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Abstract
In this paper we provide a method to prove the existence of weak solutions for a type of non-autonomous nonlocal reaction-
diffusion equations. Due to the presence of the nonlocal operator in the diffusion term, we cannot apply the Monotonicity
Method directly. To use it, we build an auxiliary problem with linear diffusion and later, through iterations and compactness
arguments, we show the existence of solutions for the nonlocal problem.
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1 Introduction and statement of the problem

The diffusion of a bacteria in a container or the study of the behaviour of a population which tends to move
away from overpopulated areas are more accurate when the problem is modelled through a nonlocal diffusion
equation (for more details see [9–12, 20]). In the last decades, many authors have been interested in studying a
variant of the heat equation with a nonlocal diffusion term, namely

du
dt
−a(l(u))∆u = f ,

where the function a is continuous and greater than a positive constant and l ∈ L (L2(Ω),R). One of the
difficulties of this kind of problems is that the existence of a Lyapunov structure is not always guaranteed, only
in particular situations (for more details cf. [15, 16], for p-laplacian see [13]).
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Despite the limitations, Chipot and his coworkers have dealt with this type of equations in the last decades.
Namely, they have been interested in studying the asymptotic behaviour of the solutions. In [8,10,11], assuming
that function a is locally Lipschitz, they analyzed results which establish order relationships between the solution
of the evolution problem and the corresponding stationary solutions. In fact, under suitable assumptions, they
are able to prove the strong convergence of the solution of the evolution problem towards a stationary solution.
To obtain their goal, they apply a wide range of techniques. For instance, dynamical systems are used in [11],
Maximum Principle is applied in [10], a Lyapunov structure and minimizers of energy are used in [15], and
relationships between the Lipschitz constant of the function a and the lower bound m are established in [14].

Besides some authors deal with equations with more than one nonlocal operator, for instance

du
dt
−A(l(u))u+a0(l(u))u = f ,

being A = ∑
N
i, j=1

∂

∂xi

(
ai j(x) ∂

∂x j

)
a uniformly elliptic operator (cf. for more details [7]). Issues as existence and

uniqueness of weak solution and stationary solution, and the exponential decay of the evolution problem towards
a stationary solution are analyzed. In addition, in a simpler framework

du
dt
−a(l(u))∆u+u = f ,

Chipot and Chang [7] also prove results which establish relationships between weak solutions and stationary
solutions similarly to the cited above, and the strong convergence of the weak solution towards a stationary
solution (cf. [7, Lemma 4.5] and [7, Theorem 4.2] respectively).

Moreover, in this setting where the forcing term is linear, there exist some partial results concerning the
existence of global attractors for autonomous nonlocal problems developed by Lovat [20] and Andami Ovono
[1].

Other authors have been interested in including nonlinear and time-dependent forcing terms and have anal-
ysed the non-autonomous nonlocal diffusion problem

du
dt
−a(l(u))∆u = f (u)+h(t) in Ω× (τ,∞),

u = 0 on ∂Ω× (τ,∞),
u(x,τ) = uτ(x) in Ω,

(1)

where
a ∈C(R; [m,∞)), (2)

being m > 0, l a continuous linear form on L2(Ω), i.e.

l(u) = lg(u) =
ˆ

Ω

g(x)u(x)dx for some g ∈ L2(Ω), (3)

uτ ∈ L2(Ω) and h ∈ L2
loc(R;H−1(Ω)). When the functions a and f are also globally Lipschitz, the existence and

uniqueness of weak solution to (1) have been proved in [21] by Menezes making use of fixed point arguments.
Later, this result is proved in [3] via the compactness method when a is locally Lipschitz and f is just continuous,
sublinear and fulfils for some η > 0

( f (s)− f (r))(s− r)≤ η(s− r)2 ∀s,r ∈ R. (4)

There exist also results concerning the existence of pullback attractors in L2(Ω) and the upper semicontinuity
property of attractors in the multi-valued framework for a variation of (1) with perturbations (see [4] for more
details). In this case, the function f ∈C(R) fulfils

−κ−α1|s|p ≤ f (s)s≤ κ−α2|s|p ∀s ∈ R, (5)
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where α1, α2, and κ are positive constants and p ≥ 2. Observe that from (5), we can deduce that there exists
β > 0 such that

| f (s)| ≤ β (|s|p−1 +1) ∀s ∈ R. (6)

Interested in improving the assumptions made in [3], there exist recent results that show, via the compactness
method, the existence and uniqueness of a weak solution to (1) when the function f ∈C(R) satisfies (4) and (5)
(see [6] for more details).

The goal of this paper is to show the existence of weak solutions to (1) on a bounded open set Ω⊂RN under
assumptions (2)–(5), via the monotonicity method (cf. [19, Chapitre 2]), together with an iterative procedure and
compactness arguments. Although the idea of using iterations to deal with an equation with nonlocal diffusion
was applied in the proof of [17, Theorem 1.1], as far as we know, there are no references that combine mono-
tonicity, iterations and compactness, to prove existence results in the nonlocal setting. In addition, we would like
to point out that although making use of compactness by translation the existence of weak solutions to (1) can be
proved, due to the several difficulties existing with this type of problems we consider that it is interesting to be
able to attack the equation in so many different ways as possible (in order to try to apply to new extensions). In
particular here we combine iterations, compactness arguments and monotonicity as mentioned before. Observe
that this new method allows to use the well-known monotonicity method for solving PDEs even in the nonlocal
framework and for general linear operators (see Conclusions and final comments at the end of the manuscript
for more details).

The structure of the paper is as follows. In Section 2 (and just for completeness to the reader), we recall the
monotonicity method for solving nonlinear PDEs. After that, in Section 3, we prove the existence of weak solu-
tions for a non-autonomous nonlocal reaction-diffusion problem combining the previous results from Section 2
with compactness arguments and iterations. To conclude, we provide some comments about how to extend this
procedure to some other linear operators.

Let us introduce the notation used throughout the paper. As usual, the inner product in L2(Ω) is denoted
by (·, ·) and by | · | the norm associated to it. The inner product in H1

0 (Ω), which is given by the product in
(L2(Ω))N of the gradients, is represented by ((·, ·)) and by ‖ · ‖ its associated norm. By 〈·, ·〉, we represent the
duality product between H−1(Ω) and H1

0 (Ω), and by ‖·‖∗ the norm in H−1(Ω). We identify L2(Ω) with its dual,
and therefore we have the chain of compact and dense embeddings H1

0 (Ω)⊂ L2(Ω)⊂H−1(Ω). Observe that as
a result of the previous identification, we can abuse of the notation considering l ∈ L2(Ω) but continue denoting
(l,u) as l(u). The duality product between Lp(Ω) and Lq(Ω) (where q is the conjugate exponent of p) will be
denoted by (·, ·), and the norm in Ls(Ω) will be represented by ‖ · ‖Ls(Ω) with s≥ 1. We also denote by 〈·, ·〉 the
duality product between H−1(Ω)+Lq(Ω) and H1

0 (Ω)∩Lp(Ω).

Definition 1. A weak solution to (1) is a function u ∈ L∞(τ,T ;L2(Ω))∩L2(τ,T ;H1
0 (Ω))∩Lp(τ,T ;Lp(Ω)) for

all T > τ , with u(τ) = uτ , such that for all v ∈ H1
0 (Ω)∩Lp(Ω)

d
dt
(u(t),v)+a(l(u(t)))((u(t),v)) = ( f (u(t)),v)+ 〈h(t),v〉, (7)

where the previous equation must be understood in the sense of the distributions D ′(τ,∞).

Remark 1. If u is a weak solution to (1), then taking into account that the function a is continuous, l ∈ L2(Ω), (6)
and (7), it fulfils for any T > τ that u′ ∈ L2(τ,T ;H−1(Ω))+Lq(τ,T ;Lq(Ω)), and therefore u ∈C([τ,∞);L2(Ω))
(cf. [19, Théorème 2, p. 575]). Observe that now the initial datum in (1) makes sense. In addition, it holds

|u(t)|2 +2
ˆ t

s
a(l(u(r)))‖u(r)‖2dr = |u(s)|2 +2

ˆ t

s
( f (u(r)),u(r))dr+2

ˆ t

s
〈h(r),u(r)〉dr

for all τ ≤ s≤ t (cf. [18, Théorème 2, p. 575] or [22, Lemma 3.2, p. 71]).
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2 Brief recalling of the monotonicity method for solving nonlinear PDEs

In this section we provide a short summary about the requirements to apply the monotonicity method for
solving nonlinear PDEs (see [19, Chapitre 2] for more details).

Consider a separable Hilbert space H, whose norm is denoted by | · |. Moreover, suppose given Vi, i =
1, . . . ,m, with m ≥ 1, separable and reflexive Banach spaces, such that

⋃m
i=1Vi ⊂ H,

⋂m
i=1Vi is dense in H, and

Vi ⊂ H with continuous injection for all i = 1, . . . ,m.
We denote by ‖ · ‖i and ‖ · ‖∗i the norms in Vi and V ′i respectively (i = 1, . . . ,m). By V we represent the

space
⋂m

i=1Vi. In addition, 〈·, ·〉 denotes the duality product between V ′i and Vi for all i = 1, . . . ,m. Finally, H is
identified with its topological dual H ′ using the Riesz theorem.

Consider T ∈ (τ,∞) fixed and let Bi : (τ,T )×Vi→ V ′i be, for i = 1, . . . ,m, operators, in general nonlinear,
such that

A1) The mapping (τ,T ) 3 t 7→ Bi(t,v) ∈V ′i is measurable for each v ∈V .

A2) Each operator Bi is hemicontinuous, i.e. for all t ∈ (τ,T ) and for all u,v,w ∈ Vi, the application θ ∈
(τ,T ) 7→ 〈Bi(t,u+θv),w〉 ∈ R is continuous.

Suppose also that there exist 1 < pi < ∞, i = 1, . . . ,m, at least one of them greater than or equal to 2, constants
c > 0, α > 0 and λ ≥ 0, and a nonnegative function C ∈ L1(τ,T ), such that for all t ∈ (τ,T ) it satisfies

A3) Bi(t, ·) is bounded in V ′i , i.e.
‖Bi(t,v)‖∗i ≤ c(1+‖v‖pi−1

i ) ∀v ∈Vi.

A4) Bi(t, ·) is monotone, i.e.

〈Bi(t,v)−Bi(t,w),v−w〉+λ |v−w|2 ≥ 0 ∀v,w ∈Vi.

A5) Bi(t, ·) is coercive, i.e.
〈Bi(t,v),v〉+λ |v|2 +C(t)≥ α‖v‖pi

i ∀v ∈Vi.

Suppose given functions hi ∈ Lp′i(τ,T ;V ′i ) for i = 1, . . . ,m, and an initial datum uτ∈H.
In what follows we denote

B(t,v) =
m

∑
i=1

Bi(t,v) ∀v ∈V ,

h(t) =
m

∑
i=1

hi(t).

Now, we consider the problem 
u ∈

m⋂
i=1

Lpi(τ,T ;Vi) ∀T > τ,

u′(t)+B(t,u(t)) = h(t) in D ′(τ,T ;V ′),

u(τ) = uτ .

(8)

Then, we have the following result (see [19, Théorème 1.4, p. 168]). Observe that in the proof, it can be
used any numerable family formed by linearly independent elements such that the vector space generated by
this family is dense in V .

Theorem 1. Under the above assumptions, there exists a unique solution u to the problem (8). In addition, this
solution satisfies

u ∈C([τ,T ];H), u′ ∈
m

∑
i=1

Lp′i(τ,T ;V ′i ).
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3 Existence and uniqueness

In this section we will prove the existence of a weak solution to (1) using iterations, compactness arguments
and the monotonicity method for solving nonlinear PDEs. Due to the presence of the nonlocal operator in the
diffusion term, the monotonicity method recalled in Section 2 does not seem possible to be applied directly to
problem (1). However we first apply this method to a non-autonomous reaction-diffusion equation in which the
diffusion term has a viscosity which depends on time, but it does not depend on the solution. Then through
iterations and appropriate estimates, we can prove the existence and uniqueness of a weak solution to (1) using
compactness arguments.

For each n≥ 1, we denote by un the weak solution to

(Pn)


u ∈ L2(τ,T ;H1

0 (Ω))∩Lp(τ,T ;Lp(Ω))∩C([τ,T ];L2(Ω)),

d
dt
(u(t),v)+a(l(un−1(t)))((u(t),v)) = ( f (u(t)),v)+ 〈h(t),v〉,

u(τ) = uτ ,

with u0 ≡ 0 and un is the solution to (Pn) if n≥ 1, where the equation in (Pn) must be understood in the sense of
the distributions D ′(τ,∞) for all v ∈ H1

0 (Ω)∩Lp(Ω).

Corollary 2. Suppose that (2)–(5) hold and h∈ L2
loc(R;H−1(Ω)). Then, for any uτ ∈ L2(Ω) there exists a unique

solution un to (Pn) for all n≥ 1.

Proof. The existence and uniqueness of the solution to problem (Pn) is due to Theorem 1. Namely, take
H = L2(Ω), V1 = H1

0 (Ω), p1 = 2, V2 = Lp(Ω) and p2 = p, and define

B1(t,v) =−a(l(un−1(t)))∆v ∀v ∈ H1
0 (Ω) ∀t ∈ (τ,T ),

B2(t,v) =− f (v) ∀v ∈ Lp(Ω) ∀t ∈ (τ,T ),

h1(t) = h(t) ∀t ∈ (τ,T ),

h2(t) = 0 ∀t ∈ (τ,T ).

Then it is not difficult to check that B1 and B2 satisfy A1)-A5). As a result, there exists a unique solution to (Pn)
for all n≥ 1.

Remark 2. Observe that in the above result the function a does not need to fulfil any Lipschitz condition in order
to guarantee the uniqueness since in the problems (Pn) the viscosity a(l(un−1)) works as a constant on each
iteration, arising the time-depending monotone operator B1.

We are ready to prove the existence of weak solutions to (1).

Theorem 3. Suppose that (2)–(5) hold and h ∈ L2
loc(R;H−1(Ω)). Then for each uτ ∈ L2(Ω), problem (1) pos-

sesses at least a weak solution.

Proof. Given u0 ≡ 0, by Corollary 2, problem (P1) can be solved, arising u1. Inductively, given un−1, denote by
un the solution to (Pn). Then, we have

1
2

d
dt
|un(t)|2 +a(l(un−1(t)))‖un(t)‖2 = ( f (un(t)),un(t))+ 〈h(t),un(t)〉 a.e. t ∈ (τ,T ).

Now, making use of (2) and (5), we obtain

d
dt
|un(t)|2 +m‖un(t)‖2 +2α2‖un(t)‖p

Lp(Ω) ≤ 2κ|Ω|+ 1
m
‖h(t)‖2

∗ a.e. t ∈ (τ,T ).

http://www.up4sciences.org


78 Tomás Caraballo, Marta Herrera-Cobos and Pedro Marín-Rubio. Applied Mathematics and Nonlinear Sciences 2(2017) 73–82

Integrating between τ and t ∈ [τ,T ], we deduce that {un} is bounded in L∞(τ,T ;L2(Ω))∩ L2(τ,T ;H1
0 (Ω))∩

Lp(τ,T ;Lp(Ω)). From this, taking into account that each un ∈ C([τ,T ];L2(Ω)), we deduce that there exists a
positive constant Ĉ such that

|un(t)| ≤ Ĉ ∀t ∈ [τ,T ] ∀n≥ 1.

Then, using that the function a ∈C(R;R+) and l ∈ L2(Ω), there exists a positive constant MĈ such that

a(l(un−1(t)))≤MĈ ∀t ∈ [τ,T ] ∀n≥ 1.

Therefore, it fulfils that {−a(l(un−1))∆un} is bounded in L2(τ,T ;H−1(Ω)). Moveover, making use of the
boundedness of {un} in Lp(τ,T ;Lp(Ω)), we obtain that the sequence { f (un)} is bounded in Lq(τ,T ;Lq(Ω)).

Now, since it satisfies for all n≥ 1

dun

dt
−a(l(un−1))∆un = f (un)+h in D ′(τ,T ;H−1(Ω)+Lq(Ω)),

the sequence {(un)′} is bounded in L2(τ,T ;H−1(Ω))+Lq(τ,T ;Lq(Ω)). Therefore, there exist a subsequence
of {un} (relabeled the same), a function u ∈ L∞(τ,T ;L2(Ω)) ∩L2(τ,T ;H1

0 (Ω))∩ Lp(τ,T ;Lp(Ω)) with u′ ∈
L2(τ,T ;H−1(Ω))+Lq(τ,T ;Lq(Ω)), ξ1 ∈ Lq(τ,T ;Lq(Ω)), and ξ2 ∈ L2(τ,T ;H1

0 (Ω)), such that

un ∗⇀ u weakly-star in L∞(τ,T ;L2(Ω)),

un ⇀ u weakly in L2(τ,T ;H1
0 (Ω)),

un ⇀ u weakly in Lp(τ,T ;Lp(Ω)),

un→ u strongly in L2(τ,T ;L2(Ω)),

(un)′⇀ u′ weakly in L2(τ,T ;H−1(Ω))+Lq(τ,T ;Lq(Ω)),

f (un)⇀ ξ1 weakly in Lq(τ,T ;Lq(Ω)),

a(l(un−1))un ⇀ ξ2 weakly in L2(τ,T ;H1
0 (Ω)).

(9)

Now, we will prove that ξ1 = f (u) and ξ2 = a(l(u))u. From (9), we deduce

un(x, t)→ u(x, t) strongly ∀(x, t) ∈ (Ω× (τ,T ))\N1, (10)

un(t)→ u(t) strongly in L2(Ω) ∀t ∈ (τ,T )\N2, (11)

where N1 is a null set in RN+1 and N2 is a null set in R.
Then, since the sequence { f (un)} is bounded in Lq(τ,T ;Lq(Ω)), f ∈ C(R) and (10) holds, it fulfils that

ξ1 = f (u), thanks to [19, Lemme 1.3, p. 12].
Finally, we will prove ξ2 = a(l(u))u. Since a ∈C(R;R+), l ∈ L2(Ω) and (11) holds, we have

a(l(un−1(t)))→ a(l(u(t))) ∀t ∈ (τ,T )\N2.

Therefore,

a(l(un−1(t)))un(x, t)→ a(l(u(t)))u(x, t) ∀(x, t) ∈ (Ω× (τ,T ))\(N1∪ (Ω×N2)),

where N1∪(Ω×N2) is a null set in RN+1. From this and the boundedness of {a(l(un−1))un} in L2(τ,T ;H1
0 (Ω)),

it fulfils that ξ2 = a(l(u))u, applying again [19, Lemme 1.3, p. 12].
Thereupon, to prove (7) for all v ∈ H1

0 (Ω)∩Lp(Ω), we fix T > τ and ϕ ∈D(τ,T ). Since un is a solution to
(Pn), it satisfies for all n≥ 1

ˆ T

τ

(un(t),v)ϕ ′(t)dt +
ˆ T

τ

a(l(un−1(t)))〈−∆un(t),v〉ϕ(t)dt =
ˆ T

τ

〈 f (un(t))+h(t),v〉ϕ(t)dt.
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Taking limit when n→ ∞ in the previous expression and making use of (9), (7) holds.
Finally, to prove the existence of a weak solution to (1), we only need to check that u(τ) = uτ . Observe

that this equality makes complete sense since u ∈ C([τ,T ];L2(Ω)) (cf. [18, Théorème 2, p. 575]). To do this,
consider fixed v ∈ H1

0 (Ω)∩Lp(Ω) and ϕ ∈ H1(τ,T ), with ϕ(T ) = 0 and ϕ(τ) 6= 0. Since un is a weak solution
to (Pn), it fulfils

d
dt
(un(t),v)+a(l(un−1(t)))((un(t),v)) = ( f (un(t)),v)+ 〈h(t),v〉 a.e. t ∈ (τ,T ).

Now, multiplying by ϕ in the previous expression and integrating between τ and T , we have

− (uτ ,v)ϕ(τ)+
ˆ T

τ

(un(t),v)ϕ ′(t)dt +
ˆ T

τ

a(l(un−1(t)))((un(t),v))ϕ(t)dt

=

ˆ T

τ

( f (un(t)),v)ϕ(t)dt +
ˆ T

τ

〈h(t),v〉ϕ(t)dt.

Thereupon, taking limit in n, we obtain

− (uτ ,v)ϕ(τ)+
ˆ T

τ

(u(t),v)ϕ ′(t)dt +
ˆ T

τ

a(l(u(t)))((u(t),v))ϕ(t)dt

=

ˆ T

τ

( f (u(t)),v)ϕ(t)dt +
ˆ T

τ

〈h(t),v〉ϕ(t)dt.

Otherwise, we deduce from (7)

− (u(τ),v)ϕ(τ)+
ˆ T

τ

(u(t),v)ϕ ′(t)dt +
ˆ T

τ

a(l(u(t)))((u(t),v))ϕ(t)dt

=

ˆ T

τ

( f (u(t)),v)ϕ(t)dt +
ˆ T

τ

〈h(t),v〉ϕ(t)dt.

Comparing these last two equalities we deduce that (u(τ),v)ϕ(τ) = (uτ ,v)ϕ(τ). Finally, since ϕ(τ) 6= 0 and
H1

0 (Ω)∩Lp(Ω) is dense in L2(Ω), the equality u(τ) = uτ holds.

Corollary 4. Under assumptions of Theorem 3, if additionally the function a is locally Lipschitz, then there
exists a unique weak solution to (1), denoted by u(·) = u(·;τ,uτ). Moreover, this solution behaves continuously
in L2(Ω) with respect to initial data.

Proof. Both assertions will be proved simultaneously since the same estimates are valid for both purposes.
Suppose that u1 and u2 are two weak solutions to (1) corresponding to initial values u1τ , u2τ ∈ L2(Ω) respectively.
Then, from the energy equality we deduce

1
2

d
dt
|u1(t)−u2(t)|2 +a(l(u1(t)))‖u1(t)−u2(t)‖2

≤ |a(l(u1(t)))−a(l(u2(t)))|‖u2(t)‖‖u1(t)−u2(t)‖+( f (u1(t))− f (u2(t)),u1(t)−u2(t)) a.e. t > τ.

Since u1, u2 ∈C([τ,T ];L2(Ω)), therefore {ui(t)}i=1,2⊂ S for all t ∈ [τ,T ], where S is a bounded set of L2(Ω).
Moreover, it satisfies {l(ui(t))}i=1,2⊂ [−R,R] for all t ∈ [τ,T ], for some R> 0, since l ∈ L2(Ω). Therefore, using
(2), (4) and the locally Lipschitz continuity of the function a, we have

d
dt
|u1(t)−u2(t)|2 ≤

(La(R))2|l|2‖u2(t)‖2 +4ηm
2m

|u1(t)−u2(t)|2 a.e. t ∈ (τ,T ),

where La(R) is the Lipschitz constant of the function a in [−R,R]. Then, both statements, uniqueness and
continuity w.r.t. initial data, hold.
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Remark 3. Under the locally Lipschitz assumption for a, thanks to the uniqueness of weak solution to (1), if
fulfils that the whole sequence {un} converges to u weakly in L2(τ,T ;H1

0 (Ω))∩Lp(τ,T ;Lp(Ω)) and weakly-
star in L∞(τ,T ;L2(Ω)). Analogously, the whole sequence {(un)′} converges to u′ weakly in L2(τ,T ;H−1(Ω))+
Lq(τ,T ;Lq(Ω)).

Conclusions and final comments

We have presented a procedure to obtain existence of solution for a nonlocal reaction-difussion problem
through a combination of different methods, namely monotonicity, iterations and compactness arguments. To
go further on the study of the long-time behaviour and regularity issues related to (1) and variations we refer
to [3–6] and the cited references in Section 1. As referred in that paragraph, these results ensure the global-in-
time existence of solutions to some nonlocal models settled in Biology and Physics among other areas.

It is delicate how to generalise the method established in this paper to other nonlocal problems with mono-
tone operators but nonlinear (see e.g. [5]). Now, we provide some extensions for linear operators.

The previous procedure can be applied to equations with more general linear diffusion terms with di-
vergence form like a(l(u))Au, where A = ∑

N
i, j=1

∂

∂xi

(
bi j(x) ∂

∂x j

)
, with bi j ∈ L∞(Ω) for all i, j = 1, . . . ,N and

∑
N
i, j=1 bi j(x)ξiξ j ≥ ζ |ξ |2RN , where ζ > 0. In fact, it is possible to apply this procedure to nonlocal equations

given by a sum of a finite family of terms under the above assumptions, namely

du
dt
−

m

∑
k=1

ak(lk(u))Aku =
m

∑
k=1

( fk(u)+hk(t)),

where the nonlocal operator ak(lk(u)) can be different for each k, fk fulfils

−κ−α1|s|pk ≤ fk(s)s≤ κ−α2|s|pk ∀s ∈ R,

and ∑k hk belongs to L2
loc(R;H−1(Ω))+∑

m
k=1 Lp′k

loc(R;Lp′k(Ω)).
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