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1 Introduction

1.1 Asymptotic behavior of non-autonomous equations

What is the difference between the asymptotic behavior of an autonomous and a non-autonomous equation?
This may be, at first glance, a simple question to answer. Let us discuss this problem a little.

Consider a general non-autonomous differential equation given by{
u̇ = F(t,u), t > s,

u(s) = u0 ∈ X ,
(1)

where X is a Banach space and F is in some metric space C of functions. Assume also that for each u0 ∈ X ,
s ∈ R and F ∈ C, the problem (1) has a uniquely defined solution u(t,s,F,u0) for all times t > s and the map
(t,s,u0) 7→ u(t,s,F,u0) is continuous for each F ∈ C.

We know that, when F is independent of time, u(t,s,F,u0) = u(t− s,0,F,u0), that is, the dependence of t
and s in u are artificial, and in fact u depends only on the elapsed time t− s. Hence, the asymptotic behavior (the
behavior for large times) can be obtained making t→ ∞ or s→−∞, indistinctly.

However, if F is time dependent, the dependence of t and s of the solution is explicit and the scenarios arising
from making t → ∞ and s→−∞ may be completely different. This is not so surprising once we realize that
in the autonomous case (F independent of time) we have only one vector field, namely F , driving the solutions
but, in the non-autonomous case we have infinitely many vector fields (F(t, ·) for each t) driving the solutions,
and their behavior may be completely different for t → ∞ and s→−∞. This clarifies a little the understanding
of asymptotic behavior for non-autonomous equations, and shows that it is not an easy task to study this subject.
First, one must define which behavior will be treated: the forward attraction (when t → ∞) or the pullback
attraction (when s→−∞). Once the framework is set, we reach another problem: in any of them it is clear
that the asymptotic behavior of the solutions of (1) are related with the behavior of the vector fields F(t, ·) when
t→±∞, which can be unrelated with the behavior of each F(t, ·). This could have been said in another way: the
translates θsF alone are not enough, in general, to describe the asymptotic dynamics of (1) (for more details on
this subject we refer to [7] or [9, 16, 17]). Thus, the next question comes quite naturally: how do we introduce
the limiting vector fields of F(t, ·) in the study?

Consider C the space of all functions H : R×X → X , that are bounded in sets of the form R×B, where B is
a bounded set of X . Consider also the shift operator θt : C→ C given by

θtH(·, ·) = H(t + ·, ·), for each t ∈ R.

Now define Σ0 = {θtF}t∈R, which is the set of all translations of F and let

Σ = closure of Σ0 in C,

which is known as the hull of F .
Using our assumptions for the problem (1), we know that each problem{

u̇ = H(t,u), for t ∈ R
u(0) = u0 ∈ X ,

(2)

has a uniquely defined solution ϕ(t,H)u0 for each t > 0, u0 ∈ X and H ∈ Σ.
Note that we are now dealing with all the solutions of the problem (1) but also with all the solutions of the

limiting vector fields of F(t, ·).
Remark 1. To obtain problem (1), just consider H = θsF . The solutions ξ of (1) and ψ of (2) in this case are
related by

ψ(·) = ξ (·+ s).
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These objects, namely the solutions ϕ(t,H)u0 in X and the shift operator θt in Σ a, give rise to what we
call a non-autonomous dynamical system b. Several authors have studied this object, in the pursuit of fully
understanding of the asymptotic dynamics of equation (1), and there are two distinct branches: the pullback
approach (see, for example [16, 22]), which deals with pullback attraction, and the uniform approacch (see,
for example [28]). Each group has achieved several interesting results concerning asymptotic behavior of non-
autonomous equations, and up until recently, these approaches seemed unrelated. In [5,7] the authors unify these
results, presenting relations between these frameworks. To this end and to reach the full extent of this theory,
they transform the non-autonomous dynamical system defined by ϕ and θt in an autonomous one, non-trivially,
by defining

Π(t)(u0,H) = (ϕ(t,H)u0,θtH), (3)

which is called the skew-product semiflow, and study the autonomous semiflow defined by Π to obtain results
for ϕ simply analysing the canonical projection in the first coordinate.

To be a little more precise, inside the study of non-autonomous equations such as (1) we can distinct at least
four different notions of attractors, namely:

(i) the global attractor for the skew-product semiflow;

(ii) the pullback attractor for the evolution process.

(iii) the cocyle attractor for the non-autonomous dynamical system and

(iv) the uniform attractor for the non-autonomous system.

We will give a detailed description of each one of these objects in Section 2, as well as the relationships
between these concepts, as done in [7], to describe the non-autonomous problems (1) in a very complete way.

1.2 Small perturbations

Imagine now that we have not only a single F(t, ·) but a family {Hε(t, ·)}ε∈[0,1] such that Hε is close (in some
sense) to F as ε → 0. Are we able to obtain results on the asymptotic behavior of the problems{

u̇ = Hε(t,u), for t > 0

u(s) = u0 ∈ X ,
(4)

for ε sufficiently small, given that we know the behavior of (1)?
Note that to study each problem one must perform all the previous discussion; that is, each ε will generate

a different non-autonomous dynamical system and a skew-product semiflow. The question is: can we obtain
results of continuity of the different types of asymptotic behavior as ε → 0?

This question, theoretical as is sounds, has a meaning in applications. Models in the real world are always
approximations, due to data collection, empirical laws and simplifications, and thus, it is crucial that we are able
to transfer properties from an equation to some small perturbations. Without this property, we have no guarantee
whatsoever that the real phenomena will have a behavior close to our model.

In [5, 7], the authors provide and extensive study on this topic, giving a detailed study of non-autonomous
dynamical systems, different scenarios of asymptotic behavior and relationships among them, extracting infor-
mations from the skew-product semiflow and transporting them to the non-autonomous dynamical system. Also,
the reader can find a deep study of continuity of small perturbations of non-autonomous system, but arising from
autonomous equations (see for instance [7, 15, 16]).

The study of non-autonomous perturbations of non-autonomous dynamical systems directly is still an almost
blank page, and in this paper we give some steps in this direction, by studying non-autonomous perturbations
a Clearly we can consider the restriction of the shift operator θt to Σ.
b See Definition 5.
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of a non-autonomous equation, to provide results of continuity of the asymptotic behavior using the framework
discussed above.

It is not known, so far, how to do the general theory when we consider non-autonomous perturbations of a
non-autonomous system. In examples, we can see however that few steps are clear: first one must be able to
prove the global existence and uniqueness of solutions not only for the equation in question, but also for all the
limiting vector fields associated with the non-linearity - this step is the key for the development of the following
results - to be able to construct a non-autonomous system. Then we must be able, with some uniformity on
the vector fields, to obtain an uniform estimate that allow us to find a compact set that attracts all the solutions,
independently of the vector field. Once this is done, we can find such an attractor for the associated skew-product
semiflow and with this object at hand, we can try to understand all the asymptotic behaviors of our equation.
Dealing with perturbations adds a difficulty to this process, since we must be able to do such study for each ε

small and obtain the result with uniformity in this parameter.

1.3 Non-autonomous non-classical parabolic equations

As mentioned before, a general theory for the study of non-autonomous perturbations of non-autonomous
models is not available at this point, so we will put our best efforts to understand in some elaborated examples,
in order to obtain a deep understanding of such perturbations. The problem we will deal with in this paper is to
study non-autonomous perturbations of some non-autonomous parabolic equations.

Non-classical parabolic equations arise as models describing physical phenomena such as non-Newtonian
flow, soil mechanics, heat conduction, etc. (see, for instance, [1–4,8,21,23,25,29,30] and references therein). We
will focus our study in non-autonomous perturbations of the following non-classical non-autonomous parabolic
equation {

ut − γ(t)∆ut −∆u = f (u), in Ω

u = 0, on ∂Ω
(5)

where Ω ⊂ Rn is a smooth bounded domain, for some n > 3, with f and γ satisfying some suitable conditions.
More specifically, we will deal with perturbations of the form{

ut − γ(t)∆ut −∆u = gε(t,u), in Ω

u = 0, on ∂Ω
(6)

where {gε}ε∈[0,1] is a family of non-autonomous functions satisfying some continuity conditions.
In the work of Aifantis et al., [1–3] we can find a quite general approach to deduce these equations in

the autonomous case without delay. In the aforementioned papers, it is pointed out that the classical reaction-
diffusion equation

ut −∆u = g(u)

does not contain each aspect of the reaction-diffusion problem, and it neglects viscidity, elasticity, and pressure
of medium in the process of solid diffusion. The authors obtained a diffusion theory similar to Fick’s classical
model for solute in an undisturbed solid matrix, obtaining a hyperbolic equation

ut +D1utt = D2∆u,

where D1 and D2 are positive constants. Assign viscosity to the diffusing substance, they arrived to que following
equation

ut +D1utt = D2∆u+D3∆ut ,

and neglecting the inertia term, finally obtained the non-classical parabolic equation

ut = D2∆u+D3∆ut ,
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where D3 is also a positive constant.
The asymptotic behavior of the model without delay terms and with constant coefficients

ut −µ∆ut −∆u+g(u) = f (x), µ ∈ [0,1]

is studied in [31], where, in particular, it is shown the well-posedness of the problem and the existence of the
global attractor either in H1

0 (Ω) or in H2(Ω), depending on the regularity of the initial data. They also showed
the continuity of the global attractor in Hausdorff semidistance when µ → 0 in H1

0 (Ω).
The introduction of a time dependence in coefficient γ(t) represents the variability of viscosity in time due

to, for example, external environmental temperatures. This time dependence provides the system with a non-
autonomous nature.

The study of a non-autonomous case with delay appeared in [12] for the first time, where it was established
the well-posedness of the problem when γ(t)≡ γ is constant.

In [26], Rivero studied the existence of the pullback attractor and its continuity under non-autonomous
perturbations, showing the existence of a concrete structure under some assumptions on the non-linearity and
giving a first approach to the study of perturbations in non-autonomous problems.

Remark 2. This example is understood by us as a good starting point to the study of non-autonomous perturba-
tions. Mainly because (2) is a non-autonomous equation, but term that causes this phenomena (the function γ)
has no effect on the equilibria, which are the equilibria of the elliptic equation −∆u = f (u).

1.4 Novelties

In this paper we give a step towards understanding non-autonomous perturbations of non-autonomous equa-
tions. We first study the problem (6) for each ε ∈ [0,1] using the ideas presented in Subsection 1.1, but always
having the discussion of Subsection 1.2 in mind, that is, not only we will deal with each equation separately
for each ε , but also we have to take into account that we must be able to obtain the results with uniformity for
ε ∈ [0,1]. Using this, we will be able to obtain continuity results for the family of equations given by (6). In the
next section, we will present a detailed description of our main results.

Remark 3. One important thing to stress out is that, even that f does not depend on t, the function γ makes
problem (5) non-autonomous.

1.5 Description of the main results

To describe the contents of our work and to state the main results, we first make some assumptions on the
functions γ , f and gε as follows: suppose that γ : R→ (0,∞) is a uniformly continuous function which satisfies
0 < γ0 6 γ(t) 6 γ1 < ∞ and the family {gε}ε∈[0,1] of continuously differentiable functions from R2 to R with
g0(t,s) = f (s) for all t,s ∈ R, that satisfies

|gε(t,s1)−gε(t,s2)|6 α|s1− s2|(1+ |s1|ρ−1 + |s2|ρ−1), (H1)

limsup
|s|→∞

gε(t,s)
s

6 δ < λ1, (H2)

ˆ
∞

0

∂

∂ t
gε(t,s)ds < ∞ (H3)

Also we assume that there exists a bounded function β defined in the interval [0,1] with β (δ )→ 0, as
δ → 0+, and satisfying

sup
t∈R
|gε(t,s)− f (s)|6 β (ε)(1+ |s|ρ−1), for all s ∈ R and ε ∈ [0,1], (H4)
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and
sup
t∈R
|∂sgε(t,s)− f ′(s)|6 β (ε)(1+ |s|ρ−1), for all s ∈ R and ε ∈ [0,1], (H5)

where λ1 > 0 is the first eigenvalue of the negative Laplacian A = −∆ with Dirichlet boundary condition, for
some α > 0 and 16 ρ < n+2

n−2 , with (H1), (H2) uniformly for t ∈R and ε ∈ [0,1] and (H3) uniformly for ε ∈ [0,1].

In Section 2 we present a brief summary about the theory of autonomous and non-autonomous systems, with
their respective attractors. In Section 3 we will describe the precise spaces, along with the required topologies, to
fit the family of non-autonomous non-classical equations in the framework described in Subsection 1.1. Sections
4 and 5 are devoted to prove that each equation (6) generates a non-autonomous dynamical system and prove
the existence of the several types of attractors described in Section 2, respectively.

In Sections 6 and 7, motivated by the discussion in Subsection 1.2, we study the upper semicontinuity and
topological structural stability of each kind of global attractor found in Section 5, respectively. With all this work,
we provide a complete study for the various scenarios of asymptotic behavior for non-autonomous dynamical
systems described in Subsection 1.1.

2 Preliminaries: Asymptotic dynamics of non-autonomous equations

We will briefly present the theory described in [7], which studies non-autonomous differential equations in
different frameworks and gives relations between these dynamics.

2.1 Semigroups

First of all, we define the notions of semigroups and their global attractors (the reader may see [18] for more
details of this theory).

Let (X ,d) be a metric space and C (X) the set of all continuous maps from X into itself. A semigroup in X
is a one parameter family {T (t) : t > 0} such that

(a) T (0) = IdX , with IX being the identity in X ,

(b) T (t)T (s) = T (t + s), for all t,s > 0 and

(c) the map [0,∞)×X 3 (t,x) 7→ T (t)x ∈ X is continuous.

From now on we are going to denote by dH(·, ·) the Hausdorff semidistance between two subsets of X , that
is, for any A,B⊂ X :

dH(A,B) = sup
a∈A

inf
b∈B

d(a,b).

Definition 1. A compact set A is called a global attractor of {T (t) : t > 0} if satisfies:

(i) A is invariant for {T (t) : t > 0}; that is, T (t)A = A , for all t > 0.

(ii) A attracts bounded subsets under the action of {T (t) : t > 0}; that is, for each bounded subset B of X we
have

lim
t→∞

dH(T (t)B,A ) = 0.

The global attractor of a semigroup describes the asymptotic behavior of the semigroup. To be more precise,
we define a global solution of {T (t) : t > 0} as a function ξ : R→ X such that T (t)ξ (s) = ξ (t + s) for all t > 0
and s ∈ R. Then, we know that if A is the global attractor of {T (t) : t > 0} we have

A = {x ∈ X : x = ξ (0) for some bounded global solution ξ of {T (t) : t > 0}}.
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This characterization means that not only the global attractor attracts all positive orbits {T (t)x : t > 0}
(x ∈ X) but it actually consists of all bounded globally defined solutions. Moreover, the global attractor for a
semigroup is unique.

To obtain existence of global attractors for semigroups, we will need some definitions.

Definition 2. Let B,C ⊂ X . We say that B absorbs C under the action of {T (t) : t > 0} if there exists T > 0
such that

T (t)C ⊂ B, for all t > T.

Definition 3. We say that a semigroup {T (t) : t > 0} is asymptotically compact if given sequences tn→∞ and
{xn}n∈B bounded in X such that {T (tn)xn}n∈N is bounded, then {T (tn)xn}n∈N is precompact in X .

With these definitions we are able to state the main result about existence of global attractors, that we be
needed later.

Theorem 1 (Theorem 3.4 in [18]). Let {T (t) : t > 0} be an asymptotically compact semigroup. Assume that
there exists a bounded set B⊂ X such that B absorbs all bounded subsets of X under the action of {T (t) : t > 0}.
Then {T (t) : t > 0} has a global attractor A and A ⊂ B.

2.2 Evolutions processes

Now we are going to define evolution processes and their pullback atractors (see [9, 16] for more details).
These concepts appear in the literature as natural generalizations for semigroups and global attractors, respec-
tively.

Again, let (X ,d) be a metric space. An evolution process in X is a two parameter family {T (t,s) : t > s} in
C (X) such that

(a) T (t, t) = IdX ,

(b) T (t,s)T (s,τ) = T (t,τ), for all t > s > τ and

(c) the map P×X 3 (t,s,x) 7→ T (t,s)x ∈ X is continuous, where P = {(t,s) ∈ R2 : t > s}.

Definition 4. A family of compact sets {A(t)}t∈R is called a pullback attractor of T (t,s) if satisfies:

(i) {A(t)}t∈R is invariant; that is, T (t,s)A(s) = A(t), for all t ≥ s.

(ii) {A(t)}t∈R pullback attracts bounded subsets; that is, for each bounded subset B of X and t ∈ R, we have

lim
s→−∞

dH(T (t,s)B,A(t)) = 0.

(iii) {A(t)}t∈R is the minimal family of closed sets with property (ii).

Remark 4. We note that when T (t,s) = S(t− s), the family {S(t) : t > 0} is a semigroup in X and Definition
4 reduces to the definition of global attractors. The first difference that appears is item (iii) in Definition 4 and
it ensures the uniqueness of the pullback attractor, since it does not follows directly from (i) and (ii) as in the
autonomous case.

2.3 Non-autonomous dynamical systems

Now, we will introduce the concept of non- autonomous dynamical systems, which is a general method that
provides a way to form the base space for a given non-autonomous differential equation. The idea of this method
is to consider the family of non-linearities as a base flow driven by the time shift.
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Definition 5. A non-autonomous dynamical system (NDS) is a quadruple (ϕ,θ)(X ,Σ), where X ,Σ are a metric
spaces with metrics dX and dΣ, respectively; θ

.
= {θt : t > 0} is a semigroup in Σ, called the shift operator (or

driving semigroup), and ϕ : R+×Σ×X → X is a mapc that verifies

(i) ϕ(0,σ) = IdX for all σ ∈ Σ;

(ii) R+×Σ 3 (t,σ) 7→ ϕ(t,σ)u ∈ X is continuous, and

(iii) ϕ(t + s,σ) = ϕ(t,θsσ)ϕ(s,σ), for all t,s > 0 and σ ∈ Σ.

The map ϕ is called the cocycle semiflow and property (iii) is know as the cocycle property.

To define the cocycle attractor and the uniform attractor for a NDS (ϕ,θ)(X ,Σ), we first must define the
concepts of non-autonomous set, invariance and pullback attraction in this framework:

Definition 6. A non-autonomous set is a family {D(σ)}σ∈Σ of subsets of X indexed in Σ. We say that
{D(σ)}σ∈Σ is an open (closed, compact) non-autonomous set if each fiber D(σ) is an open (closed, compact)
subset of X .

Definition 7. A non-autonomous set {D(σ)}σ∈Σ is invariant under the NDS (ϕ,θ)(X ,Σ) if

ϕ(t,σ)D(σ) = D(θtσ), for all t > 0 and σ ∈ Σ.

To define the concept of pullback attraction, we must ask some additional properties on Σ, and from now
on, we are going to assume that Σ is compact and invariant for the driving semigroup {θt : t > 0}, and also that
{θt : t > 0} is a group over Σ; that is, θt is invertible, and we denote θ

−1
t = θ−t .

Remark 5. Actually, these assumptions can be dropped. We can obtain the same results requiring only that
{θt : t > 0} possess a global attractor in Σ, with virtually no additional work, but with a more difficult notation.
So, for simplicity, we shall assume all the hypotheses above.

Definition 8. A compact non-autonomous set {A(σ)}σ∈Σ is called a cocycle attractor of (ϕ,θ)(X ,Σ) if

(i) {A(σ)}σ∈Σ is invariant under (ϕ,θ)(X ,Σ);

(ii) {A(σ)}σ∈Σ pullback attracts all bounded subsets B⊂ X , i.e.

lim
t→+∞

dH(ϕ(t,θ−tσ)B,A(σ)) = 0.

(iii) {A(σ)}σ∈Σ is the minimal among the closed non-autonomous sets with property (ii).

We can also deal with the uniform attraction for a NDS - in this framework, the attraction do not depend on
the chosen σ ∈ Σ - that is, we say that the subset K ⊆ X is uniform attracting for the NDS (ϕ,σ)(X ,Σ) if for
each B⊂ X bounded,

lim
t→∞

sup
σ∈Σ

dH(ϕ(t,σ)B,K) = 0.

Definition 9. A compact subset A ⊂ X is called the uniform attractor for the NDS (ϕ,σ)(X ,Σ) if it is the
minimal closed subset of X that uniform attracts all bounded subsets of X .

Theorem 2. A NDS (ϕ,σ)(X ,Σ) has a uniform attractor if and only if there exists a compact uniform attracting
set K.
c Note that we use the notation ϕ(t,σ ,x) = ϕ(t,σ)x for all (t,σ ,x) ∈ R+×Σ×X .
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2.4 Skew-product semiflows

When dealing with non-autonomous dynamical systems, it is worthwhile to question if we can transform
them into an autonomous one; and that is precisely the case: for a given NDS (ϕ,θ)(X ,Σ) we can define a
semigroup {Π(t) : t > 0} in the product space X= X×Σ as (see [27, 28] for more details)

Π(t)(u,σ) = (ϕ(t,σ)u,θtσ), (7)

which is called skew-product semiflow associated with (ϕ,θ)(X ,Σ).
So far we obtained three different objects:

1. the evolution process {T (t,s) : t > s};

2. the non-autonomous dynamical system (ϕ,θ)(X ,Σ) and

3. the skew-product semiflow {Π(t) : t > 0},

and the four different notions of ‘attractors’ listed in the Introduction:

(i) the pullback attractor {A(t)}t∈R of {T (t,s) : t > s};

(ii) the cocycle attractor {A(σ)}σ∈Σ of (ϕ,θ)(X ,Σ);

(iii) the uniform attractor A of (ϕ,θ)(X ,Σ) and

(iv) the global attractor A of {Π(t) : t > 0},

and now we presente briefly the relationships between these objects (as in [7]). We begin with the relation
between the global attractor of {Π(t) : t > 0} and the cocycle attractor of (ϕ,θ)(X ,Σ).

Theorem 3 (Propositions 3.30 and 3.31 in [22], or Theorem 3.4 in [14]). Let (ϕ,θ)(X ,Σ) be a non-autonomous
dynamical system and let {Π(t) : t > 0} be the associated skew product semiflow on X×Σ with a global attractor
A. Then {A(σ)}σ∈Σ with A(σ) = {x ∈ X : (x,σ) ∈ A} is the cocycle attractor of (ϕ,θ)(X ,Σ).

The following theorem shows the relationship between the global attractor of a skew product semiflow and
the pullback attractors of the evolution processes it may contain.

Theorem 4 (Theorem 2.7 in [5]). Assume that the skew product semiflow {Π(t) : t > 0} possesses a global
attractor A. Then the evolution process {Tσ (t,s) : t > s} given by

Tσ (t,s)u = ϕ(t− s,θsσ)u, u ∈ X ,

possesses a pullback attractor {Aσ (t)}t∈R. Moreover,

A=
⋃

σ∈Σ

[⋃
t∈R

Aσ (t)×{σ}

]
.

Therefore, if A is the global attractor of the associated semigroup {Π(t) : t ∈ R} of (ϕ,σ)(X ,Σ), then the
uniform attractor A is the projection on X of the global attractor, that is, A = πX(A), where πX : X×Σ→ X is
the projection over X .

Now, the relationship between the uniform attractor and the pullback attractor is clear.

Theorem 5. The NDS (ϕ,σ)(X ,Σ) has a uniform attractor A if and only if the associated skew-product semiflow
{Π(t) : t > 0} has a global attractor A and

A = πX(A) =
⋃

σ∈Σ

⋃
t∈R

Aσ (t)
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The following result shows us the required assumptions in order to obtain the existence of the global attractor
for the skew-product semiflow {Π(t) : t > 0} associated with the NDS (ϕ,σ)(X ,Σ) based on the existence of its
cocycle attractor (see [14, 22] for more details).

Theorem 6. Suppose that {A(σ)}σ∈Σ is the cocycle attractor of (ϕ,θ)(X ,Σ), {Π(t) : t > 0} is the associated
skew-product semiflow. Assume that {A(σ)}σ∈Σ is uniformly attracting, i.e.,

lim
t→+∞

sup
σ∈Σ

dist(ϕ(t,θ−tσ)D,A(σ)) = 0,

and that
⋃

σ∈Σ A(σ) is precompact in X. Then the set A associated with {A(σ)}σ∈Σ, given by

A=
⋃

σ∈Σ

A(σ)×{σ},

is the global attractor of {Π(t) : t > 0}.

With these results we complete the relations between the four different asymptotic dynamics we presented.
In this paper, as we said before, we will try to deal with these four dynamics, to obtain as much information as
we can of equation (6).

3 Driving semigroups of translations for (6)

In this section we will put the family of equations (6) in the framework described on Subsection 1.1. To
this end, let A = −∆ : D(A) ⊂ X → X be the negative Laplacian operator with Dirichlet boundary condition,
defined in D(A) = H1

0 (Ω)∩H2(Ω), where X = L2(Ω). Consider the fractional power scale Xα , with α ∈ R,
generated by (X ,A). Also, consider the Nemytskii operators ge

ε(·, ·) defined as ge
ε(t,u)(x) = gε(t,u(x)) for each

(t,x) ∈ R×Ω and u : Ω→ R.
Following the ideas in [26], we define the operators

Bγ(t) = (I + γ(t)A)−1 and Ãγ(t) = ABγ(t),

and the function gε,γ(t,u) = Bγ(t)ge
ε(t,u), for each ε ∈ [0,1], we can write problem (6) as

ut = Fε(t,u), (8)

where Fε(t,u) = −Ãγ(t)u+ gε,γ(t,u). The domain of the operators Ãγ(t) does not depend on time and the
operators R 3 t 7→ Bγ(t) and R 3 t 7→ Ãγ(t) are absolutely continuous functions.

To study (6), for each ε ∈ [0,1], we must be able to study the hull of the function Fε(·, ·) in a suitable space.
This is our task in the next subsection.

3.1 Driving groups of translations

We begin considering the sets

• C1 =Cb(R,R) of continuous bounded functions from R to itself with metric

d1(λ1,λ2) = sup
t∈R
|λ1(t)−λ2(t)|;

• C2 of continuous functions from R2 to R, which satisfies: h ∈ C2 if there exists constants γ,ω > 0 such
that

sup
t∈R
|h(t,s1)−h(t,s2)|6 γ|s1− s2|(1+ |s1|ρ−1 + |s2|ρ−1), for all s1,s2 ∈ R,
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and
sup
t∈R
|h(t,0)|6 ω.

In C2 we introduce the norm

‖h‖C2 = sup
t,s∈R

s6=0

|h(t,s)−h(t,0)|
|s|(1+ |s|ρ−1)

+ sup
t∈R
|h(t,0)|,

and the distance
d2(h1,h2) = ‖h1−h2‖C2 .

Remark 6. We have that C1 and C2 are Banach spaces with norms ‖λ‖C1 = supt∈R |λ (t)| and ‖·‖C2 , respectively.

Clearly we have that γ ∈ C1 and gε ∈ C2, for all ε ∈ [0,1]. We define the group of translations in bothd C1
and C2, {θt : t ∈ R}, by

θtλ (s) = λ (t + s), for all λ ∈ C1 and t,s ∈ R;

and
θth(r,s) = h(t + r,s), for all h ∈ C2 and t,r,s ∈ R.

Also, let

• Γ be the hull of γ in C1; that is,

Γ = closure of {θtγ}t∈R in (C1,d1).

• Gε be the hull of gε in C2; that is,

Gε = closure of {θtgε}t∈R in (C2,d2).

Remark 7.

1. Since γ is bounded and uniformly continuous on R, the set Γ is compact in (C1,d1), using the Arzelá-
Ascoli Theorem.

2. Note that, by simple computations, we have that there exists a constant C > 0 such that

sup
t∈R
‖Bλ1(t)−Bλ2(t)‖L (H−1,H1

0 (Ω)) 6C‖λ1−λ2‖C1

and
sup
t∈R
‖Ãλ1(t)− Ãλ2(t)‖L (H1

0 (Ω)) 6C‖λ1−λ2‖C1 ,

for all λ1,λ2 ∈ Γ, where H−1 is the dual space of H1
0 (Ω).

3. Since g0(t,s) = f (s) for all t,s ∈ R, G0 = { f} and hence it is compact in (C2,d2).

4. Since hypotheses (H1)-(H4) are uniform for t ∈ R, they all are satisfied by every function in Gε .

Using items 1 and 2 from the previous remark, we will make one additional assumption on the family {gε}:

Gε is compact in (C2,d2) for each ε ∈ (0,1]. (C)
d Here we denote both groups the same, since there will be no confusion of notation.
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Remark 8. Condition (C) is verified, for instance, when each gε is time-independent, or periodic in t, or almost-
periodic in t (for the latter, see for instance [20, Appendix - Theorem 11]).

Now we can see that each function hε ∈ Gε defines a Nemytskii operator from R×X
s
2 into L

2n
n+2r (Ω), for

suitable s and r.

Lemma 7. Assume that the family {gε}ε∈[0,1] satisfies (H1), A is the negative Dirichlet Laplacian in X with
domain X1 = H2(Ω)∩H1

0 (Ω) and consider its closed extension to H−r = (X
r
2 )′, the dual space of X

r
2 , (in

particular, H−1 =H1
0 (Ω)′). Then the Nemytskii operators {he

ε}ε∈[0,1] are well defined from R×X
s
2 into L

2n
n+2r (Ω),

provided that r ∈
[
(ρ−1)(n−2)

4 ,1
]
, s ∈ [r,1]∩

[
n
2 −

2
ρ−1 ,1

]
, for each hε ∈ Gε . If B is a bounded subset of X

s
2 then

there exists a constant C =C(B)> 0 such that

sup
t∈R
‖he

ε(t,u1)−he
ε(t,u2)‖

L
2n

n+2r (Ω)
6C‖u1−u2‖X

s
2
, for all ε ∈ [0,1].

Moreover, if r can be taken strictly less than 1 and J⊂R is an arbitrary subset, he
ε takes J×B in a precompact

set of H−1, for each ε ∈ [0,1].

Proof. Following [10], using hypothesis (H1) we have that

sup
t∈R
‖he

ε(t,u)−he
ε(t,v)‖L

2n
n+2r (Ω)

6 c
[ˆ

Ω

[
|u− v|(1+ |u|ρ−1 + |v|ρ−1)

] 2n
n+2r

] n+2r
2n

6 c̃‖u− v‖
L

2n
n−2r (Ω)

(
1+‖u‖ρ−1

L
n(ρ−1)

2r (Ω)
+‖v‖ρ−1

L
n(ρ−1)

2r (Ω)

)
6 c̄‖u− v‖

X
s
2

(
1+‖u‖ρ−1

X
s
2
+‖v‖ρ−1

X
s
2

)
.

(9)

or any s∈ [r,1]∩
[

n
2 −

2
ρ−1 ,1

]
. The last statement holds since H−r is compact embedded in H−1 and L

2n
n+2r (Ω) ↪→

H−r for r < 1.
We define now

• C e
2 = C0

b(R×H1
0 (Ω),L

2n
n+2 (Ω)) as the set of all continuous functions from R×H1

0 (Ω) taking values on
L

2n
n+2 (Ω) that are bounded on sets R×B, where B is a bounded set of H1

0 (Ω) with metric

de
2(σ1,σ2) =

∞

∑
k=1

2−k ‖σ1−σ2‖e
k

1+‖σ1−σ2‖e
k
,

where if Bk = {u ∈ H1
0 (Ω) : ‖u‖H1

0 (Ω) 6 k} we have

‖σ1−σ2‖e
k = sup

t∈R
sup
u∈Bk
‖σ1(t,u)−σ2(t,u)‖

L
2n

n+2 (Ω)
.

Remark 9. Here we have that C e
2 with the metric de

2 is a Frechét space, and a sequence {σk}k∈N converges in Ce
2

if and only if it converges in each seminorm ‖ · ‖e
n.

Define the group of translationse {θt : t ∈ R} in C e
2 by

θth(s,v) = h(t + s,v), for all h ∈ C e
2 , t,s ∈ R and v ∈ H1

0 (Ω).

Since Lemma 7 implies that ge
ε ∈ C e

2 , for all ε ∈ [0,1], let also

e Again, since there will be no confusion, we denote the group of translations the same.
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• G e
ε be the hull of ge

ε in C e
2 ; that is,

G e
ε = closure of {θtge

ε}t∈R in (C e
2 ,d

e
2).

Now, in order to have a better understanding of the set G e
ε , we present the following results:

Lemma 8. If h ∈ Gε , then he ∈ G e
ε .

Proof. This follows easily by Lemma 7.

Lemma 9. There exists a constant L > 0, such that for all h1,h2 ∈ Gε , we have that

de
2(h

e
1,h

e
2)6 L‖h1−h2‖C2 .

Proof. Fix k ∈ N. We have that

‖he
1−he

2‖e
k = sup

t∈R
sup
u∈Bk
‖he

1(t,u)−he
2(t,u)‖L

2n
n+2 (Ω)

= sup
t∈R

sup
u∈Bk

(ˆ
Ω

|h1(t,u(x))−h2(t,u(x))|
2n

n+2 dx
) n+2

2n

6 c̃‖h1−h2‖C2 · sup
u∈Bk

(ˆ
Ω

|u(x)(1+ |u(x)|ρ−1)|
2n

n+2 dx
) n+2

2n

,

where c̃ does not depend on h1,h2 and hence, arguing as in Lemma 7, we obtain

‖he
1−he

2‖e
k 6 c‖h1−h2‖C2 · sup

u∈Bk

[
‖u‖H1

0 (Ω)(1+‖u‖
ρ−1
H1

0 (Ω)
)
]

6 ĉ‖h1−h2‖C2 [k(1+ kρ−1)],

where ĉ does not depend on h1,h2.
Hence

de
2(h

e
1,h

e
2)6 ĉ‖h1−h2‖C2

∞

∑
k=1

2−k+1kρ ,

and the result follows since ∑
∞
k=1 2−k+1kρ is a convergent series.

Proposition 10. If condition (C) holds then σε ∈ G e
ε if and only if there exists hε ∈ Gε such that σε = he

ε , for
each ε ∈ [0,1].

Proof. The result is trivial if ε = 0. Assume that ε ∈ (0,1]. One inclusion follows from Lemma 8. Now if
σε ∈ G e

ε , then exists a sequence {tn}n∈N ⊂ R such that θtnge
ε → σε in C e

2 , by definition. Consider the sequence
{θtngε}n∈N in C2. Since Gε is compact, we can assume without loss of generality, that θtngε → hε ∈ Gε in C2.
Thus, using Lemma 9 we have that

de
2(σε ,he

ε)6 de
2(σε ,θtnge

ε)+de
2(θtnge

ε ,h
e
ε)

6 de
2(σε ,θtnge

ε)+L‖θtngε −hε‖C2 ,

and making n→ ∞ we obtain that σε = he
ε .

Corollary 11. If condition (C) holds, then G e
ε is compact in C e

2 , for each ε ∈ [0,1].

Now we are finally in condition to define the space that will be suitable for our study of (6). Define
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• C∗ =C0
b(R×H1

0 (Ω),H1
0 (Ω)) the set of continuous functions which are bounded in sets of the form R×B,

where B is a bounded subset of H1
0 (Ω), with distance defined as

d∗(σ1,σ2) =
∞

∑
n=1

2−n ‖σ1−σ2‖∗n
1+‖σ1−σ2‖∗n

,

where if Bn = {u ∈ H1
0 (Ω) : ‖u‖H1

0 (Ω) 6 n} we have

‖σ1−σ2‖∗n = sup
t∈R

sup
u∈Bn
‖σ1(t,u)−σ2(t,u)‖H1

0 (Ω).

Now let Fε(t,u) = −Ãγ(t)u+Bγ(t)ge(t,u) be given as in (8). It is simple to see, recalling the definitions
of Ãγ(t) and Bγ(t) and the fact that ge

ε ∈ C e
2 , that Fε ∈ C∗ for each ε ∈ [0,1]. Again, we can define the groupa

{θt : t ∈ R} in C∗ by

θth(s,v) = h(t + s,v), for all h ∈ C∗, t,s ∈ R and v ∈ H1
0 (Ω).

Definition 10. With the notations above, we set Σε as the hull of Fε in C∗; that is,

Σε = closure of {θtFε}t∈R in (C∗,d∗).

Before we proceed with the study of (6), we will need some characterization result for Σε .

Lemma 12. We have that

(a) Σ0 = {Bλ f e− Ãλ}λ∈Γ and it is compact in (C∗,d∗);

(b) if (C) holds true, then for each ε > 0 we have

Σε ⊆ {Bλ he
ε − Ãλ}λ∈Γ,hε∈Gε

,

and Σε is compact in (C∗,d∗).

where Bλ (t) = (I +λ (t)A)−1 and Ãλ (t) = ABλ (t), for each λ ∈ Γ.

Proof. Since g0(t,s) = f (s) for all t,s ∈ R and Γ is compact, item (a) follows immediately. Now, fix ε > 0 and
let Hε ∈ Σε . Then, by definition, there exists a real sequence {tn}n∈N such that Hε = C∗− lim

n→∞
θtn(Bγge

ε − Ãγ),

that is, the sequence θtn(Bγge
ε − Ãγ) converges to Hε in the metric of C∗ defined above.

We can extract a subsequence of {tn}n∈N, which we shall denote the same, and elements λ ∈ Γ and hε ∈ Gε

such that γ = C − lim
n→∞

θsnγ and he
ε = C e

2 − lim
n→∞

θtnge
ε , by the compactness of Γ and Gε and Proposition 10. Thus

Hε = Bλ he
ε − Ãλ .

The last statement is clear from (a) and (b), which concludes the result.
Thus our problem in H1

0 (Ω) takes the form{
u̇ = Hε(t,u), t > 0

u(0) = u0 ∈ H1
0 (Ω),

(10)

for each Hε ∈ Σε , which is precisely equation (4). As a matter of fact we have, for each fixed ε ∈ [0,1], a problem
equals to (2). Our first task is to find, for each ε ∈ [0,1] and Hε ∈ Σε , a solution t 7→ ϕ(t,Hε)u0 of (10). But we
will solve this problem in a slightly different way, considering all possible functions in {Bλ he

ε − Ãλ}λ∈Γ,hε∈Gε
,

and therefore, we will denote this space by Γ�Gε ; that is,

Γ�Gε = {Bλ he
ε − Ãλ}λ∈Γ,hε∈Gε

. (11)

Remark 10. It is clear that the maps R3 t 7→ Bλ (t) and R3 t 7→ Ãλ (t) are absolutely continuous, for each λ ∈ Γ.
a We once again denote the same.
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4 Non-autonomous dynamical systems and skew-product semiflows for (10)

In this section we will show that equation (10) generates a non-autonomous dynamical system (ϕε ,θ)(H1
0 (Ω),Σε )

,
for each ε ∈ [0,1].

4.1 Local existence and uniqueness of solutions

Using Remark 10, Lemma 7 and the results on [24, Chapter 5] we have the following theorem of local
existence and uniqueness of solutions.

Theorem 13. Assume that hypotheses (H1) and (C) are satisfied. Then, for each bounded subset B ⊂ H1
0 (Ω),

ε ∈ [0,1] and Hε ∈ Γ �Gε there exists ω = ω(B,ε,Hε) > 0 such that for each u0 ∈ B there exists a unique
function

[0,ω] 3 t 7→ ϕε(t,Hε)u0,

with ϕε(·,Hε)u0 ∈C1([0,ω],H1
0 (Ω)) satisfying (10); that is, ϕε(0,Hε)u0 = u0 and

d
dt

ϕε(t,Hε)u0 = Hε(t,ϕε(t,Hε)u0), for 0 < t < ω.

4.2 Global existence of solutions

Assume that (H2) holds true. Following the ideas of [19, 26], for any v ∈ H1
0 (Ω), hε ∈ Gε and each δ > 0

there exists a constant Kδ > 0 such that
ˆ

Ω

he
ε(t,v)v 6 δ‖v‖2

L2(Ω)+Kδ ,ˆ
Ω

Φε(t,v)6 δ‖v‖2
L2(Ω)+Kδ

(12)

with Φε(t,r) =
´ r

0 hε(t,θ)dθ , uniformly in t ∈ R and ε ∈ [0,1].
Now for each v ∈ H1

0 (Ω), we define the energy functional Lb,ε(t,v) as

Lb,ε(t,v) =
1
2

(
‖v‖2

L2(Ω)+b‖v‖2
H1

0 (Ω)

)
−b
ˆ

Ω

Φε(t,v), (13)

with b > 0. It is easy to prove that for δ 6 1
2b ,

Lb,ε(t,v)>
b
2
‖v‖2

H1
0 (Ω)−bKδ (14)

and for any δ > 0,

Lb,ε(t,v)6
bλ1 +2(1+bδ )

2λ1
‖v‖2

H1
0 (Ω)+bKδ , (15)

uniformly in time t ∈ R, with λ1 > 0 the first eigenvalue of A =−∆ with Dirichlet boundary conditions.
Now, assuming that (H3) holds true and using (12), for a solution u(t) = ϕε(t,Hε)u0 of (10), where Hε ∈

Γ�Gε , we have

d
dt

Lb,ε(t,u)6−λ (t)(u,ut)H1
0 (Ω)−‖u‖

2
H1

0 (Ω)

+(u,he
ε(t,u))L2(Ω)−b

(
‖ut‖2

L2(Ω)+λ (t)‖ut‖2
H1

0 (Ω)

)
+C

6−
(

1− λ1γ1η +2δ

2λ1

)
‖u‖2

H1
0 (Ω)+λ (t)

1−2ηb
2η

‖ut‖2
H1

0 (Ω)+C,
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for δ ,η > 0 and taking δ ∈
(
λ1− γ1

2 ,λ1
)
, η < 2(λ1−δ )

λ1γ1
and b > 1

2η
, we have

d
dt

Lb,ε(t,u)6−kLb,ε(t,u)+C,

with k,C > 0 that do not depend neither on time t ∈ R nor on ε ∈ [0,1]. Therefore,

‖u(t)‖2
H1

0 (Ω) 6 K‖u0‖2
H1

0 (Ω)e
−kt +C, (16)

for certain constants k > 0 and K,C > 0 which do not depend on time, ε and Hε ∈ Γ�Gε , and thus we have the
global existence of solutions for (10). To summarise, we have so far the following result

Theorem 14. Assume that conditions (H1)-(H3) and (C) are satisfied. Then, for each ε ∈ [0,1], Hε ∈ Γ�Gε and
u0 ∈H1

0 (Ω), equation (10) has a solution ϕ(·,Hε)u0 defined for all t > 0. Moreover, there exists a bounded subset
B0 of H1

0 (Ω), independent of ε ∈ [0,1], such that for each bounded subset B⊂H1
0 (Ω), there exists T = T (B)> 0

such that for t > T we have
ϕε(t,Hε)B⊂ B0.

Proof. It is simple to see that, using (16), each solution given by Theorem 13 exists for all t > 0. Now define

B0 = {v ∈ H1
0 (Ω) : ‖v‖2

H1
0 (Ω) 6 2C},

where C is given in (16). Given B a bounded subset of H1
0 (Ω), set ‖B‖= supv∈B ‖v‖H1

0 (Ω) and choose

T =
1
k

ln
(

K‖B‖2

C

)
,

where k and K are given in (16).
Since Σε ⊂ Γ�Gε and Σε is a compact invariant set for the group of translations {θt : t ∈ R} in C∗, a simple

consequence of Theorem 14 is the following:

Theorem 15. Assume that conditions (H1)-(H3) and (C) are satisfied. Then, for each ε ∈ [0,1], equation (10)
generates a non-autonomous dynamical system (ϕε ,θ) in (H1

0 (Ω),Σε), where for each ε ∈ [0,1], Hε ∈ Σ and
u0 ∈ H1

0 (Ω), the function R+ 3 t 7→ ϕε(t,Hε)u0 is the unique solution of (10).

4.3 Skew-product semiflows for (10)

Using (3), we are able to define, for each ε ∈ [0,1], the skew-product semiflow

{Πε(t) : t > 0} in Xε = H1
0 (Ω)×Σε (17)

associated with (ϕε ,θ)(H1
0 (Ω),Σε )

, by setting

Πε(t)(u0,Hε) = (ϕε(t,Hε)u0,θtHε),

for all t > 0, (u0,Hε) ∈ Xε and ε ∈ [0,1].

5 Different attractors for (10)

In this section we will use the result of Section 2 to obtain different attractors for equation (10), for the
different frameworks described in Subsection 1.1.
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5.1 Global attractors for skew-product semiflows

In this section, we will use the theory of autonomous equations to find a global attractor for each one of the
skew-product semiflows defined by (17).

We first will see a very simple result, that follows from Theorem 14.

Proposition 16. Assume that (H1)-(H3) and (C) are satisfied and fix ε ∈ [0,1]. Then there exists a bounded set
Bε ⊂ Xε such that given a bounded subset B⊂ Xε there exists T = T (B)> 0 such that

Πε(t)B⊂ Bε , for all t > T.

Proof. Let B0 ⊂ H1
0 (Ω) be as in Theorem (14) and define Bε

.
= B0×Σε . Since B0 is bounded in H1

0 (Ω) and Σ

is compact space, we have that Bε is bounded in Xε . Moreover, if B is a bounded subset of Xε , we have that
B⊂ B×Σε , for some bounded set B⊂ H1

0 (Ω). Hence, if T is as in Theorem 14 we obtain the result.

5.2 Asymptotical compactness

In order to obtain a global attractor for each skew-product semiflow, we must prove that the semigroups
{Πε(t) : t > 0} are asymptotically compact. That is our goal for the next few results.

Lemma 17. Define Hλ (t,v) =−Ãλ (t)v ∈ C∗. Then the problem{
u̇ = Hλ (t,u), t > 0

u(0) = u0 ∈ H1
0 (Ω)

has a unique solution ϕλ (t) defined for all t > 0 given by

ϕλ (t)u0 = u0−
ˆ t

0
Ãλ (s)ϕλ (s)u0 ds, for all t > 0. (18)

and also, there exists constants K,k > 0 which do not depend on λ such that

‖ϕλ (t)u0‖H1
0 (Ω) 6 K‖u0‖H1

0 (Ω)e
−kt , for all t > 0. (19)

Proof. The local existence and uniqueness of ϕ∗ follows from Theorem 13. Proceeding as in Subsection 4.2 with
hε ≡ 0, we can see that we can take C = 0 in (16) and gives us the global existence of ϕ∗ and (19). Equation (18)
is a simple consequence of the theory of ordinary differential equations, since −Ãλ (t) is a uniformly bounded
operator of H1

0 (Ω), and the bounds do not depend on λ ∈ Γ.

Lemma 18. If Hε = Bλ he
ε − Ãλ ∈ Σε and u0 ∈ H1

0 (Ω) then

ϕε(t,Hε)u0 = ϕλ (t)u0 +ψ(t)(u0,Hε), for each t > 0,

where ψ(t)(u0,Hε)
.
=
´ t

0 Bλ (s)he
ε(s,ϕε(s,Hε)u0)ds. Moreover, the map ψ(t) is a compact map from H1

0 (Ω)×Σε

into H1
0 (Ω).

Proof. Clearly the right side of the equation is a solution of (10), thus the uniqueness shows the equality. Now
let B be a bounded set of H1

0 (Ω). By (16) the set B
.
= {ϕε(s,Hε)B : s ∈ [0, t], Hε ∈ Σε} is bounded and thus

Lemma 7 ensures that ∪hε∈Gε
he

ε([0, t],B) is a precompact set of H−1. The fact that Bλ (t) is a uniformly bounded
bounded linear operator for t ∈ R and λ ∈ Γ concludes the proof.

Using these two lemmas, we are able to prove the asymptotical compactness for the skew-product semiflows.

Proposition 19. The skew-product semiflow {Πε(t) : t > 0} is asymptotically compact, for each ε ∈ [0,1].
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Proof. Let {un}n∈N be a bounded sequence in H1
0 (Ω), {Hε,n}n∈N a bounded sequence in Σε and {tn}n∈N be a

real sequence with tn→ ∞ as n→ ∞ and such that the sequence {Πε(tn)(un,Hε,n)} is bounded. We have

Πε(tn)(un,Hε,n) = (ϕε(tn,Hε,n)un,θtnHε,n), for all n ∈ N.

Since Σ is compact, we can assume, up to a subsequence, that there exists Hε ∈ Σε such that Hε = C∗−
lim
n→∞

θtnHε,n.
Now using Lemma 18 we can write

ϕε(tn,Hε,n)un = ϕ∗(tn)un +ψ(tn)(un,Hε,n), for each n ∈ N.

Since {un}n∈N is bounded in H1
0 (Ω), Lemma 17 implies that ϕ∗(tn)un → 0 as n → ∞. It is now sim-

ple to see that the sequence {ϕε(tn,Hε,n)un}n∈N is precompact in H1
0 (Ω), which proves that the sequence

{Πε(tn)(un,Hε,n)} has a convergent subsequence in Xε and concludes the proof.
Now we can join the results of Propositions 16 and 19, together with Theorem 1, to obtain the next theorem.

Theorem 20 (Existence of the global attractor). Assume that (H1)-(H3) and (C) hold. Then the skew-product
semiflow {Πε(t) : t > 0} associated with the non-autonomous dynamical system (ϕε ,θ)(H1

0 (Ω),Σ) has a global
attractor Aε in Xε for each ε ∈ [0,1]. Moreover

Aε ⊂ B0×Σε , for each ε ∈ [0,1],

where B0 is the bounded set given in Theorem 14.

We know that the attractors Aε can be characterized by

Aε = {(u0,Hε) ∈ Xε : there exists a bounded global solution ηε

of {Πε(t) : t > 0} through (u0,Hε)}.

It is not difficult to see that we can write ηε as

ηε(t) = (ξε(t),θtHε),

where ξ is a global solution of (10); that is, ϕε(t − s,θsHε)ξε(s) = ξε(t) for all t > s, and ξ (0) = u0. Using
Lemma 18 we can write

ξε(t) = ϕε(t− s,θsHε)ξε(s) = ϕλ (t− s)ξε(s)+ψ(t− s)(ξε(s),θsHε), (20)

where

ψ(t− s)(ξε(s),θsHε) =

ˆ t−s

0
Bθsλ (r)θshe

ε(r,ϕ(r,θsHε)ξε(s))dr

=

ˆ t−s

0
Bλ (r+ s)he

ε(r+ s,ξε(r+ s))dr

=

ˆ t

s
Bλ (r)h

e
ε(r,ξε(r))dr.

Now, making s→−∞ in (20), since {ξε(s)}s∈R is bounded in H1
0 (Ω) we obtain, using (19), that

ξ (t) =
ˆ t

−∞

Bλ (r)h
e
ε(r,ξ (r))dr.

Using Lemma 7 we can show (following the ideas of [26]) that the solution ξε is bounded in H2(Ω)∩H1
0 (Ω),

and the bound does not depend on the particular ξε (neither it does on ε). Hence we obtain that there exists a
bounded subset D0 of H2(Ω)∩H1

0 (Ω) such that

Aε ⊂ D0×Σε , for each ε ∈ [0,1]. (21)
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5.3 Other attractors

Now using Theorem 20 we are able to obtain other attractors for equation (10).

Theorem 21. Assume that (H1)-(H3) and (C) hold true. Then we have, for each ε ∈ [0,1], that

(a) the non-autonomous dynamical system (ϕε ,θ)(H1
0 (Ω),Σε )

has a uniform attractor Aε and

Aε = πH1
0 (Ω)Aε ⊂ D0;

(b) the the non-autonomous dynamical system (ϕε ,θ)(H1
0 (Ω),Σε )

has a cocycle attractor {A(Hε)}Hε∈Σε
with⋃

Hε∈Σε
A(Hε)⊂ D0, and

A(Hε) = {v ∈ H1
0 (Ω) : (v,Hε) ∈ Aε};

(c) for each Hε ∈ Σε , the evolution process {THε
(t,s) : t > s} given by

THε
(t,s) = ϕε(t− s,θsHε), for all t > s,

has a pullback attractor {AHε
(t)}t∈R with

⋃
t∈R AHε

(t)⊂ D0, and

Aε =
⋃

Hε∈Σε

[⋃
t∈R

AHε
(t)×{Hε}

]
.

where D0 is given in (21).

Proof. Using Theorem 20, we have easily that item (a) follows from Theorem 5, item (b) from Theorem 3 and
item (c) from Theorem 4.

6 Upper semicontinuity of attractors

This section is devoted to study the upper semicontinuity of the semigroups {Πε(t) : t > 0} as perturbations
of {Π0(t) : t > 0}, as a part of the study described in Subsection 1.2. So far, we have treated the family of
equations (6) (and equivalently, (10)) individually for each ε ∈ [0,1], but now it is time to look at all these
equations together at once.

Assuming that (H1)-(H3) and (C) hold, we obtained so far a family of semigroups {Πε(t) : t > 0} in Xε =
H1

0 (Ω)×Σε , and for each ε , a global attractor Aε .

Definition 11. We say that a family {Kε}ε∈[0,1] is upper semicontinuous at 0 in a metric space (X ,d) if given
sequences {εn}n∈N ⊂ (0,1] and xn ∈ Kεn , with εn → 0+ as n→ ∞, there exists a convergent subsequence of
{xn}n∈N with limit belonging to the closure of K0 in (X ,d).

The previous definition is equivalent to the following: a family {Kε}ε∈[0,1] is upper semicontinuous at 0 in a
metric space (X ,d) if

lim
ε→0+

dH(Kε ,K0) = 0.

To prove the upper semicontinuity of {Aε}ε∈[0,1], we set the base space as H1
0 (Ω)×C∗, with a metric d

defined by
d[(u1,H1),(u2,H2)] = ‖u1−u2‖H1

0 (Ω)+d∗(H1,H2), (22)

for all (u1,H1),(u2,H2) ∈ H1
0 (Ω)×C∗.

Before studying the upper semicontinuity of the family of attractors {Aε}ε∈[0,1], we will need some conver-
gence results.
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Lemma 22. If (H4) holds and hε ∈ Gε , we have

sup
t∈R
|hε(t,s)− f (s)|6 β (ε)(1+ |s|ρ−1),

for all s ∈ R.

Proof. Let hε ∈ Gε and {tm} be a real sequence such that

lim
m→∞

d2(hε ,θtmgε) = lim
m→∞

sup
t,s∈R
|hε(t,s)−θtmgε(t,s)|= 0,

where d2 is as in Subsection 3.1. Hence

sup
t∈R
|hε(t,s)− f (s)|6 sup

t∈R
|hε(t,s)−gε(t + tm,s)|+ sup

t∈R
|gε(t + tm,s)− f (s)|

6 d2(hε ,θtmgε)+ sup
t∈R
|gε(t,s)− f (s)|

6 d2(hε ,θtmgε)+β (ε)(1+ |s|ρ−1),

and making m→ ∞ we obtain the result.

Lemma 23. Assume that (H4) and (C) hold. Then there exists a constant c > 0 such that

sup
hε∈Gε

sup
t∈R
‖he

ε(t,u)− f e(u)‖
L

2n
n+2 (Ω)

6 cβ (ε)(1+‖u‖ρ−1
H1

0 (Ω)
),

for all u ∈ H1
0 (Ω).

Proof. Proceeding as in Lemma 7 and using Lemma 22 we have

sup
t∈R
‖he

ε(t,u)− f e(u)‖
L

2n
n+2 (Ω)

=

[ˆ
Ω

|he
ε(t,u)− f e(u)|

2n
n+2

] n+2
2n

6 β (ε)

[ˆ
Ω

(1+ |u|ρ−1)
2n

n+2

] n+2
2n

6 c̃β (ε)(1+‖u‖ρ−1

L
n(ρ−1)

2 (Ω)
)

6 cβ (ε)(1+‖u‖ρ−1
H1

0 (Ω)
),

and the result follows.

Corollary 24. If (H4) and (C) hold, we have that there exists a constant Ĉ > 0 such that

sup
hε∈Gε

de
2(h

e
ε , f e)6 Ĉβ (ε).

Proposition 25. Assume that (H4) and (C) hold true and consider the family {Σε}ε∈[0,1] given in Definition 10.
Then we have that given sequences {εn}n∈N ⊂ (0,1] with εn→ 0+ and Hn ∈ Σεn , for each n ∈ N, there exists a
convergent subsequence of {Hn}n∈N in (C∗,d∗), with its limit belonging to Σ0.

Proof. Since Hn ∈ Σεn , item (b) of Lemma 12 implies that there exists λn ∈ Γ and hn ∈ Gεn such that

Hn = Bλnhe
n− Ãλn , for each n ∈ N.

Since Γ is compact (recall Remark 7), there exists a subsequence {λnk} that converges to a function λ0 in
(C1,d1). Now, Corollary 24 shows that de

2(h
e
n, f e) 6 Ĉβ (εn)→ 0 as n→ ∞ and hence he

n converges to f e in
(C e

2 ,d
e
2). Therefore, we can easily see that Hnk converges to Bλ0 f e− Ãλ0 in (C∗,d∗), which is in Σ0 by item (a)

of Lemma 12.
With these preliminaries results, we are able to begin the proof of the upper semicontinuity of the family of

the global attractors {Aε}ε∈[0,1] of the skew-product semiflows, at ε = 0.
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Lemma 26. If {(uε ,Hε)}ε∈(0,1] is such that (uε ,Hε)⊂Xε and there exists (u0,H0)∈X0 such that d[(uε ,Hε),(u0,H0)]→
0 as ε → 0+, we have

d[Πε(t)(uε ,Hε),Π0(t)(u0,H0)]
ε→0+−→ 0, for each t > 0.

Proof. We can write
Π(t)(uε ,Hε) = (ϕε(t,Hε)uε ,θtHε), for each ε ∈ [0,1].

Since d∗(Hε ,H0)→ 0 and {θt : t > 0} is continuous in C∗ for each t > 0, we easily obtain that d∗(θtHε ,θtH0)→
0, as ε → 0+.

It remains to show that ‖ϕε(t,Hε)uε −ϕ0(t,H0)u0‖H1
0 (Ω)→ 0, as ε → 0+. Using Lemma 18, we can write

ϕε(t,Hε)uε −ϕ0(t,H0)u0

= ϕλε
(t)uε −ϕλ0(t)u0 +

ˆ t

0
[Bλε

(s)he
ε(s,ϕε(s,Hε)uε)−Bλ0(s) f e(ϕ0(s,H0)u0)]ds,

where we assumed Hε = Bλε
he

ε − Ãλε
and H0 = Bλ0 f e− Ãλ0 .

We have, using Lemma 17, we obtain

‖ϕλε
(t)uε −ϕλ0(t)u0‖H1

0 (Ω) 6 ‖ϕλε
(t)uε −ϕλε

(t)u0‖H1
0 (Ω)+‖ϕλε

(t)u0−ϕλ0(t)u0‖H1
0 (Ω)

6 K‖uε −u0‖H1
0 (Ω)e

−kt +‖ϕλε
(t)u0−ϕλ0(t)u0‖H1

0 (Ω).

Again, using Lemma 17, item 2 of Remark 7 and the Gronwall inequality, we obtain that

‖ϕλε
(t)uε −ϕλ0(t)u0‖H1

0 (Ω) = O(ε).

For the second term, we have

‖Bλε
(s)he

ε(s,ϕε(s,Hε)uε)−Bλ0(s) f e(ϕ0(s,H0)u0)‖H1
0 (Ω)

6 ‖Bλε
(s)[he

ε(s,ϕε(s,Hε)uε)− f e(ϕε(s,Hε)uε)]‖H1
0 (Ω)

+‖[Bλε
(s)−Bλ0(s)] f

e(ϕ0(s,H0)u0)‖H1
0 (Ω)

and hence, using again item 2 of Remark 7 we obtain that
ˆ t

0
‖Bλε

(s)he
ε(s,ϕε(s,Hε)uε)−Bλ0(s) f e(ϕ0(s,H0)u0)‖H1

0 (Ω)

6 O(ε)+

ˆ t

0
‖ϕε(s,Hε)uε −ϕ0(s,H0)u0‖H1

0 (Ω)ds.

Finally, joining the estimates and applying again the Gronwall inequality, we obtain that

‖ϕε(t,Hε)uε −ϕ0(t,H0)u0‖H1
0 (Ω) 6 O(ε),

and concludes the result.
We can prove the following:

Lemma 27. If {(uε ,Hε)}ε∈(0,1] is such that (uε ,Hε) ∈ Aε and

lim
ε→0+

d[(uε ,Hε),(u0,H0)] = 0

for some (u0,H0) ∈ H1
0 (Ω)×C∗, then (u0,H0) ∈ A0.
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Proof. Using the characterization of global attractors in Subsection 2.1, we know that through each (uε ,Hε)∈Aε

we have a global bounded solution ξε : R→Xε of {Πε(t) : t > 0}. To show that (u0,H0) ∈A0, it is sufficient to
prove that through (u0,H0) there exists a global bounded solution ξ0 : R→ X0 of {Π0(t) : t > 0}.

For any t > 0, we define ξ0(t) = Π(t)(u0,H0). Since {Π0(t) : t > 0} has a global attractor, the set ξ0([0,∞))
is bounded.

We now use an induction argument to define the solution for negative values of t. Consider the family
{ξε(−1)}ε∈[0,1], which we can write as

ξε(−1) = (uε(−1),θ−1Hε).

Using (21), we have that the family {uε(−1)}ε∈[0,1] and hence there exists a sequence ε1,n→ 0+ and a point
u−1 ∈ H1

0 (Ω) such that
uε1,n(−1)→ u−1, in H1

0 (Ω).

We define then ξ0(−1) = (u−1,θ−1H0) and ξ (t) = Π0(t + 1)(u−1,θ−1H0), for −1 6 t < 0. Clearly, using
Lemma 26, we have

(uε1,n ,Hε1,n) = Πε1,n(1)ξε1,n(−1)→Π0(1)ξ0(−1),

and thus (u0,H0) = ξ0(0) = Π0(1)ξ0(−1).
Proceeding inductively, for each k ∈N, we obtain a subsequence {εk,n}n∈N of {εk−1,n}n∈N with εk,n→ 0+ as

n→ ∞ and a point u−k ∈ H1
0 (Ω) such that if ξε(−k) = (uε(−k),θ−kHε) we have

uεk,n(− j)→ u− j, for all j = 1, · · · ,k.

Defining ξ0(−k) = (u−k,θ−kH0) and ξ0(t) = Π0(t + k)ξ0(−k) for −k 6 t <−k+1, we have that

(uεk,n ,Hεk,n) = Πεk,n(1)ξεk,n(− j)→Π0(− j+1)ξ0(− j+1), for each j = 1 · · · ,k,

and thus (u0,H0) = ξ0(0) = Π0(k)ξ0(−k).
Therefore, we obtain that ξ0 : R→ X0 is a bounded global solution of {Π0(t) : t > 0} through (u0,H0),

which implies that (u0,H0) ∈ A0 and concludes the proof.
Now, we can easily prove the upper semicontinuity of the family of global attractors {Aε}ε∈[0,1].

Theorem 28. The family of global attractors {Aε}ε∈[0,1] is upper semicontinuous at 0.

Proof. If {εn}n∈N ⊂ (0,1], with εn→ 0 and (un,Hn) ∈ Aεn , it is clear that there exists a convergent subsequence
of {(un,Hn)}n∈N to a point (u0,H0) ∈ X0 (using (21)). Hence, Lemma 27 shows that (u0,H0) ∈ A0, which
concludes the proof.

6.1 Upper semicontinuity for other attractors

As in immediate consequence of Theorem 28 we have (recall Theorem 21):

Corollary 29. Assume that (H1)-(H4) and (C) hold true. Then we have that

• the family of uniform attractors {Aε}ε∈[0,1];

• the family of cocycle attractors {A(Hε)}Hε∈Σε
and

• the family of pullback attractors {AHε
(t)}t∈R

are upper semicontinuous at 0 in H1
0 (Ω).
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7 Topological structure of attractors

Following the results of [7, Section 3], we will study the structure of the global attractors Aε for the skew-
product semiflows {Πε(t) : t > 0} and using this structure we obtain informations about the structure for the
other attractors defined in Theorem 21.

7.1 Structure of A0

To study the structure of the global attractors Aε , we will study in more detail the structure of the global
attractor A0 and we will make the following assumption:

There exists a finite number of isolated equilibia E = {e1, · · · ,ep} of{
−∆u = f (u), in Ω

u = 0, on ∂Ω.
(F)

With this assumption, we define

Ei = {ei}×Σ0 ⊂ X0, for i = 1, · · · , p.

Lemma 30. Each set Ei, i = 1, · · · , p, is invariant by the skew-product semiflow {Π0(t) : t > 0} and Ei ⊂ A0,
for each i = 1, · · · , p.

Proof. Clearly, if we take H0 ∈ Σ0, the solution [0,∞) 3 t 7→ ϕ0(t,H0)ei of (10) is the constant solution
ϕ0(t,H0)ei = ei, for all t > 0; hence

Π0(t)(ei,H0) = (ei,θtH0) ∈ Ei, for all t > 0.

Conversely, if t > 0 and H ∈ Σ0 are given, set H0 = θ−tH. We have

Π0(t)(ei,H) = (ei,θtH) = (ei,H0),

therefore (ei,H0) ∈Π0(t)Ei. The last claim follows since Ei is a bounded invariant subset of X0.
We can now define a functional on X0, which will help us understand the intern structure of A0.

Definition 12. Define the functional V : X0→ R by

V (v,H0) =
1
2
‖v‖2

H1
0 (Ω)−

ˆ
Ω

W (v), (23)

where W (r) =
´ r

0 f (θ)dθ , for each (v,H0) ∈ X0.

Lemma 31. Let {Π0(t) : t > 0} be the skew-product semiflow defined in (17) for ε = 0. If (u0,H0) ∈ X0 and V
is the functional in defined in (23), we have that

(a) the map [0,∞) 3 t 7→ V (Π0(t)(u0,H0)) is non-increasing, for each (u0,H0) ∈ X0 and it is constant in Ei,
i = 1, · · · , p.

(b) If the map [0,∞) 3 t 7→V (Π0(t)(u0,H0)) is constant, then (u0,H0) ∈ Ei, for some i = 1, · · · , p.

Proof. Since V (Π0(t)(u0,H0)) =V (ϕ0(t,H0)u0,θtH0), it is a straightforward computation to see, if H0 =Bλ f e−
Ãλ for some λ ∈ Γ, that

d
dt

V (Π0(t)(u0,H0)) =−
∥∥∥∥ d

dt
ϕ(t,H0)u0

∥∥∥∥2

L2(Ω)

−λ (t)
∥∥∥∥ d

dt
ϕ(t,H0)u0

∥∥∥∥2

H1
0 (Ω)

6 0,
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since 0 < γ0 6 λ (t), for all t ∈ R; so the map [0,∞) 3 t 7→ V (Π0(t)(u0,H0)) is non-increasing, and it is clearly
constant in each Ei.

Now, if map [0,∞) 3 t 7→ V (Π0(t)(u0,H0)) is constant, we have that ϕ0(t,H0)u0 = u0, for all t > 0, and
hence u0 is a equilibrium of −∆u = f (u) in H1

0 (Ω), which implies that u0 = ei, for some i = 1, · · · , p.

Definition 13. Let (u0,H0) ∈ A0. We define the ω-limit of (u0,H0) by

ω(u0,H0) = {(u,H) ∈ A0 : there exists a sequence tn→ ∞

such that Π0(tn)(u0,H0)
n→∞−→ (u,H)},

and if ξ : R→ A0 is a global solution of {Π0(t) : > 0} through (u0,H0), we define the αξ -limit of (u0,H0) by

αξ (u0,H0) = {(u,H) ∈ A0 : there exists a sequence tn→ ∞

such that ξ (−tn)
n→∞−→ (u,H)},

It is a well known result, since {Π0(t) : t > 0} has a global attractor A0, that both ω(u0,H0) and αξ (u0,H0)
are non-empty, compact, invariant for {Π0(t) : t > 0} and connected. With these, we can prove the following
result.

Lemma 32. For any (u0,H0) ∈ A0 and any global solution ξ through (u0,H0), there exists i, j = 1, · · · , p such
that

ω(u0,H0)⊂ Ei and αξ (u0,H0)⊂ E j.

Moreover, if i = j, then u0 = ei.

Proof. Let (u,H) ∈ ω(u0,H0) and tn→ ∞ such that Π0(tn)(u0,H0)→ (u,H). Since V is a continuous functional
in X0, we have that V (Π0(tn)(u0,H0))→V (u,H), as n→ ∞.

Since V (Π0(·)(u0,H0)) is non-increasing and has a convergent subsequence, we obtain that

V (Π0(t)(u0,H0))→V (u,H), as t→ ∞.

Hence, if (u1,H1) is any point in ω(u0,H0), we have that V (u1,H1) =V (u,H). Since ω(u0,H0) is invariant
for {Π0(t) : t > 0} we have that V (Π0(t)(u,H)) = V (u,H), and then [0,∞) 3 t 7→ V (Π0(t)(u,H)) is constant,
which implies that (u,H)∈Ei, for some i= 1, · · · , p. The connectedness of ω(u0,H0) shows us that ω(u0,H0)⊂
Ei.

The proof for αξ (u0,H0) is analogous and the last assertion is straightforward

Proposition 33. The family E = {E1, · · · ,Ep} is a disjoint family of isolated invariants for {Π0(t) : t > 0};
that is, Ei ⊂ A0, Π0(t)Ei = Ei for all t > 0, there exists δ > 0 such that Ei is the maximal invariant set for
{Π0(t) : t > 0} in

Oδ (Ei) = {(v,H) ∈ X0 : ‖v− ei‖H1
0 (Ω) < δ},

for each i = 1, · · · , p, and also Ei∩E j =∅, if 1 6 i 6= j 6 p.

Proof. It only remains to prove that there exists δ > 0 such that Ei is the maximal invariant set in Oδ (Ei). Let
δ = 1

2 min16i 6= j6p ‖ei− e j‖H1
0 (Ω).

If Ei is not the maximal invariant in Oδ (Ei), there exists a global solution ξ of {Π0(t) : t > 0} such that
ξ (R)⊂Oδ (Ei), with ξ (R)\Ei 6=∅. But then the previous lemma shows that ω(ξ (0))⊂Ei and αξ (ξ (0))⊂Ei,
which implies that ξ (0) = (ei,H0), and therefore ξ (R)⊂ Ei, so we reached a contradiction.

All these results combined show us that the semigroup {Π0(t) : t > 0} is, in fact, a generalized gradient
semigroup (see [7, 15, 26] for more details) with disjoint family of isolated invariants E= {E1, · · · ,Ep}, and as
a consequence, we can write the global attractor A0 as

A0 =
p⋃

i=1

Wu(Ei),
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where

Wu(Ei) = {(u,H) ∈ A0 : there exists a global solution ξ of {Π0(t) : t > 0}
with ξ (0) = (u,H) such that d(ξ (t),Ei)→ 0, as t→−∞}.

If H0 ∈ Σ0, there exists λ ∈ Γ such that H0 = Bλ f e− Ãλ . Thus we can define

W u(ei,H0) = {u ∈ H1
0 (Ω) : there exists a global solution η of (10)for H0

with η(0) = u such that ‖η(t)− ei‖H1
0 (Ω)→ 0, as t→−∞}.

It is simple to see that

Wu(Ei) =W u(ei,H0)×{H0}, for each i = 1, · · · , p,

and thus we have that

A0 =
p⋃

i=1

⋃
H0∈Σ0

W u(ei,H0)×{H0},

and Theorem 21 shows us that the uniform attractor A0 of the non-autonomous dynamical system (ϕ0,θ)(H1
0 (Ω),Σ0)

is given by

A0 =
p⋃

i=1

⋃
H0∈Σ0

W u(ei,H0).

Moreover, the cocycle attractor {A(H0)}H0∈Σ0 of the non-autonomous dynamical system (ϕ0,θ)(H1
0 (Ω),Σ0)

is
given by

A(H0) =
p⋃

i=1

W u(ei,H0), for each H0 ∈ Σ0.

And finally, for each H0 ∈ Σ0, the pullback attractor {AH0(t)}t∈R of the evolution process TH0(t,s) = ϕ0(t−
s,θsH0) is given by

AH0(t) =
p⋃

i=1

W u(ei,θtH0), for all t ∈ R and each H0 ∈ Σ0.

Remark 11.

1. If H0 = Bγ f e− Ãγ , defining

A (t) = AH0(t), for each t ∈ R,

we obtain the pullback attractor for (5); that is, for each t ∈ R, we have

A (t) = {η(t) : η is a bounded global solution of (5)}.

2. If γ(·) is a constant function, equation (5) is autonomous, Σ0 = {Bγ f e− Ãγ} is a singleton and we obtain,
as a particular case, that the autonomous system generated by (5) is a gradient semigroup with a finite
collection of equilibria E = {e1, · · · ,ep} and that A0 =A0×Σ0, where A0 =W u(ei,H0) and H0 = Bγ f e−
Ãγ .
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7.2 Structure of Aε

In this subsection we prove that, under suitable conditions, the attractors Aε inherit the same generalized
gradient structure from A0. To this end, we first need to take the following fact in account: we have, following
the ideas of the proof of Lemma 26, if Hε → H0 in (C∗,d∗), that

lim
ε→0+

d[Πε(t)(u,Hε),Π0(t)(u,H0)] = 0,

uniformly for t in bounded subsets of R, u in bounded subsets of H1
0 (Ω).

With all these considerations and previous results, we are able to state the following structural result.

Theorem 34. Assume that hypotheses (H1)-(H4), (C) and (F) hold true. Assume also that

(a) for each ε ∈ (0,1] there exists a disjoint family of isolated invariants Eε = {E1,ε , · · · ,Ep,ε} for {Πε(t) : t >
0} such that

dH [Ei,ε ,Ei]+dH [Ei,Ei,ε ]→ 0, as ε → 0+;

(b) there exists ε0 > 0 and neighborhoods Vi of Ei such that Ei,ε is the maximal invariant set of {Πε(t) : t > 0}
in Vi, for each i = 1, · · · , p and 0 < ε 6 ε0.

Then there exists ε1 > 0 such that {Πε(t) : t > 0} is a generalized gradient semigroup with a disjoint family
of isolated invariants Eε , for each 0 6 ε 6 ε1. Moreover, for 0 6 ε 6 ε1, we have

Aε =
p⋃

i=1

Wu(Ei,ε).

Proof. The proof of this theorem is analogous to the proof of [15, Theorem 1.5], with the aid of Proposition 25.

7.3 Global hyperbolic solutions for (10)

Let ξε be a global solution of {Πε(t) : t > 0} in Aε . Thus we have that there exists Hε ∈ Σε such that
ξε(t) = (ηε(t),θtHε), for all t ∈ R, where ηε is a global bounded solution of (10).

Writing Hε = Bλ he
ε − Ãλ , for some λ ∈ Γ and hε ∈ C2, we can consider the variational problem for the

solution ηε , given by {
ut −λ (t)∆ut −∆u = Dshe

ε(t,ηε(t))u, in Ω

u = 0, on ∂Ω,
(24)

where [Dshe
ε(t,ηε(t))u](x) = ∂shε(t,ηε(t)(x))u(x), a.e. x ∈Ω, for u ∈ H1

0 (Ω).
This equation generates a linear evolution process {Lξε

(t,s) : t > s} ⊂L (H1
0 (Ω)), where u(t) = Lξε

(t,s)u0
is the solution at time t of (24) with u(s) = u0.

Definition 14. We say that {Lξε
(t,s) : t > s} has an exponential dichotomy if there exists a family of projections

{Q(t)}t∈R in L (H1
0 (Ω)) satisfying:

(a) Q(t)Lξε
(t,s) = Lξε

(t,s)Q(s), for all t > s.

(b) The restriction Lξε
(t,s)|R(Q(s)), t > s, is an isomorphism from R(Q(s)) into R(Q(t)); and we denote its

inverse by Lξε
(s, t) : R(Q(t))→ R(Q(s)).

(c) There are constants ω > 0 and M > 1 such that

‖Lξε
(t,s)(I−Q(s))‖L (H1

0 (Ω)) 6 Me−ω(t−s), for t > s;

‖Lξε
(s, t)Q(t)‖L (H1

0 (Ω)) 6 Meω(s−t), for s < t.
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In this case, we say that ξε is a hyperbolic global solution of {Πε(t) : t > 0}.

Now we make the following assumption:

Each global solution ξ
∗
i,H0

(t) = (ei,θtH0), t ∈ R and

H0 ∈ Σ0, is hyperbolic.
(Hy)

Remark 12. Since Σ0 = {Bλ f e−Ãλ}λ∈Γ, we have a family {ξ ∗i,λ}λ∈Γ of hyperbolic global solutions of {Π0(t) : t >
0}, where ξ ∗i,λ = ξ ∗i,H0

for H0 = Bλ f e− Ãλ .

Now, proceeding as in [16, Section 7.2] and [26], we have the following result:

Proposition 35. Assume that hypotheses (H1)-(H5), (C), (F) and (Hy) hold true. Thus, there exist ε0 > 0 and
δ > 0 such that for each i = 1, · · · , p, λ ∈ Γ and ε ∈ (0,ε0], there exist a unique h∗ε ∈ Gε and a unique bounded
global solution η∗i,λ ,ε : R→Aε of (10), with Hε = Bλ h∗,eε − Ãλ , which we denote by Hλ

ε , such that:

(i) the function R 3 t 7→ ξ ∗i,λ ,ε(t) = (η∗i,λ ,ε(t),θtHλ
ε ) ∈ Aε is a hyperbolic global solution of {Πε(t) : t > 0};

(ii) supt∈R d[ξ
∗
i,λ ,ε(t),(ei,θtHλ

0 )]< δ ; where Hλ
0 = Bλ f e− Ãλ , and

(iii) supt∈R d[ξ
∗
i,λ ,ε(t),(ei,θtHλ

0 )]→ 0, as ε → 0+.

Moreover, if ξε is a global solution of {Πε(t) : t > 0} such that d[ξε(t),ξ ∗i,λ ,ε(t)]< δ for all t > 0 (t 6 0) then

d[ξε(t),ξ ∗i,λ ,ε(t)]→ 0 as t→ ∞ (t→−∞)

With this proposition, we can construct a family Eε = {E1,ε , · · · ,Ep,ε}, satifying the conditions of Theorem
34. In fact, for each λ ∈ Γ, let

Di,ε(λ ) =
⋃
t∈R

ξ
∗
i,λ ,ε(t) =

⋃
t∈R

(η∗i,λ ,ε(t),θtHλ
ε ), for each i = 1, · · · , p, (25)

and define
Ei,ε =

⋃
λ∈Γ

Di,ε(λ ), for each i = 1, · · · , p.

Now, as an immediate consequence of Theorem 34 and Proposition 35, we have:

Theorem 36. Assume that hypotheses (H1)-(H5), (C), (F) and (Hy) hold true. Consider the disjoint family of
isolated invariants Eε = {E1,ε , · · · ,Ep,ε} for {Πε(t) : t > 0} given by (25).

Then there exists ε1 > 0 such that {Πε(t) : t > 0} is a generalized gradient semigroup with a disjoint family
of isolated invariants Eε , for each 0 6 ε 6 ε1. Moreover, for 0 6 ε 6 ε1, we have

Aε =
p⋃

i=1

Wu(Ei,ε),

and
Wu(Ei,ε) =

⋃
λ∈Γ

Wu(Di,ε(λ )).

With this result, we can derive structures for the other types of attractors, as we did for A0; namely, we have
that the uniform attractor of (ϕε ,θ)(H1

0 (Ω),Σε )
is given by

Aε = πH1
0 (Ω)Aε =

p⋃
i=1

W u(Ei,ε),
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where Ei,ε =
⋃

λ∈Γ

⋃
t∈R η∗i,λ ,ε(t). Also, the cocycle attractor for (ϕε ,θ)(H1

0 (Ω),Σε )
is given by

A(Hε) =
p⋃

i=1

W u(Ei,ε(λ )),

where Ei,ε(λ ) =
⋃

t∈R η∗i,λ ,ε(t) and Hε = Bλ he
ε − Ãλ .

Lastly, if Hε ∈ Σε , the pullback attractor {AHε
(t)}t∈R of the evolution process THε

(t,s) = ϕε(t− s,θsHε) is
given by

AHε
(t) =

p⋃
i=1

W u(η∗i,λ ,ε)(t), for all t ∈ R,

where

W u(ξ ∗i,λ ,ε)(t) = {u ∈ H1
0 (Ω) : there exists a global solution ηε of (10) for Hε

with ηε(t) = u such that ‖ηε(s)−η
∗
i,λ ,ε(s)‖H1

0 (Ω)→ 0, as s→−∞}.

7.4 Further remarks

As discussed extensively in [5] and [7], we could do the analysis presented in this work, removing condition
(C) by assuming only that we have a semigroup of translations {θt : t > 0} in Gε with a global attractor Ξε ⊂ Gε .
Thus, despite some complications with notations, the results would remain unchanged, replacing Gε by Ξε . This,
in turn, allows us to give a more precise description of the attractors when gε is, for instance, asymptotically
autonomous; since in this case, we notice that Ξε is a singleton, which is significantly smaller than Gε .
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