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Abstract
In this paper, we compute first Zagreb index (coindex), second Zagreb index (coindex), third Zagreb index, first hyper-
Zagreb index, atom-bond connectivity index, fourth atom-bond connectivity index, sum connectivity index, Randić con-
nectivity index, augmented Zagreb index, Sanskruti index, geometric-arithmetic connectivity index and fifth geometric-
arithmetic connectivity index of the line graphs of Banana tree graph and Firecracker graph.
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1 Introduction and Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). We denote p = |V (G)| and q = |E(G)|,
order and size of graph G respectively. The degree dv of a vertex v in graph G is defined as the number of first
neighbors of vertex v in G. The concept of degree in graph theory is closely related to the concept of valence in
chemistry. The complement of a graph G, represented through G, is a simple graph on the similar set of vertices
V (G) wherein two vertices u and v are joined by an edge uv, if and only if they are not adjacent in G. Obviously,
E(G)∪E(G) = E(Kp) where Kp is complete graph of order p, and |E(G)|= p(p−1)

2 −q. In the mathematically
discipline of graph theory, the line graph of an undirected graph G is alternative graph L(G) that denotes the
adjacencies among the edges of G. Line graphs are very useful in mathematical chemistry, but in recent years
they were considered very little in chemical graph theory. For further facts about the applications of line graphs
in chemistry, we mention the articles [6, 25, 32].
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Topological indices are the arithmetical numbers which depends upon the construction of any simple graph.
Topological indices are generally classified into three kinds: degree-based indices (see [2, 5, 7, 8, 28, 29]),
distance-based indices (see [3, 16]), and spectrum-based indices (see [11, 27]). There are also certain topo-
logical indices depends upon both degrees and distances (see [9, 27]). The advantage of topological indices is
in that they may be used directly as simple numerical descriptors in a comparison with, chemical, physical or
biological parameters of molecules in Quantitative Structure Property Relationships (QSPR) and in Quantitative
Structure Activity Relationships (QSAR). Wiener index is the oldest topological index and its mathematical
properties and chemical applications have been extensively studied.

The Wiener index of graph G is defined as follows:

W (G) =
1
2 ∑
(u,v)

d(u,v).

where (u,v) is any ordered pair of vertices in G and d(u,v) is u− v geodesic.
The Zagreb indices were first introduced by Gutman in [24], they are important molecular descriptors and

have been closely correlated with many chemical properties (see [35]) and defined as:

M1(G) = ∑
u∈V (G)

d2
u and (1)

M2(G) = ∑
uv∈E(G)

dudv. (2)

In fact, one can rewrite the first Zagreb index as

M1(G) = ∑
uv∈E(G)

[
du +dv

]
.

The third Zagreb index, introduced by Fath-Tabar in [13]. This index is defined as follows:

M3(G) = ∑
uv∈E(G)

|du−dv|. (3)

The hyper-Zagreb index was first introduced in [34]. This index is defined as follows:

HM(G) = ∑
uv∈E(G)

(du +dv)
2. (4)

In 2008, Doslic put forward the first Zagreb coindex, defined as (see [1]):

M1 = M1(G) = ∑
uv 6∈E(G)

[
du +dv

]
.

The second Zagreb coindex is defined as (see [1]):

M2 = M2(G) = ∑
uv 6∈E(G)

dudv.

The degree distance index for graphs developed by Dobrynin and Kochetova in [10] and Gutman in [17] as
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a weighted version of the Wiener index. The degree distance of G, denoted by DD(G), is defined as follows:

DD(G) = ∑
{u,v}⊆V (G)

d(u,v)[du +dv].

Randić index introduced by Milan Randić in 1975 (see [30]). This index is defined as follows:

R(G) = ∑
uv∈E(G)

1√
dudv

. (5)

Later, this index was generalized by Bollobás and Erdös (see [4]) to the following form for any real number α ,
and named the general Randić index:

R(G) = ∑
uv∈E(G)

[dudv]
α .

The Atom-Bond Connectivity index (ABC), introduced by Estrda et al. in [12] which has been applied up
until now to study the stability of alkanes and the strain energy of cycloalkanes. The ABC index of G is defined
as:

ABC(G) = ∑
uv∈E(G)

√
du +dv−2

dudv
. (6)

In 2010, the general sum-connectivity index χ(G) has been introduced in [37]. This index is defined as follows:

χ(G) = ∑
uv∈E(G)

1√
du +dv

. (7)

D. Vukicevic and B. Furtula introduced the geometric arithmetic (GA) index in [36]. The GA index for G is
defined by

GA(G) = ∑
uv∈E(G)

2
√

dudv

du +dv
. (8)

Inspired by the work on the ABC index, Furtula et al. proposed the following modified version of the ABC
index and called it as Zagreb index (AZI) in [14]. This index is defined as follows:

AZI(G) = ∑
uv∈E(G)

(
dudv

du +dv−2
)3. (9)

The fourth member of the class of ABC index was introduced by M. Ghorbani et al. in [20, 22, 23] as:

ABC4(G) = ∑
uv∈E(G)

√
Su +Sv−2

SuSv
. (10)

where Su is the summation of degrees of all neighbors of vertex u in G. In other words, Su= ∑uv∈E(G) dv. Similarly
for Sv.
The 5th GA index was introduced by Graovac et al. in [21] as:

GA5(G) = ∑
uv∈E(G)

2
√

SuSv

Su +Sv
. (11)
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The Sanskruti index S(G) of a graph G is defined in [33] as follows:

S(G) = ∑
uv∈E(G)

(
SuSv

Su +Sv−2
)3. (12)

Theorem 1. [17] Let G be a graph of order p and size q. Then

M1(G) = M1(G)+ p(p−1)2−4q(p−1); (13)

M1(G) = 2q(p−1)−M1(G); (14)

M1(G) = 2q(p−1)−M1(G). (15)

Theorem 2. [19] Let G be a graph of order p and size q. Then

M2(G) =
1
2

p(p−1)3−3q(p−1)2 +2q2 +
2p−3

2
M1(G)−M2(G); (16)

M2(G) = 2q2− 1
2

M1(G)−M2(G); (17)

M2(G) = q(p−1)2− (p−1)M1(G)+M2(G). (18)

Theorem 3. [26] Let G be a graph of order p and size q. Then

M1(G) ≥ 2W (G)−2M1(G)+6q(p−1)− p3 + p2. (19)

Theorem 4. [26] Let G be a nontrivial graph of diameter d ≥ 2. Then

M1(G) ≤ DD(G)−M1(G)

2
(20)

with equality if and only if d = 2.

The following lemma is helpful for computing the degree of a vertex of line graph.

Lemma 5. Let G be a graph with u,v ∈V (G) and e = uv ∈ E(G). Then:

de = du +dv−2.

Lemma 6. [18] Let G be a graph of order p and size q, then the line graph L(G) of G is a graph of order p and
size 1

2 M1(G)−q.

In this paper we discuss the topological indices and co-indices of the line graphs of Banana tree graph and
Firecracker graph and their complement graphs.

2 Topological indices of line graph of Banana tree graph

In this section we computed the topological indices of the line graph of Banana tree graph. The Banana tree
graph Bn,k is the graph obtained by connecting one leaf of each of n copies of an k−star graph with a single root
vertex that is distinct from all the stars. The Bn,k has order nk+1 and size nk. B3,5 is shown in the Fig. 1.

Theorem 7. Let G be the line graph of the Banana tree graph Bn,k. Then

1. M1(G) = nk3−5nk2 +10nk+n3−7n;

2. M2(G) = 1
2 nk4− 7

2 nk3 +n2k+10nk2−14nk+ 1
2 n4− 1

2 n3−n2 +8n;
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Fig. 1 The Banana tree graph B3,5.

Fig. 2 The line graph of Banana tree graph B3,5.

3. M3(G) =−n2 +2nk−3n;

4. HM(G) = 2n4 +2nk4−14nk3 +2n2k+41nk2−57nk−n3−2n2 +31n;

5. R(G) = 1
2

n2−n√
n2 + n√

(k−1)n
+ kn−2n√

(k−1)(k−2
+ 1

2
nk2+6n−5nk√

(k−2)2
;

6. ABC(G) = 1
2 n
√

3+ 2
3 n+ 1

6 n
√

15+ 1
4 n
√

6;

7. GA(G) =
2n
√

(k−1)n
k−1+n +

2n(k−2)
√

(k−1)(k−2)
2k−3 + 1

2(n
2 +nk2−5nk+5n);

8. χ(G) = (n2−n)
√

2
4
√

n + n√
k−1+n

+ kn−2n
2k−3 + nk2+6n−5nk√

2k−4
;

9. AZI(G) = (n2−n)n6

(2n−2)3 + n4(k−1)3

(k−3+n)3 +
(kn−2n)(k−1)3(k−2)3

(2k−5)3 + (nk2+6n−5nk)(k−2)6

(2k−6)3 .

Proof.
The graph G for n = 3 and k = 5 is shown in Fig. 2. By using Lemma 5, it is easy to see that the order of

G is nk out of which (k− 2)n vertices are of degree k− 2, n vertices are of degree k− 1 and n vertices are of
degree n. Therefore by using Lemma 6, G has size n2+3n+nk2−3nk

2 . We partition the size of G into edges of the
type E(du,dv) where uv is an edge. In G, we get edges of the type E(n,n), E(k−1,n), E(k−1,k−2) and E(k−2,k−2). The
number of edges of these types are given in the Table 1. By using Formulas (1)-(9) and Table 1, we can obtain
the required results.

(du,dv) where uv ∈ E(G) (n,n) (k−1,n) (k−1,k−2) (k−2,k−2)
Number of edges n(n−1)

2 n (k−2)n nk2+6n−5nk
2

Table 1 The size partition of G.

Theorem 8. Let G be the Web graph Wn. Then

1. M1(G) =−2n3k−6n2k+nk2 +5nk+n3 +2n2−n;

2. M1(G) = M1(G) =−nk3 +3nk2−7nk−n3 +n2 +10n;

3. M2(G) = n4k− 1
2 n3k2−8n2k− 3

2 n2k2 +3nk2 +3nk+2n3 +4n2−2n;

4. M2(G) =−nk3 +3nk2−7nk−n3 +n2 +10n;
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Fig. 3 The Firecracker graph F4,7.

Fig. 4 The line graph of Firecracker graph F4,7.

5. M2(G) =−n4k+ 1
2 n3k2−n3k+ 3

2 n2k2 +5n2k− 3
2 nk2− 11

2 nk+ 1
2 n4 + 1

2 n3− 1
2 n2 + 5

2 n;

6. W (G)≤ (1−3k)n3+(−3k3+6k2−9k)n2+(4k2+4k+12)n+(nk−1)3−(nk−1)2

2 ;

7. DD(G)≥−n3 +2(−3k2 +1)n2 +(−k3 +7k2−4k+13)n.

(Su,Sv) where uv ∈ E(G) (n2−n+ k−1,n2−n+ k−1) (k2−4k+n+4,n2−n+ k−1)
Number of edges n(n−1)

2 n
(Su,Sv) where uv ∈ E(G) (k2−4k+n+4,k2−4k+5) (k2−4k+5,k2−4k+5)

Number of edges (k−2)n nk2+6n−5nk
2

Table 2 The size partition of G.

Proof. By using Theorems (1)-(4) and (7), we can obtain the required results.

Theorem 9. Let G be the Banana tree graph Bn,k. Then

1. ABC4(G)= 1
2(n

2−n)
√

2n2+2k−2n−4
(n2+k−n−1)2 +n

√
k2+n2−3k+1

(k2−4k+n+4)(n2+k−n−1)+(kn−2n)
√

2k2−8k+n+7
(k2−4k+n+4)(k2−4k+5)+

1
2(nk2+

6n−5nk)
√

2k2−8k+8
(k2−4k+5)2 ;

2. GA5(G)= (n2−n)
√

(n2+k−n−1)2

2n2+2k−2n−2 +2n
√

(k2−4k+n+4)
k2+n2−3k+3 +

2(kn−2n)
√

(k2−4k+n+4)(k2−4k+5)
2k2−8k+n+9 +

(nk2+6n−5nk)
√

(k2−4k+5)2

2k2−8k+10 ;

3. S(G)= (n2−n)(n2+k−n−1)6

(2n2+2k−2n−4)3 + n(k2−4k+n+4)3(n2+k−n−1)3

(k2+n2−3k+1)3 + (kn−2n)(k2−4k+n+4)3(k2−4k+5)3

(2k2−8k+n+7)3 + (nk2+6n−5nk)(k2−4k+5)6

2(2k2−8k+8)3 .

Proof.
We partition the size of G into edges of the type (Su,Sv) where uv ∈ E(G) as shown in Table 2. Hence we

get the required results by using Table 2 and Formulas (10)-(12).

3 Topological indices of line graph of Firecracker graph

In this section we computed the topological indices of the line graph of Firecracker graph. The Firecracker
graph Fn,k is the graph obtained by the concatenation of nk−stars by linking one leaf from each. The Fn,k has
order nk and size nk−1. F4,7 is shown in the Fig. 3.
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Theorem 10. Let G be the line graph of the Firecracker graph Fn,k. Then

1. M1(G) = nk3−5nk2 +12nk−4k+8n−28;

2. M2(G) = 1
2 nk4− 7

2 nk3 +11nk2−10nk−2k2 +28n−4k−54;

3. M3(G) = 4nk−4k−12n+16;

4. HM(G) = 2nk4 +4nk2−14nk3−52nk−10k2−2k+136n−248;

5. R(G) = 1
3

√
3+ 2

3

√
3
k +

2√
3(k−1)

+ 1
4 n−1+ n−3√

k
+2
√

k−2
k−1 +

nk2+6n−5nk
k−2 +(n−2)

√
k−2

k ;

6. ABC(G) = 1
3

√
15+ 2

3

√
3
√

k+1
k + 2

3

√
3
√

k
k−1 +

1
4(n− 4)

√
6+ 1

2(2n− 6)
√

2+k
k +(2k− 4)

√
2k−5

(k−2)(k−1) +

1
2(nk2 +6n−5nk)

√
2k−6
(k−2)2 +(nk−2n−2k+4)

√
2k−4
(k−2)k ;

7. GA(G)= 8
7

√
3+ 4

√
3k

3+k +
4
√

3(k−3)
2+k + 8(n−3)

√
k

4+k +
4(k−2)

√
(k−1)(k−2)

2k−3 + 1
2(nk2+8n−5nk−8)+(n−2)

√
k(k−2);

8. χ(G) = 2√
7
+ 2√

3+k
+ 2√

2+k
+ 2(n−3)√

4+k
+ 2(k−2)√

2k−3
+ 1

2
nk2+6n−5nk√

2(k−2)
+(n−2)

√
1
2(k−2)+ 1

4(n−4)
√

2;

9. AZI(G) =−162668
3375 + 54k3

(1+k)3 +
128(n−3)k3

(k+2)3 + 2(k−2)(k−1)3(k−2)3

(2k−5)3 + (nk2−6n−5nk)(k−2)6

16(k−3)3 + 1
8(nk−2n−2k+4)k3.

Proof.
The graph G for n = 4 and k = 7 is shown in Fig. 4. By using Lemma 5, it is easy to see that the order of

G is nk−1 out of which 2 vertices are of degree 3, 2 vertices are of degree k−1, n−3 vertices are of degree 4,
n(k−2) vertices are of degree k−2, and n−2 vertices are of degree k. Therefore by using Lemma 6, G has size
nk2−3nk+8n−8

2 . We partition the size of G into edges of the type E(du,dv) where uv is an edge. In G, we get edges
of the type E(3,4), E(3,k), E(3,k−1), E(4,4), E(4,k), E(k−1,k−2), E(k−2,k−2), and E(k,k−2). The number of edges of these
types are given in the Table 3. By using Formulas (1)-(9) and Table 3, we can obtain the required results.

(du,dv) : uv ∈ E(G) (3,4) (3,k) (3,k−1) (4,4) (4,k) (k−1,k−2) (k−2,k−2) (k,k−2)
Number of edges 2 2 2 n−4 2n−6 2(k−2) nk2−5nk+6n

2 (n−2)(k−2)

Table 3 The size partition of G.

Theorem 11. Let G be the line graph of the Firecracker graph Fn,k. Then

1. M1(G) = 2nk2−16n2k+19nk−4k+40n−61;

2. M1(G) = M1(G) = 8n2k−14nk+4k−24n+44;

3. M2(G) = 3
2 nk3 +8n2k2−15nk2 +32n2k−56nk+2k2 +14k−160n+ 409

2 ;

4. M2(G) = 8n2k2−24n2k−12nk2 +2k2 +32n2 +28nk−96n+6k+100;

5. M2(G) =−8n2k2−24n2k+9nk2 +52nk−2k2−12k+60n−126;

6. W (G)≤−8n2k+ 1
2 nk2 + 21

2 nk−2k+20n−31;

7. DD(G)≥ nk3−5nk2 +16n2k−16nk+2k−40n+60.

Proof.
By using Theorems (1)-(4) and (10), we can obtain the required results.
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Theorem 12. Let G be the line graph of the Firecracker graph Fn,k. Then

1. ABC4(G) = 1
2 (k−2)(k−3)(n−2)

√
2k2−8k+11

(k2−4k+6)(k2−4k+7) +(n−4)(k−2)√
2k2−8k+16

(k2−4k+12)(k2−4k+6)+(k2−3k+2)
√

2
k2−4k+7 +2k−4

√
2k2−8k+15

(k2−4k+11)(k2−4k+6)+2
√

k2−2k+12
2k3−5k2+10k+33 +2

√
k2−2k+16

2k3−k2−6k+77 +

2
√

k2−2k+17
2k3−k2−4k+84 +2

√
k2−2k+8

2k3−5k2+2k+21 +(n−5)
√

2
√

k2−2k+18
(k2−4k+12)(4+k)+2

√
4k+13

4k2+30k+56 +4
√

k+2
4k2+20k+21 +

1√
2
(n−6)

√
2k+7
k+4 ;

2. GA5 = 4
√

(2k+3)(k2−4k+7)
k2−2k+10 +

2
√

(2k+3)(2k+7)
2k+5 +

4
√

(2k+3)(k2−4k+11)
k2−2k+14 +

4
√

(2k+7)(k2−4k+11)
k2−2k+18 +

4
√

(2k+7)(k2−4k+12)
k2−2k+19 +

4
√

(2k+7)(2k+8)
4k+15 +

2(k−2)
√

(k2−4k+5)(k2−4k+7)
k2−4k+6 +

(n−2)(k2−5k+6)
√

(k2−4k+6)(k2−4k+7)
2k2−8k+13 +

4(k−2)
√

(k2−4k+11)(k2−4k+6)
2k2−8k+17 +

(n−4)(k−2)
√

(k2−4k+12)(k2−4k+6)
k2−4k+9 +

4(n−5)
√

(k2−4k+12)(2k+8)
k2−2k+20 +

(k2−5k+6)
√

(k2−4k+5)(k2−4k+7)
k2−4k+6 +n−6;

3. S(G)= 2(2k+3)3(k2−4k+7)3

(k2−2k+8)3 + (2k+3)3(2k+7)3

32(2+k)3 + 2(2k+3)3(k2−4k+11)3

(k2−2k+12)3 + 2(2k+7)3(k2−4k+11)3

(k2−2k+16)3 + 2(2k+7)3(k2−4k+12)3

(k2−2k+17)3 + 2(2k+7)3(2k+8)3

(4k+13)3 +

8(n−6)(4+k)6

(2k+7)3 + 1
4 (k−2)(k2−4k+7)3 +

(n−2)(k−2)(k−3)(k2−4k+6)3(k2−4k+7)3

2(2k2−8k+11)3 + 2(k−2)(k2−4k+11)3(k2−4k+6)3

(2k2−8k+15)3 + (n−4)(k−2)(k2−4k+12)3(k2−4k+6)3

8(k2−4k+8)3 + 16(n−5)(k2−4k+12)3(4+k)3

(k2−2k+18)3 +
1
8 (k−2)(k−3)(k2−4k+7)3.

Proof.
We partition the size of G into edges of the type (Su,Sv) where uv ∈ E(G) as shown in Table 4. Hence we get the

required results by using Table 4 and Formulas (10)-(12).
(Su,Sv) : uv ∈ E(G) (2k+3,k2−4k+7) (2k+3,2k+7) (2k+3,k2−4k+11) (2k+7,k2−4k+11)

Number of edges 2 2 2 2
(Su,Sv) : uv ∈ E(G) (2k+7,k2−4k+12) (2k+7,2k+8) (2k+8,2k+8) (k2−4k+5,k2−4k+7)

Number of edges 2 2 n−6 2(k−2)
(Su,Sv) : uv ∈ E(G) (k2−4k+6,k2−4k+7) (k2−4k+11,k2−4k+6) (k2−4k+12,k2−4k+6) (k2−4k+12,2k+8)

Number of edges (n−2)(k2−5k+6)
2 2(k−2) (n−4)(k−2) 2(n−5)

(Su,Sv) : uv ∈ E(G) (k2−4k+5,k2−4k+7)
Number of edges k2−5k+6

Table 4 The size partition of G.

4 Conclusion

In this paper, certain degree based topological indices, i.e., first Zagreb index (coindex), second Zagreb
index (coindex), third Zagreb index, first hyper-Zagreb index, atom-bond connectivity index, fourth atom-bond
connectivity index, sum connectivity index, Randić connectivity index, augmented Zagreb index, Sanskruti
index, geometric-arithmetic connectivity index and fifth geometric-arithmetic connectivity of the line graphs of
Banana tree graph and Firecracker Graph is solved here analytically.
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[19] I. Gutman, B. Furtula, Ž. K. Vukićević and G. Popivoda, (2015), On Zagreb Indices and Coindices, MATCH Commu-
nications in Mathematical and in Computer Chemistry, 74, No 1, 5-16.

[20] M. Ghorbani and M. Ghazi, (2010), Computing some Topological Indices of Triangular Benzenoid, Digest Journal of
Nanomaterials and Biostructures, 5, No 4, 1107-1111.

[21] A. Graovac, M. Ghorbani and M. A. Hosseinzadeh, (2011), Computing fifth geometric-arithmetic index for nanostar
dendrimers, Journal of Mathematical Nanosciences, 1, No 1, 33-42.

[22] M. Ghorbani and M. A. Hosseinzadeh, (2010), Computing ABC4 index of nanostar dendrimers, Optoelectronics and
advanced materials – Rapid Communications, 4, No 9, 1419-1422.

[23] M. Ghorbani and M. Jalili, (2009), Computing a New Topological Index of Nano Structures, Digest Journal of Nano-
materials & Biostructures, 4, No 4, 681-685.
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