

Applied Mathematics and Nonlinear Sciences 2(1) (2017) 249-258

Large solutions for cooperative logistic systems: existence and uniqueness in starshaped domains

Luis Maire[†]

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid Spain

Submission Info

Communicated by Juan L.G. Guirao Received 22th March 2017 Accepted 26th June 2017 Available online 26th June 2017

Abstract

We extend Theorem 1.1 of [J. Math. Anal. Appl. **435** (2016), 1738–1752] to show the uniqueness of large solutions for the system of (1) in star-shaped domains. This result is due to the maximum principle for cooperative systems of [J. López-Gómez and M. Molina-Meyer, Diff. Int. Eq. **7** (1994), 383–398], which allows us to establish the uniqueness without invoking to the blow-up rates of the solutions.

Keywords: Large positive solution. Cooperative system. Logistic equation. Uniqueness. Keller–Osserman. **AMS 2010 codes:** 35J57, 35K57, 35B50, 35B51.

1 Introduction

This paper studies the uniqueness of the solution of the singular elliptic problem

$$\begin{cases} -\Delta u_i = \sum_{j=1}^n a_{ij}(x)u_j - b_i(x)f_i(u_i) \text{ in } \Omega, \\ u_i = +\infty \qquad \text{on } \partial\Omega, \end{cases} \quad 1 \le i \le n, \tag{1}$$

where Ω is a bounded subdomain of \mathbb{R}^N , $N \ge 1$ whose boundary is sufficiently regular (e.g. of class \mathscr{C}^1) and the heterogeneous terms satisfy $a_{ij}, b_i \in \mathscr{C}(\overline{\Omega})$ for all $1 \le i, j \le n$,

$$a_{ij}(x) > 0 \ 1 \le i \ne j \le n,$$

$$b_i(x) > 0 \ 1 \le i \le n,$$
for all $x \in \Omega.$
(2)

[†]Corresponding author.

Email address: luismaire@ucm.es

As far as concerns the nonlinear terms, it is assumed that $f_i \in \mathscr{C}^1[0,\infty)$ is a nondecreasing function such that $f_i(0) = 0$, for all $1 \le i \le n$. A function $u := (u_1, \ldots, u_n) \in [\mathscr{C}^{2+\nu}(\Omega)]^n$, $\nu \in (0,1)$, is a solution of (1) if it satisfies the system of (1) and

$$\lim_{\substack{x \to z \\ x \in \Omega, z \in \partial \Omega}} u_i(x) = +\infty, \quad 1 \le i \le n.$$

These functions will be referred as *large solutions*. Its study goes back to the pioneering works of J. B. Keller [8] and R. Osserman [20], who considered the case of the single equation $\Delta u = f(u)$ when f is a monotone function. Since them, many works have dealt with large solutions of elliptic equations (see, e.g. the lists of references of [11]), but almost all of them are focused in the study of the single equation. Some of the few existing references for systems are [6, 7, 12–14], although, except [12], they only study the special case in which n = 2. Moreover, the majority of the works are restricted to the case in which the nonlinearities are of power-type.

In order to ensure the existence of large solutions of (1) one should ask for the following Keller-Osserman type condition:

(KO) There exists $f \in \mathscr{C}^1[0, +\infty)$ such that $f(u) < f_i(u)$ for every $1 \le i \le n$ and, for every a, b > 0,

$$I(c) := \int_{c}^{+\infty} \frac{d\theta}{\sqrt{\int_{c}^{\theta} bf(s) - asds}} < +\infty \quad \text{for some } c > 0.$$

This condition is a generalization of the one made by P. Álvarez-Caudevilla and J. López-Gómez in [1]. According to S. Dumont et al. [4], by the monotonicity of f we have that

$$\liminf_{c \to 0} I(c) = 0,$$

so the second part of the *Keller-Osserman* condition described in [1] is satisfied. The reader is sent to [11, Chapter 3] and [4] for a detailed discussion on Keller–Ossermann conditions. Essentially, (KO) is a condition on the growth of f_i at infinity. It is not hard to check that the existence of p > 1 and C > 0 such that

$$f_i(u) \ge C u^p, \quad 1 \le i \le n, \tag{3}$$

for every u > 0 sufficiently large, entails (KO).

The assumption made on the first inequalities of (2) guarantees that the system of (1) is *cooperative*, so the maximum principle for cooperative systems of J. López-Gómez and M. Molina-Meyer, [16], which is a fundamental tool for the analysis carried out in this paper, is available. Thus, the usual comparison principle works in our context (see Theorem 2 of Section 2). In particular, we can adapt the construction of a maximal and a minimal large solution given in [1, Sections 3 and 4]. Then, under the general hypotheses of this paper and (KO), there exists a minimal and a maximal solution to (1) for every subdomain $\Omega \subset \mathbb{R}^N$ with $\partial \Omega$ sufficiently regular.

The uniqueness of solutions of (1) is still a widely open question, even when (1) reduces to a single equation, and the usual uniqueness argument for the equation via the *blow-up rates* does not have a trivial extension to cover (1) (see [14]). Our main result establishes the uniqueness of large solution of (1) when Ω is a star-shaped domain, i.e. when there exists a point $x_0 \in \Omega$, called the *center* of Ω , such that the line segment between x_0 and x belongs to Ω for every $x \in \Omega$. It can be stated as follows.

Theorem 1. Suppose that Ω is star-shaped. Without loss of generality, we can suppose that the center of Ω is the origin; otherwise, the change of variables $y = x - x_0$ transforms x_0 into 0. Let D_0 be an open neighborhood of $\partial \Omega$ with the next property:

• There exists $\rho_0 > 1$ such that for every $1 \le \rho \le \rho_0$ and $x \in \Omega \cap D_0$ with $\rho x \in \Omega \cap D_0$,

$$\begin{array}{l}
\rho^2 a_{ij}(\rho x) \ge a_{ij}(x), \\
b_i(\rho x) \le b_i(x), \\
\end{array} \quad 1 \le i, j \le n.$$
(4)

Assume that each f_i is super-homogeneous of degree $p_i > 1$, in the sense that for every $1 \le i \le n$ there exists $p_i > 1$ such that

$$f_i(tu) \ge t^p f_i(u) \quad \text{for all } t > 1, \ u > 0.$$
(5)

Then, (1) has a unique positive solution.

Theorem 1 is a substancial extension of [12, Theorem 1.1] and [15, Theorem 1.1]. Indeed, the main result of [12] establishes the uniqueness of solution for the radially symmetric counterpart of (1) with constant coupling coefficients, $a_{ij} \in \mathbb{R}_+$, $1 \le i \ne j \le n$, while [15, Theorem 1.1] only deals with (1) in the restricted case n = 1 and $a_{11} \in \mathbb{R}$. On the other hand, the case where Ω is an annular region is covered in [12] and [15].

The hypothesis (5) goes back to [10, Eq. (11)] and [3, Eq. (6)]. It is easily seen that (5) implies (KO), which ensures the existence of positive solutions of (1): Assuming (5), we have that (3) is satisfied for the choice $p := \min\{p_i : 1 \le i \le n\}$ and $C := \min\{f_i(1) : 1 \le i \le n\}$. Moreover, (5) implies that

$$f_i(u)/u$$
 is increasing, $1 \le i \le n$, (6)

because

$$\frac{f_i(\theta u) - f_i(u)}{\theta u - u} \ge \frac{\theta^{p_i} f_i(u) - f_i(u)}{\theta u - u} = \frac{\theta^{p_i} - 1}{\theta - 1} \frac{f_i(u)}{u} > \frac{f_i(u)}{u}, \quad 1 \le i \le n,$$

for every $\theta > 1$ and u > 0. The last inequalities entail that $f'_i(u) \ge f_i(u)/u$, and hence, $(f_i(u)/u)' \ge 0$ for all $1 \le i \le n$. In the proof of Theorem 1, we will not use (5) directly, but the following equivalent condition.

$$\exists \alpha > 0 \text{ such that } \rho^{2+\alpha} f_i(\rho^{-\alpha} v) \le f_i(v) \quad \text{for all } \rho > 1, \ v > 0, \ 1 \le i \le n.$$

$$(7)$$

Indeed, the change of variables

$$v = tu$$
, $t = \rho^{\alpha}$, $\alpha = \frac{2}{p-1}$

transforms (5) into (7).

The assumption (4) is a condition on the growth of the heterogeneous terms, a_{ij} , b_i , along the rays of Ω as x approximates $\partial \Omega$. More precisely, if for every $z \in \partial \Omega$ we define the functions

$$\begin{aligned} a_{ij}^{z}(t) &:= a_{ij}(tz), \\ b_{i}^{z}(t) &:= b_{i}(tz), \end{aligned} t \in [0,1], \ 1 \leq i,j \leq n,$$

then, the second line of (4) means that $b_i^z(t)$ is non-increasing when $t \sim 1$, for every $1 \le i \le n$. Note that, if the following conditions are satisfied,

$$\begin{array}{l} a_{ii}^z(t) \geq 0, \\ a_{ij}^z(t) \leq a_{ij}^z(s) \end{array} \quad \text{for all } t_0 < t < s < 1, \ z \in \partial \Omega, \ 1 \leq i, j \leq n, \end{array}$$

for some $t_0 \in (0,1)$, then the inequalities of the first line of (4) hold. It is remarkable that (4) is weaker than hypothesis (ii) established in [12, Remark 4.2] if we assume Ω is a ball. Indeed, suppose $\Omega = B_R(0) := \{x \in \mathbb{R}^N : ||x|| < R\}$ and

$$a_{ij}(x) := a_{ij}^*(\operatorname{dist}(x,\partial\Omega)), \quad 1 \le i \ne j \le n,$$

for some positive continuous non-increasing functions a_{ij}^* . Then,

$$\rho^2 a_{ij}(\rho x) > a_{ij}(\rho x) = a_{ij}^*(\operatorname{dist}(\rho x, \partial \Omega)) \ge a_{ij}^*(\operatorname{dist}(x, \partial \Omega)) = a_{ij}(x)$$

for every $1 \le i \ne j \le n$, $\rho > 1$ and $x \in \Omega$ with $\rho x \in \Omega$.

The distribution of this paper is the following. Section 2 sketches the existence of a minimal and a maximal solution to (1) and provides us with some necessary results for proving the main result. Finally, in Section 3 we show the proof Theorem 1.

2 Existence and previous results

The existence of a minimal and a maximal solution to (1) can be obtained simply by adapting the abstract results of J. López-Gómez and P. Álvarez-Caudevilla [1, Section 3] to the case of *n* equations. For our purpose, it is enough if we show a scheme of this construction, with special attention in the construction of a supersolution for the non singular counterpart of (1).

Given a regular subdomain $D \subset \mathbb{R}^N$, we define the operator $\mathfrak{L} : [\mathscr{C}^{2+\nu}(D)]^n \to [\mathscr{C}^{\nu}(D)]^n$ by

$$(\mathfrak{L}u)_i = -\Delta u_i - \sum_{j=1}^n a_{ij}(\cdot)u_j, \quad 1 \le i \le n.$$

Thanks to the cooperative structure of \mathfrak{L} , given by (2), it is well known that there exists a unique $\sigma \in \mathbb{R}$ such that the linear eigenvalue problem

$$\begin{cases} \mathfrak{L} \varphi = \sigma \varphi \text{ in } D, \\ \varphi = 0 \quad \text{on } \partial D, \end{cases}$$

admits a positive eigenfunction $\varphi \in [\mathscr{C}^{2+\nu}(D)]^n$, $\varphi_i(x) > 0$ for all $x \in D$, $1 \le i \le n$. This value $\sigma \in \mathbb{R}$ is called the *principal eigenvalue* of \mathfrak{L} under Dirichlet homogeneous boundary conditions. From here on, it will be denoted by $\sigma[\mathfrak{L}, D]$.

The following theorem goes back to M. Molina-Meyer, [17–19]. It can be obtained by adapting the classical theory of sub and supersolution provided in H. Amann [2] and the maximum principle for cooperative systems of J. López-Gómez and M. Molina-Meyer, [16].

Theorem 2. Suppose that (2) and (5) are satisfied. Then, for every $w \in [\mathscr{C}(\partial \Omega)]^n$, $w \ge 0$, the boundary value problem

$$\begin{cases} -\Delta u_i = \sum_{j=1}^n a_{ij}(x)u_j - b_i(x)f_i(u_i) \text{ in } \Omega, \\ u_i = w_i & \text{on } \partial\Omega, \end{cases} \quad 1 \le i \le n, \tag{1}$$

has a unique positive solution, throughout denoted by $\theta_{[\Omega,w]}$. Moreover, for every positive supersolution \bar{u} (resp. subsolution \underline{u}) of (1), one gets

$$\bar{u} \ge \theta_{[\Omega,w]}$$
 (resp. $\underline{u} \le \theta_{[\Omega,w]}$).

Sketch of the proof. By the general assumptions concerning to the nonlinear terms, $\underline{u} := \vec{0}$ is a (strict) subsolution of (1), for every w > 0. Then, for the existence of a positive solution, it only remains to construct a supersolution of (1).

In the special case when

$$\min_{z \in \partial \Omega} b_i(z) > 0, \quad 1 \le i \le n, \tag{2}$$

the function $\bar{u} := (M, \dots, M)$ provides us with a supersolution of (1) for M sufficiently large. Indeed, by (5),

$$f_i(m) \ge f_i(1)m^{p_i}$$
, for all $m > 1$.

Thus, owing to (2), there exists $m_0 > 0$ such that for every $m > m_0$,

$$\sum_{j=1}^{n} ||a_{ij}||_{\infty} m - \min_{x \in \bar{\Omega}} b_i(x) f_i(m) \le m \sum_{j=1}^{n} ||a_{ij}||_{\infty} - \min_{x \in \bar{\Omega}} b_i(x) f_i(1) m^{p_i} < 0.$$

because $p_i > 1$ for all $1 \le i \le n$. Hence,

$$-\Delta m = 0 > \sum_{j=1}^{n} ||a_{ij}||_{\infty} m - \min_{x \in \bar{\Omega}} b_i(x) f_i(m) \ge \sum_{j=1}^{n} a_{ij}(x) m - b_i(x) f_i(m),$$

UP4

$$a := \max_{1 \le i,j \le n} ||a_{ij}||_{\infty},$$

and consider the operator

$$(\bar{\mathfrak{L}}u)_i := -\Delta u_i - a \sum_{j=1}^n u_j, \quad 1 \le i \le n.$$

By the monotonicity with respect to the coupling terms of the operator \mathfrak{L} , it is clear that

$$\sigma[\mathfrak{L},D] > \sigma[\bar{\mathfrak{L}},D],$$

(see [16, Theorem 3.2] if necessary). Moreover, by the uniqueness of the principal eigenvalue, we have

$$\sigma[\bar{\mathfrak{L}},D] = \lambda_1[-\Delta - na,D] = \lambda_1[-\Delta,D] - na, \tag{3}$$

where $\lambda_1[-\Delta, D]$ stands for the classical first eigenvalue of $-\Delta$ in *D* under Dirichlet homogeneous boundary conditions. On the other hand, thanks to the Faber–Krahn inequality, [5,9],

$$\lambda_1[-\Delta,D] \to +\infty$$
, as $|D| \downarrow 0$,

where |D| denotes the Lebesgue measure of *D*. Therefore, by (3), there exists $\delta_0 > 0$, depending on a_{ij} , such that

$$\sigma[\mathfrak{L},D] > 0, \tag{4}$$

for every regular subdomain $D \subset \mathbb{R}^N$ such that $|D| < \delta_0$.

Set D' a neighborhood of $\partial \Omega$ satisfying (4) and $\varphi = (\varphi_1, \dots, \varphi_n)$ an eigenfunction associated to $\sigma[\mathfrak{L}, D']$, i.e.,

$$-\Delta \varphi_i - \sum_{j=1}^n a_{ij}(x)\varphi_j = \sigma[-\mathfrak{L}, D']\varphi_i > 0, \quad x \in D', \ 1 \le i \le n,$$
(5)

and $\varphi_i(x) > 0$ for every $x \in D'$. Clearly, we can consider another open neighborhood of $\partial \Omega$, namely D^* , such that $\overline{D}^* \subset D'$ and

$$\varphi_i(x) > 0 \quad \text{for all } x \in \bar{D}^*.$$
 (6)

The last property allows us to define the next function,

$$\Phi := egin{cases} arphi \ {
m in} \ \Omega \cap D^*, \ g \ {
m in} \ \Omega \setminus D^*, \end{cases}$$

where g is any positive regular extension of φ to $\Omega \setminus D^*$, i.e., such that

$$\min_{\Omega\setminus D^*}g>0,$$

which exists because of (6). Then, $\tau\Phi$ provides us with a supersolution of (1) if $\tau > 1$ is sufficiently large. Indeed, by (6),

$$\tau \Phi_i(z) = \varphi_i(z) > w_i(z)$$
 for every $z \in \partial \Omega$, $\tau > \tau_0$, $1 \le i \le n$,

for every $\tau > 1$ sufficiently large. On the other side, using (4) and (5) we get that, in $\Omega \cap D^*$,

$$-\Delta(\tau\Phi_i) = \tau(-\Delta\varphi_i) = \tau \sum_{j=1}^n a_{ij}(\cdot)\varphi_j + \tau\sigma[-\Delta,D']\varphi_i$$
$$\geq \sum_{j=1}^n a_{ij}(\cdot)\tau\varphi_j - b_i(\cdot)f_i(\tau\varphi_i), \qquad 1 \le i \le n,$$

UP.4

while, in $\Omega \setminus D^*$, we can take $\tau > 1$ sufficiently large so that

$$-\Delta(au\Phi_i)= au(-\Delta g_i)\geq au\sum_{j=1}^n a_{ij}(\cdot)g_j-b_i(\cdot) au^{p_i}f_i(g_i),\quad 1\leq i\leq n,$$

because $b_i(x) > 0$ for every $x \in \Omega \setminus D$. Lastly, applying (5) in the last inequality yields

$$-\Delta(\tau\Phi) \ge \sum_{j=1}^n a_{ij}(\cdot)\tau g_j - b_i(\cdot)f_i(\tau g_i), \quad x \in \Omega \setminus D^*$$

This finishes the construction of a supersolution. The last assertion of the theorem is due to the uniqueness of the solution of (1), which is a consequence of the maximum principle and (6). \Box

From Theorem 2 we deduce that the mapping

$$\begin{array}{c} (0,+\infty) \longrightarrow \left[\mathscr{C}^{2+\nu}(\bar{\Omega}) \right]^n \\ m \longmapsto \theta_{[\Omega,\vec{m}]}, \end{array}$$

where $\vec{m} := (m, ..., m)$, is increasing. Moreover, by adapting the construction provided in [11, Chapter 3] for the single equation, we obtain the following result, which in case n = 2 is given by [1, Theorem 4.10].

Theorem 3. Under condition (KO), the point-wise limit

$$\theta_{[\Omega,\infty]}(x) := \lim_{m\uparrow+\infty} \theta_{[\Omega,\vec{m}]}(x), \qquad x \in \Omega,$$

is well defined, and it provides us with the minimal solution of (1), throughout denoted by L_{Ω}^{min} . Furthermore, the maximal solution of (1) is given by

$$L_{\Omega}^{max} = \lim_{\delta \downarrow 0} \theta_{[\Omega_{\delta},\infty]},$$

where we have denoted

$$\Omega_{\delta} := \{ x \in \Omega : d(x, \partial \Omega) > \delta \}, \qquad \delta > 0.$$

3 Proofs of the main results

3.1 Proof of Theorem 1

It suffices to show that $L_{\Omega}^{\min} = L_{\Omega}^{\max}$. Consider

$$D:=D_0\cap D^*,$$

where D_0 is the set mentioned in the statement of Theorem 1 and D^* is the one arisen in the previous section. Let us define the sets

$$\Omega_{\rho} := \{ x \in \Omega : \rho x \in \Omega \}, \quad \rho > 0,$$

and

$$\Gamma_{
ho} := \Omega_{
ho} \setminus \Omega_{
ho_0}$$

where it is assumed we have fixed a $\rho_0 > 1$ sufficiently small so that

$$\Gamma_{\rho} \subset D, \quad \text{for all } 1 \le \rho \le \rho_0.$$
 (1)

Note that the component of $\partial \Gamma_{\rho}$ are $\partial \Omega_{\rho_0}$ and $\partial \Omega_{\rho}$, and $\partial \Omega_{\rho}$ approximates $\partial \Omega$ as $\rho \downarrow 1$.

Set $u = (u_1, ..., u_n)$ a positive solution of (1) and consider the functions defined by

$$\bar{u}_{\rho,i}(x) := \rho^{\alpha} u_i(\rho x) + \tau \varphi_i(\rho x), \quad x \in \Gamma_{\rho}, \ \tau > 1, \ 1 \le i \le n,$$

$$(2)$$

where φ is the eigenfunction that satisfies (5). Then, the following result of technical nature holds.

UP4

254

Lemma 4. There exists $\tau > 1$ such that \bar{u}_{ρ} is a supersolution of the singular problem

$$\begin{cases} -\Delta v_i = \sum_{j=1}^n a_{ij}(x)v_j - b_i(x)f_i(v_i) \text{ in } \Gamma_{\rho}, \\ v_i = +\infty & \text{ on } \partial\Omega_{\rho}, \\ v_i = L_{\Omega,i}^{max} & \text{ on } \partial\Omega_{\rho_0}, \end{cases}$$
(3)

for every $1 < \rho < \frac{\rho_0}{2}$.

Proof. As u is a solution of (1), by (2)

$$\bar{u}_i = +\infty \text{ on } I_{\rho}, \text{ for every } 1 \le \rho \le \frac{\rho_0}{2}, 1 \le i \le n.$$

On the other hand, using (1), we have that

$$F := \{ \rho z : z \in \partial \Omega_{\rho_0}, 1 \le \rho \le \frac{\rho_0}{2} \} \subset \Omega \cap D.$$

Thus, thanks to (6), there exists $\tau > 1$ such that

$$\tau \varphi_i(x) > L_{\Omega}^{\max}(x)$$
 for every $x \in F$,

which ensures that \bar{u} satisfies the required inequalities on the boundary. Finally, owing to (5), for every $1 < \rho < \rho_0$ and $x \in \Gamma_{\rho}$,

$$\begin{split} -\Delta \bar{u}_{\rho,i}(x) &= \rho^{2+\alpha}(-\Delta)u_i(\rho x) + \rho^2 \tau(-\Delta)\varphi_i(\rho x) \\ &= \rho^2 \sum_{j=1}^n a_{ij}(\rho x)[\rho^{\alpha} u_j(\rho x) + \tau \varphi_j(\rho x)] + \rho^2 \tau \sigma[-\Delta,\Gamma]\varphi_i(\rho x) \\ &\quad -\rho^{2+\alpha} b_i(\rho x)f_i(u_i(\rho x)) \\ &\geq \rho^2 \sum_{j=1}^n a_{ij}(\rho x)\bar{u}_j(x) - \rho^{2+\alpha} b_i(\rho x)f_i(u_i(\rho x)). \end{split}$$

Hence, invoking to (4) and (7) yields

$$\begin{split} -\Delta \bar{u}_{\rho,i}(x) &\geq \rho^2 \sum_{j=1}^n a_{ij}(\rho x) \bar{u}_j(x) - \rho^{2+\alpha} b_i(\rho x) f_i(u_i(\rho x)) \\ &\geq \sum_{j=1}^n a_{ij}(x) \bar{u}_j(x) - \rho^{2+\alpha} b_i(x) f_i(u_i(\rho x)) \\ &= \sum_{j=1}^n a_{ij}(x) \bar{u}_j(x) - \rho^{2+\alpha} b_i(x) f_i(\rho^{-\alpha} \rho^{\alpha} u_i(\rho x)) \\ &= \sum_{j=1}^n a_{ij}(x) \bar{u}_j(x) - b_i(x) f_i(\rho^{\alpha} u_i(x)) \geq \sum_{j=1}^n a_{ij}(x) \bar{u}_j(x) - b_i(x) f_i(\bar{u}_i(x)) \end{split}$$

for every $0 < \rho < \rho_0$ and $x \in \Gamma_{\rho}$. Therefore, \bar{u}_{ρ} is a supersolution of (3) for all $1 < \rho < \rho_0$. \Box

By the construction of the sets $\Gamma_{
ho}$, it is clear that, for every $1 <
ho <
ho_0/2$

$$L^{\max}(x) < +\infty$$
, for all $x \in \overline{\Gamma}_{\rho} \subset \Omega$.

UP4

Hence, applying Theorem 2 to the solution L_{Ω}^{\max} and the supersolution \bar{u}_{ρ} , we obtain that, for every $1 \le i \le n$,

$$L_{\Omega,i}^{\max}(x) \leq \bar{u}_{\rho,i}(x) = \rho^{\alpha} u_i(\rho x) + \tau \varphi_i(\rho x), \quad x \in \Gamma_{\rho}, \ 1 < \rho < \rho_0.$$

Making the choice $u(x) = L_{\Omega}^{\min}(x)$ and letting $\rho \downarrow 1$, we can infer that

$$L_{\Omega,i}^{\max}(x) \le L_{\Omega,i}^{\min}(x) + \tau \varphi_i(x), \quad x \in \Gamma_1 = \Omega \setminus \Omega_{\rho_0}, \ 1 \le i \le n.$$

In particular, dividing by $L_{\Omega,i}^{\min}$ yields

$$1 \leq \frac{L_{\Omega,i}^{\max}(x)}{L_{\Omega,i}^{\min}(x)} \leq 1 + \frac{\tau \varphi_i(x)}{L_{\Omega,i}^{\min}(x)}, \quad x \in \Gamma_1, \ 1 \leq i \leq n,$$

and using that $\tau \varphi$ is bounded in $\overline{\Gamma}_1$, we get

$$\lim_{\substack{x \to \partial \Omega \\ x \in \Omega}} \frac{L_{\Omega,i}^{\max}(x)}{L_{\Omega,i}^{\min}(x)} = 1, \quad 1 \le i \le n.$$

Thanks to the last inequalities, the following maps

$$q_i(x) := \begin{cases} L_{\Omega,i}^{\max}(x)/L_{\Omega,i}^{\min}(x) & x \in \Omega, \\ 1 & x \in \partial\Omega, \end{cases} \quad 1 \le i \le n,$$

are continuous. In particular, for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$q_i(x) - 1| = \frac{L_{\Omega,i}^{\max}(x)}{L_{\Omega,i}^{\min}(x)} - 1 < \varepsilon, \quad \text{for all} x \in \Omega, \ z \in \partial \Omega \text{ such that } |z - x| < \delta.$$

Setting

$$Q_{\eta} := \{x \in \overline{\Omega} : \operatorname{dist}(x, \partial \Omega) \le \eta\}, \quad \eta > 0,$$

we find that

$$L_{\Omega,i}^{\max}(x) < (1+\varepsilon)L_{\Omega,i}^{\min}(x), \quad x \in Q_{\delta}.$$
(4)

To conclude the proof, note that $(1 + \varepsilon)L_{\Omega,i}^{\min}$ is a supersolution of the problem

$$\begin{cases} -\Delta u_i = \sum_{j=1}^n a_{ij}(x)u_j - b_i(x)f_i(u_i) \text{ in } \Omega \setminus Q_{\delta}, \\ u_i = L_{\Omega,i}^{\max} & \text{ on } \partial(\Omega \setminus Q_{\delta}), \end{cases} \quad 1 \le i \le n, \end{cases}$$

Indeed, by (4), the inequalities on the boundary are satisfied, and

$$\begin{aligned} -\Delta((1+\varepsilon)L_{\Omega,i}^{\min}) &= \sum_{j=1}^{n} a_{ij}(x)(1+\varepsilon)L_{\Omega,j}^{\min} - (1+\varepsilon)b_{i}(x)f_{i}(L_{\Omega,i}^{\min}) \\ &= \sum_{j=1}^{n} a_{ij}(x)(1+\varepsilon)L_{\Omega,j}^{\min} - b_{i}(x)\frac{f_{i}(L_{\Omega,i}^{\min})}{L_{\Omega,i}^{\min}}(1+\varepsilon)L_{\Omega,i}^{\min} \\ &\geq \sum_{j=1}^{n} a_{ij}(x)(1+\varepsilon)L_{\Omega,j}^{\min} - b_{i}(x)f_{i}((1+\varepsilon)L_{\Omega,i}^{\min}). \end{aligned}$$

Therefore, by Theorem 2,

$$(1+\varepsilon)L_{\Omega,i}^{\min}(x) \ge L_{\Omega,i}^{\max}(x), \quad x \in \Omega \setminus Q_{\delta}, \ 1 \le i \le n,$$

which, together with (4), and letting $\varepsilon \downarrow 0$, provides us with with the desired equality,

$$L_{\Omega}^{\min} = L_{\Omega}^{\max}$$
 in Ω .

This ends the proof. \Box

UP4

256

Acknowledgements

This paper has been partially supported by the grant MTM2015-65899-P.

References

- P. Álvarez-Caudevilla and J. López-Gómez, Metasolutions for cooperative systems, Nonl. Anal. RWA 9 (2008), 1119– 1157. doi 10.1016/j.nonrwa.2007.02.010
- [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, *SIAM Rev.* **18** (1976), 620–709.
- [3] S. Cano-Casanova and J. López-Gómez, Blow-up rates of radially symmetric large solutions, J. Math. Anal. Appl. 352 (2009), 166–174. doi 10.1016/j.jmaa.2008.06.022
- [4] S. Dumont, L. Dupaigne, O. Goubet and V. Radulescu, Back to the Keller–Osserman condition for boundary blow-up solutions, *Adv. Nonl. Studies* **7** (2007), 271–298.
- [5] C. Faber, Beweis das unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisdörmige den tiefsten Grundton gibt, *Sitzungsber. Bayer. Akad. der Wiss. Math. Phys.* (1923), 169–171.
- [6] J. Garcia-Melián, J. Rossi and J. C. Sabina de Lis, Elliptic systems with boundary blow-up: Existence, uniqueness and applications to removability of singularities, *Commun. Pure Appl. Anal.* 15 (2) (2016) 549–562. doi 10.3934/cpaa.2016.15.549
- [7] J. Garcia-Melián and A. Suárez, Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonlinear Stud. 3 (2003), no. 2, 193-206. doi 10.1515/ans-2003-0203
- [8] J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure and Appl. Maths., X (1957), 503–510.
- [9] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 91 (1925), 97–100.
- [10] J. López-Gómez, Uniqueness of radially symmetric large solutions, Disc. Cont. Dynam. Systems, Proceedings of the sixth AIMS Conference, Poitiers, Supplement 2007, 677–686.
- [11] J. López-Gómez, Metasolutions of Parabolic Problems in Population Dynamics, CRC Press, Boca Raton, 2015.
- [12] J. López-Gómez and L. Maire, Uniqueness of large positive solutions for a class of radially symmetric cooperative systems, J. Math. Anal. Appl. 435 (2016), 1738–1752. doi 10.1016/j.jmaa.2015.11.026
- [13] J. López-Gómez and L. Maire, Boundary blow-up rates and uniqueness of the large solution for cooperative elliptic systems of logistic type, Nonl. Anal. RWA 33 (2017) 298–316. doi 10.1016/j.nonrwa.2016.07.001
- [14] J. López-Gómez and L. Maire, Coupled versus uncoupled blow-up rates on cooperative *n*-species logistic systems, *Advanced Nonlinear Studies*, (2017) doi 10.1515/ans-2016-6018
- [15] J. López-Gómez and L. Maire, Uniqueness of large positive solution, in press
- [16] J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, *Diff. Int. Eqns.* 7 (1994), 383–398.
- [17] M. Molina-Meyer, Existence and uniqueness of coexistence states for some nonlinear elliptic systems, *Nonl. Anal. TMA* **25** (1995), 279–296.
- [18] M. Molina-Meyer, Global attractivity and singular perturbation for a class of nonlinear cooperative systems, *J. Diff. Eqns.* **128** (1996), 347–378.
- [19] M. Molina-Meyer, Uniqueness and existence of positive solutions for weakly coupled general sublinear systems, *Nonl. Anal. TMA* **30** (1997), 5375–5380.
- [20] R. Osserman, On the inequality $\Delta u \ge f(u)$, Pacific J. of Maths., 7 (1957), 1641–1647.

This page is internationally left blank

©UP4 Sciences. All rights reserved.