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Abstract
Rough set theory is an important theory for the uncertain information processing. The information theoretic measures
have been introduced into rough set theory and provided a new effective method in uncertainty measurement and attribute
reduction. However, most of them did not consider the hierarchical structure of a decision table (D-Table). Thus, this paper
concretely constructs three-way weighted combination-entropies based on the D-Table’s three-layer granular structures
and Bayes’ theorem from a new perspective, and reveals the granulation monotonicity and systematic relationships of
three-way weighted combination-entropies. The relevant conclusion provides a more complete and updated interpretation
of granular computing for the uncertainty measurement, and it also establishes a more effective basis for the quantitative
application in attribute reduction.
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1 Introduction

Rough set theory, introduced by Pawlak [1], is a kind of important theory about uncertainty information
processing. So far, it has been successfully applied in data analysis, pattern recognition, machine learning
and knowledge discovery, artificial intelligence, and so on [2–7]. Using the tool of entropy to deal with the
uncertainty problem in rough set theory has been already studied [8–11], and the combination entropy was
proposed in the literature [12].
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As it is known that the rough set theory is mainly utilized to address the problem of information granules
approximation problem based on a D-Table, and the granularity reflects the different levels of a given problem,
then the granular computing (GrC) concerns the processing of complex information entities, information gran-
ules, which arise in the process of data abstraction and derivation of knowledge from D-Table. Hence, GrC
is a kind of important structure technology, and can be able to resolve the hierarchies problems in rough set
theory [13–17]. Note that three-way decisions serve as a fundamental methodology with extensive applications.
Hu [18] discussed three-way decisions based on semi-three-way decision spaces, and Li et al. [17] adopted the
multi-granularity to study three-way cognitive concept learning. In particular, Yao [19] pointed out that the
three-level analysis falls into the category of three-way decisions, so the three-layer attribute reduction and rel-
evant three-level measure construction become a typical case and a good example of three-way decisions.But
the definition of combination entropy proposed in literature [12] did not consider the hierarchical structure of
the a decision table (D-Table). Hence, on the basis of Ref. [12, 16], this paper concretely constructs three-way
weighted combination-entropies based on the new perspective of a D-Table’s three-layer granular structures
and Bayes’ theorem, and reveals the granulation monotonicity and systematic relationships of the weighted
combination-entropies.

The relevant conclusions of the study has been deepened information theory of rough set theory, provides a
more complete and updated interpretation of granular computing for the uncertainty measurement, and establish
more effective basis of the quantitative application for attribute reduction.

2 Preliminaries

2.1 The three-layer granular structures and the three-way probabilities

This section reviews the three-layer granular structures of a given D-Table and the three-way probabilities
in Ref. [16].

An information system is a pair S = (U,AT ), where,

1. U is a non-empty finite set of objects;

2. AT is a non-empty finite set of attributes;

3. for every a ∈ AT , there is a mapping fa, fa : U →Vfa , where Vfa is called the value set of U .

The D-Table is a special type of information table with AT = C∪D and C∩D = /0, where C and D denote
the sets of condition attribute and decision attribute, respectively.

Each subset of attributes A⊆C determines a binary indistinguishable relation IND(A) as follows IND(A) =
{(u,v) ∈U×U |∀a ∈ A, fa(u) = fa(v)}.

IND(A) serves as an equivalence relation to cause C-Class [x]A, which implies a type of basic granule. The
classified structure U/IND(A)= {[x]A : x∈U}means knowledge or C-Classification. Suppose that U/IND(A)=
{[x]iA : i = 1,2, . . . ,n}, thus |U/IND(A)|= n. Similarly, D can induce the equivalence relation IND(D) and fur-
ther D-Classification U/IND(D) = {X j : j = 1,2, . . . ,m}, thus |U/IND(D)|= m.

Aiming at the D-Table (U,C∪D) according to the four basic notions of the D-Table and four granular notions
presented in Table 1, the relevant classification and class lead to three-layer granular structures, as shown in Table
2.

The three-layer granular structures (Macro-Top, Meso-Middle, and Micro-Bottom) are mainly considered
from a systematic viewpoint, the numeric result and hierarchical/granular relationships are described in Fig. 1.

At the Micro-Bottom, C-Class [x]iA and D-Class X j are of concern. They exist in approximate space (U,AT )
and can produce some fundamental measures, including probabilities. By connecting the Meso-Middle and its
reasoning mechanism, three-way probabilities become bottomed measures that underlie informational construc-
tion at higher levels.
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Table 1 Conditional and decisional classifications and classes

Item C-Classification C-Class D-Classification D-Class
Mathematical symbol U/IND(A) [x]iA, i = 1,2, . . . ,n U/IND(D) X j,j=1,2,. . . ,m

Granular essence Conditional granule set Conditional granule Decisional granule set Decisional granule

Table 2 Basic descriptions of a D-Table’s three-layer granular structures

Structure Composition Granular scale Granular level Simple name
(1) U/IND(A),U/IND(D) Macro Top Macro-Top
(2) U/IND(A),X j Meso Middle Meso-Middle
(3) [x]iA,X j Micro Bottom Micro-Bottom

Fig. 1 Hierarchical/Granular relationships of the D-Table’s three-layer granular structures.
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Definition 1. At the Micro-Bottom, C-Class [x]iA and D-Class X j are of concern. The three-way probabilities
are defined by:

P([x]iA) =
|[x]iA|
|U |

,P([x]iA/X j) =
|[x]iA∩X j|
|X j|

,P(X j/([x]iA)) =
|[x]iA∩X j|
|[x]iA|

. (1)

Theorem 1. Three-way probabilities hold systematicness with regard to Bayes’ theorem:

P([x]iA/X j) =
P([x]iA)×P(X j/[x]iA)

P(X j)
. (2)

2.2 Information theory of combination entropy

Regarding the D-Table, this subsection reviews the information theory of combination entropy on classifica-
tions by Ref. [12].

Definition 2. Let K = (U,R) be an approximation space, U/IND(R) = {X1,X2, . . . ,Xm} a partition of U . Com-
bination entropy of R is defined as:

CE(R) =
m

∑
i=1

∣∣[x]iR∣∣
|U |

C2
|U |−C2

|[x]iR|

C2
|U |

=
m

∑
i=1

∣∣[x]iR∣∣
|U |

(
1−

C2
|[x]iR|

C2
|U |

)
, (3)

where C2
|[x]iR|

=
|[x]iR|×(|[x]iR|−1)

2 , |[x]
i
R|
|U | represents the probability of an equivalence Xi within the universe U , and

C2
|U |−C2

|[x]iR |

C2
|U |

denotes the probability of pairs of the elements which are distinguishable each other within the whole

number of pairs of the elements on the universe U .

Proposition 2. Let K1 = (U,R) and K2 = (U,Q) be two approximation spaces, then CE(P)>CE(Q) if P≺ Q.

3 Three-way weighted combination-entropies at the Meso-Middle

Based on three-way probabilities at the Micro-Bottom, this subsection constructs three-way weighted combination-
entropies at the Meso-Middle using the Bayes’ theorem and discusses their granulation monotonicity and sys-
tematicness. Relevant results take a link function to underlie the latter informational construction at the Macro-
Top.

A promotional measure at the Meso-Middle requires probability fusion when integrating C-Classes into C-
Classification. And because Bayes’ theorem provides systematicness of three-way probabilities. So it becomes
the starting point. Herein, we first make a key transformation for Bayes’ theorem. According to Theorem 1.
with stable X j,

Because, P([x]iA/X j) =
P([x]iA)×P(X j/([x]iA))

P(X j)
,∀i = 1,2, . . . ,n. So,

P(X j)P(([x]iA)/X j) = P([x]iA)×P(X j/([x]iA)). (4)

Then, the Eq.(4) on both sides is multiplied by

(
1−

C2
|[x]iA∩Xj |

C2
|X j |

)
, we have:

P(X j)×P([x]iA)/X j)

(
1−

C2
|[x]iA∩X j|

C2
|X j|

)
= P([x]iA)P(X j/[x]iA)

(
1−

C2
|[x]iA∩X j|

C2
|X j|

)
(5)
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then, the right side of Eq.(5) can be calculated as follows:

P([x]iA)P(X j/[x]iA)

(
1−

C2
|[x]iA∩Xj |

C2
|X j |

)
= P([x]iA)P

(
X j/([x]iA))−P([x]iA)P(X j/([x]iA)

) C2
|[x]iA∩Xj |

C2
|X j |

= P([x]iA)P(X j/([x]iA))−P([x]iA)P(X j/([x]iA))
C2

|[x]iA∩X j|
C2
|Xj |

C2

|[x]iA|
C2

|[x]iA|

= P([x]iA)P
(
X j/([x]iA)

)
−P

(
X j/([x]iA)

)(C2

|[x]iA∩X j|
C2

|[x]iA|

)
P([x]iA)

(
C2

|[x]iA|
C2
|Xj |

)

= P([x]iA)P(X j/([x]iA))−P([x]iA)

(
C2

|[x]iA|
C2
|X j |

)
P(X j/([x]iA))+P([x]iA)

(
C2

|[x]iA|
C2
|X j |

)(
P(X j/([x]iA))−P(X j/([x]iA))

(
C|[x]iA∩X j|2

C2

|[x]iA|

))

= P([x]iA)P(X j/([x]iA))−P([x]iA)

(
C2

|[x]iA|
C2
|X j |

)
P(X j/([x]iA))

(
C2
|U |

C2
|U |

)
+P([x]iA)

(
C2

|[x]iA|
C2
|X j |

)
×[

P(X j/([x]iA))−P(X j/([x]iA))

(
C2

|[x]iA∩X j|
C2
|[x]iA|

)]

= P([x]iA)P(X j/([x]iA))−P([x]iA)

(
C2

|[x]iA|
C2
|U |

)
P(X j/([x]iA)

(
C2
|U |

C2
|Xj |

)
+P([x]iA)P(X j/([x]iA))

(
C2
|U |

C2
|X j |

)
−

P([x]iA)P(X j/([x]iA))
C2
|U |

C2
|Xj |

+P([x]iA)

(
C2

|[x]iA|
C2
|Xj |

)[
P(X j/[x]iA)−P(X j/[x]iA)

(
C2

|[x]iA∩Xj|
C2

|[x]iA|

)]

= P(X j/[x]iA)
(

C2
|U |

C2
|Xj |

)[
P([x]iA)−P([x]iA)

(
C2

|[x]iA|
C2
|U |

)]
+P([x]iA)P(X j/([x]iA))−P([x]iA)P(X j/([x]iA))

(
C2
|U |

C2
|Xj |

)
+

P([x]iA)

(
C2

|[x]iA|
C2
|Xj |

)[
P(X j/[x]iA)−P(X j/([x]iA))

(
C2

|[x]iA∩Xj|
C2
|[x]iA |

)]
,

(6)
thus,

P(X j)×P([x]iA)/X j)

(
1−

C2
|[x]iA∩X j |

C2
|Xj |

)

= P(X j/[x]iA)
(

C2
|U |

C2
|Xj |

)[
P([x]iA)−P([x]iA)

(
C2

|[x]iA|
C2
|U |

)]
+P([x]iA)

(
C2

|[x]iA|
C2
|Xj |

)
[P(X j/([x]iA))−

P(X j/[x]iA)
C2

|[x]iA∩X j|
C2

|[x]iA|
)
]+P([x]iA)P(X j/([x]iA))−P([x]iA)P(X j/[x]iA)

C2
|U |

C2
|X j |

.

(7)

According to the i-based summation,

P(X j)×
m
∑

i=1
P([x]iA)/X j)

(
1−

C2
|[x]iA∩Xj |

C2
|X j |

)

=
m
∑

i=1
P(X j/[x]iA)

C2
|U |

C2
|Xj |

[
P([x]iA)

(
1−

C2
|[x]iA|

C2
|U |

)]
+

m
∑

i=1
P([x]iA)

C2
|[x]iA|

C2
|Xj |

[
P(X j/([x]iA)

(
1−

C2

|[x]iA∩Xj|
C2
|[x]iA |

)]
+

m
∑

i=1
P([x]iA)P(X j/[x]iA))

(
1−

C2
|U |

C2
|Xj |

)
.

(8)

The final item in Eq. (8) becomes
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m

∑
i=1

P([x]iA)P(X j/([x]iA))

(
1−

C2
|U |

C2
|X j|

)
= P(X j)

(
1−

C2
|U |

C2
|X j|

)
. (9)

The above step-by-step deduction implies the hierarchical evolution of Bayes’ theorem. Bayes’ theorem and
its three-way probabilities at the Micro-Bottom evolve in the combination-entropy direction, and thus, weight-
based combination-entropies and their relationships emerge at the Meco-Middle. Concretely, Eq. (9) provides a
constant that is based on X j, and thus, systematic Eq. (8) concerns three weighted and informational items. In
Eq. (8) , except the final item, the others three terms derived from the combination entropy proposed in [12] are
multiplied by the corresponding weight coefficients of specific probabilities. Next, we introduce the weighted
combination-entropy. Suppose that (ξ , pi) denotes a probability distribution and ωi ≥ 0 means the weight, then,
the weighted combination-entropy is defined as:

CEω(ξ ) =
n

∑
i=1

ωiPi(1−CPi). (10)

Definition 3. At the Meso-Middle, three-way weighted combination-entropies are defined by:

CEX j
ω (A) =

n
∑

i=1
P(X j/[x]iA)

C2
|U |

C2
|X j |

[
P([x]iA)

(
1−

C2

|[x]iA|
C2
|U |

)]
,

CEω(A/X j) = P(X j)×
n
∑

i=1
P([x]iA/X j)

(
1−

C2

|[x]iA∩Xj|
C2
|Xj |

)
,

Cω(X j/A) =
n
∑

i=1
P([x]iA)

C2

|[x]iA|
C2
|X j |

[
P(X j/[x]iA)

(
1−

C2

|[x]iA∩X j|
C2

|[x]iA|

)]
.

(11)

The weighted combination-entropy introduces weights into the combination entropy, where the weights
refect the importance degrees for information receivers or attention degrees of information receivers. Con-

cretely, CEX j
ω (A) improves absolute ∑

n
i=1 P([x]iA)

(
1−

C2
|[x]iA |

C2
|U |

)
introducing relative P(X j/[x]iA)

C2
|U |

C2
|X j |

to the impor-

tance weights, while Cω(X j/A) and CEω(A/X j) respectively improve the relative ∑
n
i=1

[
P(X j/[x]iA)

(
1−

C2

|[x]iA∩X j|
C2

|[x]iA|

)]

and ∑
n
i=1 P([x]iA/X j)

(
1−

C2

|[x]iA∩Xj|
C2
|X j |

)
by introducing absolute P([x]iA)

C2

|[x]iA|
C2
|Xj |

and P(X j). In other words, three-way

weighted combination-entropies inherit the essential uncertainty semantics of three-way properties by using dif-
ferent probability weights, and thus, can better describe the system regarding cause A and result X j, hence, they
become robust for uncertainty measurement. Next, we discuss their properties.

Theorem 3. At the Meso-Middle, three-way weighted combination-entropies have granulation monotonic-
ity. Concretely, if P � Q, then, (1)CE(X j)

ω (P) ≥ CE(X j)
ω (Q), (2) CEω(P/X j) ≥ CEω(Q/X j), (3)CEω(X j/P) ≤

CEω(X j/Q).

Proof. Since P� Q, let ∪k
t=1[x]

t
P = [x]Q, then we have
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(1)

CEX j
ω (P) =

k
∑

t=1
P(X j/([x]tP)

(
C2
|U |

C2
|X j |

)[
P([x]tP)

(
1−

C2
|[x]tP |

C2
|U |

)]
=

k
∑

t=1
P(X j/([x]tP)P([x]

t
P)

C2
|U |

C2
|X j |
−

k
∑

t=1
P(X j/[x]tP)P([x]

t
P)

C2
|U |

C2
|X j |

C2
|[x]tP|
C2
|U |

=
k
∑

t=1
P(X j ∩ [x]tP)

C2
|U |

C2
|X j |
−

k
∑

t=1
P(X j ∩ [x]tP)

C2
|[x]tP|

C2
|Xj |

=
k
∑

t=1
P(X j ∩ [x]tP)

C2
|U |−C2

|[x]tP|

C2
|Xj |

= P(X j ∩ [x]1P)

(
C2
|U |−C2

|[x]1P|

C2
|Xj |

)
+P(X j ∩ [x]2P)

(
C2
|U |−C2

|[x]2P |

C2
|Xj |

)
+ · · ·+P(X j ∩ [x]kP)

(
C2
|U |−C2

|[x]kP |

C2
|Xj |

)
≥ P(X j ∩ [x]1P)

(
C2
|U |−C2

|[x]Q|

C2
|Xj |

)
+P(X j ∩ [x]2P)

(
C2
|U |−C2

|[x]Q|

C2
|Xj |

)
+ · · ·+P(X j ∩ [x]kP)

(
C2
|U |−C2

|[x]Q|

C2
|X j |

)
=
[
P(X j ∩ [x]1P)+P(X j ∩ [x]2P)+ · · ·+P(X j ∩ [x]kP)

](C2
|U |−C2

|[x]Q|

C2
|Xj |

)
=

k
∑

t=1
P(X j ∩ [x]tP)

(
C2
|U |−C2

|[x]Q|

C2
|X j |

)
= P(X j ∩ [x]Q)

(
C2
|U |−C2

|[x]Q|

C2
|X j |

)
=CEX j

ω (Q).

(12)

(2)

CEω(P/X j) = P(X j)×
k
∑

t=1
P([x]tP/X j)

(
1−

C2

|[x]tP∩Xj|
C2
|X j |

)

= P(X j)×

[
P([x]Q/X j)−

k
∑

t=1
P([x]tP/X j)

C2

|[x]tP∩X j|
C2
|Xj |

]

= P(X j)×P([x]Q/X j)−P(X j)×

[
P([x]1P/X j)

C2

|[x]1P∩Xj|
C2
|X j |

+P([x]2P/X j)
C2

|[x]2P∩X j|
C2
|Xj |

+ · · ·+P([x]kP/X j)
C2

|[x]kP∩X j|
C2
|X j |

]

≥ P(X j)×P([x]Q/X j)−P(X j)×

[
P([x]1P/X j)

C2

|[x]Q∩X j|
C2
|Xj |

+P([x]2P/X j)
C2

|[x]Q∩X j|
C2
|X j |

+ · · ·+P([x]kP/X j)
C2

|[x]Q∩Xj|
C2
|Xj |

]

= P(X j)×P([x]Q/X j)−P(X j)×
[
P([x]1P/X j)+P([x]2P/X j)+ · · ·+P([x]kP/X j)

](C2

|[x]Q∩Xj|
C2
|Xj |

)

= P(X j)×P([x]Q/X j)−P(X j)×
k
∑

i=1
P([x]iP/X j)

(
C2

|[x]Q∩Xj|
C2
|Xj |

)

= P(X j)×P([x]Q/X j)−P(X j)×P([x]Q/X j)

(
C2

|[x]Q∩Xj|
C2
|Xj |

)

= P(X j)×P([x]Q/X j)

(
1−

C2

|[x]Q∩Xj|
C2
|X j |

)
=CEω(Q/X j).

(13)
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(3)

Cω(X j/P) =
k
∑

t=1
P([x]tP)

C2
|[x]tP|

C2
|X j |

[
P(X j/[x]tP)

(
1−

C2

|[x]tP∩X j|
C2
|[x]tP|

)]

=
k
∑

t=1
p([x]tp)p(X j/[x]tp)

[
C2
|[x]tp|

C2
|X j |

(
1−

C2

|Xj∩[x]tp|
C2
|[x]tp|

)]

=
k
∑

t=1
p(X j ∩ [x]tp)

(
C2
|[x]tp|−C2

|X j∩[x]tp|
C2
|X j |

)

= p(X j ∩ [x]1p)

(
C2

|[x]1p|−C2

|X j∩[x]1p|
C2
|X j |

)
+ p(X j ∩ [x]2p)

(
C2

|[x]2p|−C2

|Xj∩[x]2p|
C2
|X j |

)
+ · · ·+ p(X j ∩ [x]kp)

(
C2

|[x]kp|−C2

|Xj∩[x]kp|
C2
|Xj |

)

≤ p(X j ∩ [x]1p)

(
C2

|[x]Q|−C2

|Xj∩[x]Q|
C2
|Xj |

)
+ p(X j ∩ [x]2p)

(
C2

|[x]Q|−C2

|Xj∩[x]Q|
C2
|X j |

)
+ · · ·+ p(X j ∩ [x]kp)

(
C2

|[x]Q|−C2

|Xj∩[x]Q|
C2
|X j |

)

=
k
∑

t=1
p(X j ∩ [x]tp)

(
C2

|[x]Q|−C2

|Xj∩[x]Q|
C2
|X j |

)

=

[
k
∑

t=1
p(X j ∩ [x]tp)

](C2

|[x]Q|−C2

|Xj∩[x]Q|
C2
|X j |

)

= p(X j ∩ [x]Q)

(
C2

|[x]Q|−C2

|X j∩[x]Q|
C2
|Xj |

)
=CWω(X j/Q).2

(14)

Theorem 4. Three-way weighted combination-entropies have systematicness:

CEω(A/X j) =CEX j
ω (A)+CEω(X j/A)+P(X j)

(
1−

C2
|U |

C2
|X j|

)
. (15)

Theorem 4 provides an important relationship for the three-way weighted combination-entropies. In other
words, CEω(A/X j) is a linear translation of the sum of CEX j

ω (A) and CEω(X j/A), where P(X j)[1−(C2
|U |)/(C

2
|X j|)]

is a constant at the Meso-Middle. And it develops Bayes’ theorem at the Micro-Bottom to establish a systematic
equation of three-way weighted combination-entropies. Furthermore, eliminating the conversion distance can
produce a new measure to simplify the systematic equation.

Definition 4. At the Meso-Middle, the linear weighted combination-entropy with regard to the weighted combination-
entropy CEω(X j/A) is defined as:

CE lin
ω (X j/A) =CEω(X j/A)+P(X j)

(
1−

C2
|U |

C2
|X j|

)
. (16)

Corollary 5. At the Meso-Middle, the linear weighted combination-entropy has granulation monotonicity. Con-
cretely, if P� Q, then, CE lin

ω (X j/P)≤CE lin
ω (X j/Q).

Corollary 6. Three-way weighted combination-entropies have the equivalent systematicness:

CEω(A/X j) =CEX j
ω (A)+CE lin

W (X j/A). (17)

The linear weighted combination-entropy CE lin
ω (X j/A) corresponds to CEω(X j/A) by virtue of a specific

linear transformation. The former uses the superscript lin (which means linear) to different from the latter, but
both are viewed as only one item for three-way weighted combination-entropies. In contrast to CEω(X j/A),
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CE lin
ω (X j/A) exhibits same granulation monotonicity, and it simplfies the systematicness of three-way weighted

combination-entropies.
In summary, this section at the Meso-Middle becomes important to link the Micro-Bottom and Macro-

Top. Bayes’ theorem provides three-way probabilities systematicness, and it further plays a fundamental role
in the informational evolution of weighted combination-entropies. It induces essential measures and systematic
equations of three-way weighted combination-entropies. Next, three-way weighted combination-entropies are
promoted from the Meso-Middle to the Macro-Top. combination

4 Three-way weighted combination-entropies at the macro-top

For three-way weighted combination-entropies at the Meso-Middle, their monotonicity and systematicness
are established. They can hierarchically evolve to Macro-Top by using the natural sum integration with regard
to multiple D-Classes. This subsection constructs three-way weighted combination-entropies at the Macro-Top
and offers their monotonicity and systematicness.

Definition 5. At Macro-Top, three-way weighted combination-entropies are defined by:

CED
ω (A) =

m
∑
j=1

CEX j
ω (A),

CEω(A/D) =
m
∑
j=1

CEω(A/X j),

CEω(D/A) =
m
∑
j=1

CEω(X j/A).

(18)

Corollary 7. CE lin
ω (D/A) is a linear transformation of CEω(D/A). Thus,

CE lin
ω (D/A) =

m

∑
j=1

CEω(X j/A)+
m

∑
j=1

P(X j)

(
1−

C2
|U |

C2
|X j|

)
=CEω(D/A)+CE(D), (19)

where combination entropy CE(D) =
m
∑
j=1

P(X j)[1− (C2
|U |)/(C

2
|X j|)] is a constant.

CE lin
ω (D/A) and CEω(D/A) exhibit a linear transformation to be viewed as only one item. Three-way

weighted combination-entropies at Macro-Top depend on the sum integration to naturally inherit monotonicity
and systematicness at the Meso-Middle, and the relevant features are presented as follows.

Theorem 8. At Macro-Top, three-way weighted combination-entropies have granulation monotonicity. Con-
cretely, if P�Q, then, CED

ω (P)≥CED
ω (Q); CEω(P/D)≥CEω(Q/D), CEω(D/P)≤CEω(D/Q), CE lin

ω (D/P)≤
CE lin

ω (D/Q).

Theorem 9. Three-way weighted combination-entropies have systematicness:

CEω(A/D) =CED
ω (A)+CEω(D/A)+CE(D) =CED

ω (A)+CE lin
ω (D/A) (20)

At Macro-Top, Theorem 9 describes an important relationship of the three-way weighted combination-
entropies by introducing CE(D). Thus, CEω(A/D) is a linear translation of the summation of CED

ω (A) and
CE lin

ω (D/A) or the difference between CEω(D/A) and CE lin
ω (D/A).

With regard to the Meso-Middle, the Macro-Top exhibits the hierarchical promotion and systematic integra-
tion from D-Classes to D-Classification. Accordingly, three-way weighted combination-entropies at Macro-Top
are interestedly fused by three-way weighted combination-entropies at the Meso-Middle, and they exhibit a type
of informational summation. The relevant results are well clarified in a relationship as shown Fig. 2.
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The three-way weighted

combined-entropies
Three-layer granular

structures

Bayes’ theorem
C-Class([x])and

D-Class(X)

C-Classification(A) D-Class(X)or

C-Class([x]) D-Classification(D)

C-Classification(A) and

D-Classification(D)

C

The systematisms of three-way

weighted combined-entropies

Bayes’ theorem

Fig. 2 Three-way weighted combination-entropies based on three-layer granular structures.

5 Conclusion

In summary, based on the new perspective of three-layer granular structures and Bayes’ theorem, this paper
concretely constructed three-way weighted combination-entropies, and revealed the granulation monotonicity
and systematic relationships of the weighted combination-entropies. The relevant conclusion provided a more
complete and updated the interpretation of granular computing for the uncertainty measurement, and established
more effective basis of the quantitative application with attribute reduction.
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