
j | ≥ εk implies that vk+1

4 j+1 (i = 2 j) and vk+1
4 j+3 (i = 2 j+1) must be computed, so f is evaluated twice.

In the end of the recurrence, we obtain the vectors v̂K and (d̂k)K−1
k=0 . Moreover, we know the MR decompo-

sition of v̂k because of (10):

Mkv̂k = (v̂0; d̂0; . . . ; d̂k−1) = (v0;d0; d̂1; . . . ; d̂k−1).

In [1] the authors arrive to the conclusion that (8) if fulfilled if εk = 2K−kε . However, we notice in the

numerical experiments of [1, 11] that this thresholding strategy leads to

‖vK − v̂K‖∞
K→∞
−→ 0.
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❞ ❞

❞

v̂k+1
4 j+1 = (Pk+1

k v̂k)4 j+1 v̂k+1
4 j+3 = (Pk+1

k v̂k)4 j+3 if |dk−1
j |< ε

v̂k+1
4 j+1 = f (ξ k+1

4 j+1) v̂k+1
4 j+3 = f (ξ k+1

4 j+3) if |dk−1
j | ≥ ε

v̂k
2 j+1

d̂k
2 j

(Pk+1
k v̂k)4 j+1

✻

✻

d̂k
2 j+1

(Pk+1
k v̂k)4 j+3

✻

✻
v̂k

2 j v̂k
2 j+2

d̂k−1
j

(Pk
k−1v̂k−1)2 j+1

✻

✻
v̂k−1

j v̂k−1
j+1

ξ k+1

ξ k

ξ k−1

Fig. 1 Sketch of recurrence (9). The value of v̂k+1
2i+1, i ∈ {2 j,2 j+ 1}, depends on d̂k−1

j = v̂k
2 j+1− (Pk

k−1v̂k−1)2 j+1.

Thus, the real precision of v̂K depends on ε and K. Moreover, if a large K is needed, because a very fine mesh is

demanded, then it turns out that ‖vK− v̂K‖∞ is unnecessarily small and the technique looses efficiency. We will

see that the thresholding criterion εk = 2K−kε proposed in [1, 11] can be relaxed to εk = ε , to ensure (8) with a

precision that stays close to ε . Our strategy reduces the number of evaluations. In addition, the non-dependency

of K allows us to take this value as large as necessary to ensure the desired accuracy in the numerical integration

of f .

Another advantage of using εk = ε is that it is not mandatory to prefix the finest level K. So we can select

another criterion to stop the recurrence, for example, that certain amount of evaluations has been reached. On

the opposite, taking ε = 2K−kε demands knowing K before the execution starts.

4 Numerical experiments

The purpose of the present section is to examine the efficiency of the TE algorithm under the various strate-

gies considered in the previous sections. In particular, we show that the threshold strategy εk = ε , k ≥ 0, leads

to the desired target accuracy in a much more efficient manner than εk = 2K−kε , as proposed in [1, 11].

In this paper, the efficiency is a measure of the number of evaluations required to reach a target error in

the computation of v̂K . We show in this section that the efficiency of the TE strategy relies on the interpolation

technique used in the prediction operator. In addition, we show numerically that the strategy εk = ε ensures

2−sε / ‖vk− v̂k‖∞ / ε ,

where s is the order of approximation of the local rule, but also we show that the number of evaluations increases

slowly respect to the precision:

neval = O(‖vk− v̂k‖−1/s
∞ ) = O(ε−1/s).

Hence, highly accurate interpolation techniques improves the efficiency.

On the other hand, we will see that non-linear interpolation techniques does not provide, in general, any

advantage respect to the linear ones. Thus, linear prediction operators are preferable, because they are faster to

compute.

The TE authors consider the following efficiency measures. The first one is

µcr =
nK +1

nw +n0 +1
, nw = #{|d̂k

i | ≥ ε},
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neval : Number of function evaluations done by TE to compute v̂K .

nK +1 = 2K +1: Number of function evaluations needed to compute vK .

τ = nK+1
neval

.

eK = ‖vK− v̂K‖∞ = supi |v
K
i − v̂K

i |.

‖vK − v̂K‖1 = n−1
K ∑

nK

i=0 |v
K
i − v̂K

i |.

E =
´ 1

0
f (x)dx.

ÊK is obtained applying the trapezoidal rule to v̂K .

Table 1 Parameters for the numerical experiments.
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Fig. 2 Graphic representation of: left, f1; right, f2. Both functions are defined in (12).

where nw is the number of detail coefficients greater than ε . The second one is

τ =
nK +1

neval

,

where neval is the total amount of function evaluations used to obtain v̂K . τ = 1 if the function was evaluated

everywhere in ξ K, and the larger τ is, the more vk
i were interpolated instead of evaluated.

In the TE method, each |d̂k−1
i | ≥ ε implies two new function evaluations at the resolution level k+ 1. So

neval can be written as

neval = 2nw +n0. (11)

Using (11), τ can be expressed as

τ =
nK +1

2nw +n0

=⇒ µcr ≈ 2τ ,

as shown in Tables 1 and 2 of [1, 11]. In this paper, we will only consider τ .

In Tables 2 to 7, we carry out the same experiment as in section 5.1 of [11]. Let us consider the parameters

of Table 1 and the following functions, which are shown in Figure 2:

f1(x) = sin(2πx2), f2(x) =

{

sin(2πx2), x≤ 11/20

sin(2πx2)+1, x > 11/20
, x ∈ [0,1]. (12)

In Tables 2 to 4 we apply the TE strategy with εk = 10−1, k ≥ 0, to the smooth f1 function in Figure 2

and display the parameters of Table 1. We use the prediction operators, Pk+1
k described in Remark 2, i.e. the

polygonal, cubic and PCHIP rules, while in [11] it was used the polygonal, cubic and ENO rules. As mentioned

previously, we consider that the PCHIP prediction is more convenient because of its stability. As in the original

papers, we set n0 = 1, so ξ 0 = {0,1}. From these experiments we extract the following conclusions.
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K neval nK +1 τ ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
3 1.3000e+01 1.7000e+01 1.3077e+00 4.6488e-02 5.5437e-03 4.2125e-03

4 1.7000e+01 3.3000e+01 1.9412e+00 4.6488e-02 9.2544e-03 1.0395e-03

5 1.7000e+01 6.5000e+01 3.8235e+00 4.6488e-02 1.1582e-02 1.0395e-03

6 1.7000e+01 1.2900e+02 7.5882e+00 4.7016e-02 1.2225e-02 1.0395e-03

7 1.7000e+01 2.5700e+02 1.5118e+01 4.7016e-02 1.2411e-02 1.0395e-03

8 1.7000e+01 5.1300e+02 3.0176e+01 4.7026e-02 1.2470e-02 1.0395e-03

9 1.7000e+01 1.0250e+03 6.0294e+01 4.7033e-02 1.2491e-02 1.0395e-03

10 1.7000e+01 2.0490e+03 1.2053e+02 4.7033e-02 1.2499e-02 1.0395e-03

11 1.7000e+01 4.0970e+03 2.4100e+02 4.7034e-02 1.2503e-02 1.0395e-03

Table 2 Parameters as specified in Table 1 for f1, ε = εk = 10−1 and the polygonal rule.

K neval nK +1 τ ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
3 1.3000e+01 1.7000e+01 1.3077e+00 5.6435e-03 7.8277e-04 4.4742e-03

4 1.3000e+01 3.3000e+01 2.5385e+00 1.1245e-02 1.7642e-03 1.1215e-03

5 1.3000e+01 6.5000e+01 5.0000e+00 1.1245e-02 1.9634e-03 2.7580e-04

6 1.3000e+01 1.2900e+02 9.9231e+00 1.2010e-02 2.0193e-03 6.3898e-05

7 1.3000e+01 2.5700e+02 1.9769e+01 1.2010e-02 2.0373e-03 1.0892e-05

8 1.3000e+01 5.1300e+02 3.9462e+01 1.2010e-02 2.0439e-03 2.3614e-06

9 1.3000e+01 1.0250e+03 7.8846e+01 1.2010e-02 2.0465e-03 5.6749e-06

10 1.3000e+01 2.0490e+03 1.5762e+02 1.2012e-02 2.0477e-03 6.5032e-06

11 1.3000e+01 4.0970e+03 3.1515e+02 1.2012e-02 2.0482e-03 6.7103e-06

Table 3 Parameters as specified in Table 1 for f1, ε = εk = 10−1 and the cubic rule.

As observed in Table 2, the polygonal rule uses 13 evaluations for K = 3, but 17 for K ≥ 4. The cubic and

PCHIP rules only uses 13 evaluation for any K ≥ 3, as shown in Tables 3 and 4. From this fact, we deduce that

there is a level k0 such that for all k≥ k0 the TE algorithm does not evaluate f1 anymore. Actually, this property

may hold for a general smooth function and a given threshold ε > 0.

Notice also that eK = ‖vK− v̂K‖∞ is always smaller than ε , but it stays close to ε , a clear advantage of using

εk = ε . Indeed, it can be observed in Tables 1 and 2 of [1, 11] that eK tends to zero when K increases, when the

strategy εk = 2K−kε was selected. Since our target accuracy is eK / ε with as few evaluations as possible, if the

TE strategy uses just the necessary evaluations, then eK should be close to ε . Thus, the fact that eK tends to zero

with the criterion εk = 2K−kε means that the function is being evaluated more than it is actually needed.

As exposed in Section 1, the next condition is fulfilled:

|E− ÊK| ≤ |E−EK|+‖v
K− v̂K‖1 ≤ |E−EK|+‖v

K− v̂K‖∞. (13)

Since f1 is smooth, then |E−EK|= O(2−2K). Thus, for large values of K, (13) becomes

|E− ÊK|/ ‖v
K − v̂K‖1 ≤ ‖v

K− v̂K‖∞ / ε , (14)

which can also be checked in Tables 2 to 4 for any K > 3.

The smallest eK is achieved with the cubic rule, and the largest with the polygonal rule. Between them is the

PCHIP rule, with less eK and less evaluations than the polygonal rule, but larger eK with the same evaluations

K neval nK +1 τ ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
3 1.3000e+01 1.7000e+01 1.3077e+00 1.0606e-02 1.5196e-03 4.2125e-03

4 1.3000e+01 3.3000e+01 2.5385e+00 2.3126e-02 3.8381e-03 1.0814e-03

5 1.3000e+01 6.5000e+01 5.0000e+00 2.3126e-02 4.3212e-03 2.3874e-04

6 1.3000e+01 1.2900e+02 9.9231e+00 2.3126e-02 4.4675e-03 2.6119e-05

7 1.3000e+01 2.5700e+02 1.9769e+01 2.3126e-02 4.5131e-03 2.7146e-05

8 1.3000e+01 5.1300e+02 3.9462e+01 2.3144e-02 4.5297e-03 4.0470e-05

9 1.3000e+01 1.0250e+03 7.8846e+01 2.3177e-02 4.5360e-03 4.3801e-05

10 1.3000e+01 2.0490e+03 1.5762e+02 2.3177e-02 4.5387e-03 4.4634e-05

11 1.3000e+01 4.0970e+03 3.1515e+02 2.3177e-02 4.5399e-03 4.4842e-05

Table 4 Parameters as specified in Table 1 for f1, ε = εk = 10−1 and the PCHIP rule.
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K neval nK +1 τ ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
3 1.3000e+01 1.7000e+01 1.3077e+00 4.6488e-02 5.5437e-03 2.2962e-02

4 1.9000e+01 3.3000e+01 1.7368e+00 4.6488e-02 7.8089e-03 3.5761e-03

5 2.1000e+01 6.5000e+01 3.0952e+00 4.6488e-02 9.9419e-03 4.0614e-03

6 2.3000e+01 1.2900e+02 5.6087e+00 4.7016e-02 1.0549e-02 1.3192e-04

7 2.5000e+01 2.5700e+02 1.0280e+01 4.7016e-02 1.0726e-02 1.8242e-03

8 2.7000e+01 5.1300e+02 1.9000e+01 4.7026e-02 1.0781e-02 8.4798e-04

9 2.9000e+01 1.0250e+03 3.5345e+01 4.7033e-02 1.0800e-02 3.5975e-04

10 3.1000e+01 2.0490e+03 6.6097e+01 4.7033e-02 1.0808e-02 6.0389e-04

11 3.3000e+01 4.0970e+03 1.2415e+02 4.7034e-02 1.0811e-02 7.2597e-04

Table 5 Parameters as specified in Table 1 for f2, ε = εk = 10−1 and the polygonal rule.

K neval nK +1 τ ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
3 1.3000e+01 1.7000e+01 1.3077e+00 6.1742e-02 4.3700e-03 1.9318e-02

4 1.5000e+01 3.3000e+01 2.2000e+00 9.7336e-02 7.6400e-03 1.6578e-03

5 1.7000e+01 6.5000e+01 3.8235e+00 9.7336e-02 9.0579e-03 9.4329e-03

6 1.9000e+01 1.2900e+02 6.7895e+00 9.7601e-02 9.8133e-03 5.2198e-03

7 2.1000e+01 2.5700e+02 1.2238e+01 9.8885e-02 1.0169e-02 3.5400e-03

8 2.3000e+01 5.1300e+02 2.2304e+01 9.8885e-02 1.0359e-02 4.6595e-03

9 2.5000e+01 1.0250e+03 4.1000e+01 9.9210e-02 1.0448e-02 5.0960e-03

10 2.7000e+01 2.0490e+03 7.5889e+01 9.9210e-02 1.0496e-02 4.8203e-03

11 2.9000e+01 4.0970e+03 1.4128e+02 9.9272e-02 1.0518e-02 4.7122e-03

Table 6 Parameters as specified in Table 1 for f2, ε = εk = 10−1 and the cubic rule.

than the cubic rule. Hence the cubic rule here seems to be better than PCHIP rule for smooth functions, which

is probably a consequence of the better approximation properties of the cubic rule at all smooth regions, while

the PCHIP formula its as accurate as the cubic rule only at monotone regions.

In Tables 5 to 7 we repeat the same experiment for the function f2, which has a discontinuity jump in

ξ = 11/20. Once again, we use εk = ε = 10−1, and we explore the effect of increasing K.

For K > 4 in Table 5 and K > 3 in Tables 6 and 7, the TE algorithm evaluates f2 only two more times in

each new level. This happens because there is only one detail coefficient satisfying |d̂k−1
j | ≥ ε , which implies

two new evaluations at level k+1. We refer to Figure 1 for the sake of clarity. This dk−1
j is located around the

discontinuity, which is easily seen in Fig. 5 of [11].

In spite of the discontinuity of f2, ‖vK − v̂K‖∞ is smaller than ε , and also is near ε , which supports the

criterion εk = ε . Now |E−EK|= O(2−K), thus (14) is satisfied for K > 5.

Note that the polygonal rule uses more f2 evaluations, but also its eK are smaller than the other rules. eK has

similar magnitudes in the PCHIP and cubic rules and both use the same number of evaluations.

Once again, eK converges to some value close to ε for K → ∞, in contrast to observed in Tables 1 and 2

of [1, 11], where eK → 0, which confirms that the thresholding strategy εk = ε , instead of εk = 2K−kε , is the

most appropriate to attain a predetermined target accuracy in the computation.

In order to validate the error control property

2−sε / ‖vK− v̂K‖∞ / ε , (15)

K neval nK +1 τ ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
3 1.3000e+01 1.7000e+01 1.3077e+00 5.2400e-02 3.9780e-03 2.0350e-02

4 1.5000e+01 3.3000e+01 2.2000e+00 5.3922e-02 7.1545e-03 8.9677e-04

5 1.7000e+01 6.5000e+01 3.8235e+00 5.7556e-02 7.8826e-03 7.5834e-03

6 1.9000e+01 1.2900e+02 6.7895e+00 5.7616e-02 8.1229e-03 3.8474e-03

7 2.1000e+01 2.5700e+02 1.2238e+01 5.7920e-02 8.2001e-03 1.9526e-03

8 2.3000e+01 5.1300e+02 2.2304e+01 5.7920e-02 8.2293e-03 2.9445e-03

9 2.5000e+01 1.0250e+03 4.1000e+01 5.7920e-02 8.2408e-03 3.4357e-03

10 2.7000e+01 2.0490e+03 7.5889e+01 5.7922e-02 8.2458e-03 3.1923e-03

11 2.9000e+01 4.0970e+03 1.4128e+02 5.7922e-02 8.2481e-03 3.0704e-03

Table 7 Parameters as specified in Table 1 for f2, ε = εk = 10−1 and the PCHIP rule.
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ε 2−2ε neval ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
1e-01 2.5e-02 1.7000e+01 4.7034e-02 1.2506e-02 1.0395e-03

1e-02 2.5e-03 5.7000e+01 2.4734e-03 9.4241e-04 1.3285e-04

1e-03 2.5e-04 1.7500e+02 2.6667e-04 8.3589e-05 2.2476e-05

1e-04 2.5e-05 4.9500e+02 4.1356e-05 1.1371e-05 2.2269e-06

1e-05 2.5e-06 1.7930e+03 6.6194e-06 8.9509e-07 1.7367e-07

1e-06 2.5e-07 5.4810e+03 2.5200e-07 8.5716e-08 2.1467e-08

1e-07 2.5e-08 1.5791e+04 8.1472e-08 1.1234e-08 2.0251e-09

1e-08 2.5e-09 5.6865e+04 2.5045e-09 8.1255e-10 1.5742e-10

1e-09 2.5e-10 1.7420e+05 7.8479e-10 4.0906e-11 2.0754e-11

1e-10 2.5e-11 2.5368e+05 3.2548e-11 4.7299e-13 1.5278e-11

Table 8 Parameters as specified in Table 1 for f1, K = 15 and the polygonal rule. εk = ε varies between 10−1 and 10−10.

ε 2−4ε neval ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
1e-01 6.25e-03 1.3000e+01 1.2012e-02 2.0488e-03 6.7794e-06

1e-02 6.25e-04 2.7000e+01 4.4450e-04 9.2550e-05 4.9354e-05

1e-03 6.25e-05 4.3000e+01 2.7188e-04 2.2672e-05 7.3722e-06

1e-04 6.25e-06 8.1000e+01 7.0349e-06 9.1132e-07 5.9591e-08

1e-05 6.25e-07 1.3700e+02 6.5275e-07 1.1135e-07 4.9200e-09

1e-06 6.25e-08 2.5500e+02 6.3729e-08 1.0246e-08 2.4199e-09

1e-07 6.25e-09 4.0900e+02 1.1524e-08 1.4623e-09 7.9961e-10

1e-08 6.25e-10 7.1900e+02 6.2685e-10 1.1760e-10 8.0592e-11

1e-09 6.25e-11 1.3610e+03 6.9934e-11 9.8732e-12 1.9488e-11

1e-10 6.25e-12 2.5150e+03 7.3016e-12 9.4366e-13 1.5464e-11

Table 9 Parameters as specified in Table 1 for f1, K = 15 and the cubic rule. εk = ε varies between 10−1 and 10−10.

ε 2−4ε neval ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
1e-01 6.25e-03 1.3000e+01 2.3177e-02 4.5411e-03 4.4912e-05

1e-02 6.25e-04 2.7000e+01 1.8042e-02 1.1650e-03 5.0535e-04

1e-03 6.25e-05 6.9000e+01 1.4751e-04 1.3376e-05 1.3180e-06

1e-04 6.25e-06 1.2300e+02 2.7379e-05 1.4956e-06 1.4601e-07

1e-05 6.25e-07 2.3300e+02 2.8833e-06 2.0876e-07 1.4208e-08

1e-06 6.25e-08 4.2100e+02 7.0168e-07 1.1231e-08 1.6390e-09

1e-07 6.25e-09 7.5700e+02 6.8925e-08 1.3645e-09 6.3232e-11

1e-08 6.25e-10 1.3610e+03 1.5733e-09 1.1174e-10 2.6616e-12

1e-09 6.25e-11 2.4230e+03 1.1084e-10 1.1353e-11 1.4272e-11

1e-10 6.25e-12 4.3150e+03 2.2858e-11 1.1252e-12 1.5153e-11

Table 10 Parameters as specified in Table 1 for f1, K = 15 and the PCHIP rule. εk = ε varies between 10−1 and 10−10.
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Fig. 3 In continuous line, the graphics of ‖v15− v̂15‖∞ as a function of neval for εk = ε varying from 10−1 to 10−10,

applied to each local rule and f1. For comparison, in discontinuous line are shown the growth rates O(n−2
eval) and O(n−4

eval).
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Fig. 4 In continuous line, the graphics of |E− Ê15| as a function of neval for εk = ε varying from 10−1 to 10−10, applied

to each local rule and f1. For comparison, in discontinuous line are shown the growth rates O(n−2
eval) and O(n−4

eval).
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ε 2−2ε neval ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
1e-01 2.5e-02 4.5000e+01 4.7034e-02 1.0814e-02 6.5158e-04

1e-02 2.5e-03 8.1000e+01 2.4734e-03 9.1579e-04 1.5833e-04

1e-03 2.5e-04 1.9500e+02 2.6667e-04 8.3169e-05 2.1751e-05

1e-04 2.5e-05 5.1300e+02 4.1356e-05 1.1319e-05 1.1348e-06

1e-05 2.5e-06 1.8070e+03 6.6194e-06 8.9427e-07 9.6992e-07

1e-06 2.5e-07 5.4910e+03 2.5200e-07 8.5703e-08 1.1229e-06

1e-07 2.5e-08 1.5799e+04 8.1472e-08 1.1232e-08 1.1424e-06

1e-08 2.5e-09 5.6869e+04 2.5045e-09 8.1253e-10 1.1443e-06

1e-09 2.5e-10 1.7420e+05 7.8479e-10 4.0906e-11 1.1444e-06

1e-10 2.5e-11 2.5368e+05 3.2548e-11 4.7299e-13 1.1444e-06

Table 11 Parameters as specified in Table 1 for f2, K = 15 and the polygonal rule. εk = ε varies between 10−1 and

10−10.

we repeat the same experiment for a fixed value of K, K = 15, and several ε values. We do not consider τ in

Tables 8 to 13, because if K is fixed, then τ = O(n−1
eval). In the following, we study the approximation of the

smooth function f1, which is shown in Tables 8 to 10.

The first feature we observe is that (15) is satisfied, which provides a strong control on the error eK =
‖vK − v̂K‖∞. We also notice that the growth rate of the number of evaluations, neval , is larger in the polygonal

rule. We can easily see it plotting the results of the tables, shown in Figure 3 and 4. From such figures is

deduced that the growth rate is neval = O(e
−1/2
K ) for the polygonal rule and neval = O(e

−1/4
K ) for the cubic and

PCHIP rules. It can be equivalently formulated as eK = O((neval)
−2) and eK = O((neval)

−4). Remember that

2 and 4 are the highest orders of approximation of the considered local rules: PCHIP has only second order of

approximation, in general, but forth order in monotone regions. Despite this, PCHIP verifies eK = O((neval)
−4)

because, in the TE algorithm, the rule is applied in small monotone regions along the whole interval [0,1], where

PCHIP has order 4. In addition, we clearly observe that cubic is a bit better than PCHIP, but much better than

polygonal.

Another issue we can observe in Tables 8 to 10 is that |E− ÊK | decrees together with ε , if ε ≥ 10−8, but for

smaller ε , the precision of the integral gets stuck around 10−11. It can be explained using the triangle inequality:

|E− ÊK| ≥ |E−EK|− |EK− ÊK| ≥ |E−EK|−‖v
K− vK‖1 ≥ |E−EK|− ε .

Since f1 is an smooth function, then

|E−E15|=
2−30

12
| f ′′(η)| ∼= 7.8e-11| f ′′(η)|, η ∈ [0,1]. (16)

Thus,

|E− ÊK| ≥ 7.8e-11| f ′′(η)|− ε .

This says that, if ε→ 0, then |E− ÊK | is lower bounded by 7.8e-11| f ′′(η)|, which should be close to the number

1.5e-11, shown in Tables 8 to 10.

Comparing Figure 4 in this paper with Fig. 4 of [11], we note that our plot displays less oscillations. This

may indicate that the dependency between eK and the number of evaluations is stronger and smoother when the

criterion εk = ε is selected.

We repeat the experiment for the function f2, which has a discontinuity jump in ξ = 11/20, in Tables 5 to 7.

Notice that (15) is satisfied and the growth of neval is faster in the polygonal rule. Observing the Figures 5

and 6, corresponding to these tables, we observe that the growth rates are neval = O(e
−1/2
K ) for polygonal rule

and neval = O(e
−1/4
K ) for cubic and PCHIP rules. As shown in Figure 5, cubic rule is better than PCHIP rule to

approximate vK . However, PCHIP rule is now better than cubic rule to compute the integral. At least, it is true

for ε > 10−4, before |E− ÊK| gets stuck.

A similar argument to (16) can be used to explain that |E− ÊK| → 1.1e-06 in Tables 5 to 7. Since f2 is not

continuous, the error of the trapezoidal rule decreases as O(2−K). Thus

|E− ÊK| ≥ O(2−K)− ε .
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ε 2−4ε neval ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
1e-01 6.25e-03 4.1000e+01 9.9324e-02 1.0541e-02 4.7904e-03

1e-02 6.25e-04 1.0700e+02 4.4450e-04 7.5032e-05 4.8158e-05

1e-03 6.25e-05 1.2100e+02 5.0725e-05 7.7497e-06 2.9716e-06

1e-04 6.25e-06 1.5300e+02 7.0349e-06 7.2132e-07 8.9567e-07

1e-05 6.25e-07 2.0300e+02 6.5275e-07 1.0494e-07 1.1429e-06

1e-06 6.25e-08 3.1500e+02 6.3729e-08 1.0056e-08 1.1418e-06

1e-07 6.25e-09 4.6300e+02 1.1524e-08 1.4565e-09 1.1436e-06

1e-08 6.25e-10 7.6700e+02 6.2685e-10 1.1741e-10 1.1443e-06

1e-09 6.25e-11 1.4070e+03 6.9934e-11 9.7495e-12 1.1444e-06

1e-10 6.25e-12 2.5570e+03 7.3016e-12 9.3789e-13 1.1444e-06

Table 12 Parameters as specified in Table 1 for f2, K = 15 and the cubic rule. εk = ε varies between 10−1 and 10−10.

ε 2−4ε neval ‖vK − v̂K‖∞ ‖vK − v̂K‖1 |E− ÊK |
1e-01 6.25e-03 4.1000e+01 5.7922e-02 8.2502e-03 3.1449e-03

1e-02 6.25e-04 5.9000e+01 1.8042e-02 1.1149e-03 5.0165e-04

1e-03 6.25e-05 1.0700e+02 2.7833e-04 1.2775e-05 3.1659e-06

1e-04 6.25e-06 1.6900e+02 3.7144e-05 1.4538e-06 1.3326e-06

1e-05 6.25e-07 2.8500e+02 4.2689e-06 2.0742e-07 1.1600e-06

1e-06 6.25e-08 4.7500e+02 7.0168e-07 1.1186e-08 1.1461e-06

1e-07 6.25e-09 8.0500e+02 6.8925e-08 1.3631e-09 1.1445e-06

1e-08 6.25e-10 1.4090e+03 1.5733e-09 1.1040e-10 1.1444e-06

1e-09 6.25e-11 2.4650e+03 1.1084e-10 1.1313e-11 1.1444e-06

1e-10 6.25e-12 4.3510e+03 2.2858e-11 1.1239e-12 1.1444e-06

Table 13 Parameters as specified in Table 1 for f2, K = 15 and the PCHIP rule. εk = ε varies between 10−1 and 10−10.

Again, a comparison between our Figure 4 and Fig. 6 of [11] seems to indicate that the strategy εk = ε
makes the TE approach more robust than εk = 2K−kε .

We conclude that PCHIP only provides a better performance respect to the usual cubic interpolation when

the integral of a discontinuous function is computed. However, the cubic rule was better in all the other cases:

integration of a continuous functions and approximation of continuous or even discontinuous functions. The TE

authors also arrived to the conclusion that no advantages were seen using the ENO interpolation for f1, but ENO

was better for f2 in terms of accuracy and amount of evaluations.

The results included in the present paper indicate that non-linear interpolatory reconstructions may not lead

to substantial advantages over linear ones within the TE framework. We have observed that, in general, the cubic

interpolation lead to better results than the PCHIP interpolation, while both always fulfill neval = O(e
−1/4
K ). On

the other hand, the usual reason of using ENO or PCHIP interpolatory techniques is the capability of approximat-

ing jumps in the data without spurious oscillations. But in TE strategy this is not needed, because the algorithm

itself has a mechanism to detect the problematic zones of the function. In addition, linear interpolations are

always faster than nonlinear ones.

We wish to remark again that the choice εk = ε confers a high control over the error. In contrast, the original

selection εk = 2K−kε done by the TE authors only guarantees that ε is an upper bound of the error. Observe

that in [1, 11] all the numerical experiments were done with ε = 10−1, but the error converges to zero as soon

as K → ∞. In our case, the error converges to some number under ε , but greater than 2−sε , where s is the

order of the interpolation technique. This is a practical advantage, because K determines the resolution of the

approximation v̂K , and we can set it as large as we need, but the number of evaluations and the error depends

exclusively on ε .

5 Conclusions

In this paper we have examined some features of the Truncation and Encode strategy described in [1,11], in

particular its ability to compute integrals by quadrature rules to a given target accuracy.
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Fig. 5 In continuous line, the graphics of ‖v15− v̂15‖∞ as a function of neval for εk = ε varying from 10−1 to 10−10,

applied to each local rule and f2. For comparison, in discontinuous line are shown the growth rates O(n−2
eval) and O(n−4

eval).
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Fig. 6 In continuous line, the graphics of |E− Ê15| as a function of neval for εk = ε varying from 10−1 to 10−10, applied

to each local rule and f2. For comparison, in discontinuous line are shown the growth rates O(n−2
eval) and O(n−4

eval).
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In the TE strategy, the values used in the quadrature rule are computed by combining function evaluations

and suitably interpolated values in a multilevel fashion, following the basic guidelines of Harten’s MRF.

Our theoretical observations and numerical experiments allow us to conclude that the TE technique becomes

more efficient if the thresholding strategy proposed in [1, 11] is relaxed to εk = ε for all resolution levels. In

addition, higher order prediction schemes lead to improved the performance, but it does not seem necessary to

resort to nonlinear prediction schemes.

More research should be done to support these conclusions at a theoretical level.
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