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Abstract
Determination of the reactor kinetic characteristics is very important for the design and development of a new reactor system.
In this sense, the computation of lambda modes associated to a nuclear power reactor has interest since these modes can be
used to analyze the reactor criticality and to develop modal methods to analyze transient situations in the reactor. In this
paper, the lambda problem has been discretized using a high order finite element method to obtain a generalized algebraic
eigenvalue problem. A multilevel method is proposed to solve this generalized eigenvalue problem combining a hierarchy
of meshes with a Modified Block Newton method. The Krylov-Schur method is used to compare the efficiency of the
multilevel method solving several benchmark problems.

Keywords: Multilevel method, Finite element method, Modified block Newton method, Lambda modes, Generalized eigenvalue
problem
AMS 2010 codes: 65F15, 65N30.

1 Introduction

Most of the simulations performed in nuclear reactors are done using the neutron diffusion equation. This
equation is an approximation of the neutron transport equation relying on the assumption that the neutron current
is proportional to the gradient of the neutron flux by means of a diffusion coefficient. This approximation is
analogous to Fick’s law in species diffusion and to Fourier’s law in heat transfer [1].
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For given a configuration of a nuclear reactor core, it is possible to force its criticality dividing the neutron
production rate by a positive number, λ , obtaining a neutron balance equation. This equation is known as the
λ -modes problem,

L φ =
1
λ

M φ , (1)

where L is the neutron loss operator, M is the neutron production operator and φ the neutron flux.
If the two energy groups approximation is used and assuming that fission neutrons are born in the fast group

and there is no up-scattering, these operators have the following form,

L =

(
−~∇(D1~∇)+Σa1 +Σ12 0

−Σ12 −~∇(D2~∇)+Σa2

)
, M =

(
νΣ f 1 νΣ f 2

0 0

)
, φ =

(
φ1
φ2

)
,

where φ1 is the fast neutron flux and φ2, the thermal flux. D1 and D2 are the diffusion coefficients, Σa1 and
Σa2, the absorption cross sections and νΣ f 1 and νΣ f 2, the average number of neutrons produced in each fission
multiplied by the fission cross sections. Finally, Σ12 is the scattering cross section from group 1 to group 2. These
are coefficients dependent on the position.

The fundamental eigenvalue (the one with the largest magnitude) shows the criticality of the reactor core
and its corresponding eigenfunction describes the steady state neutron distribution in the core. Next sub-critical
eigenvalues and their corresponding eigenfunctions are useful to develop modal methods to integrate the time
dependent neutron diffusion equation [2].

Problem (1) is discretized using a high order Galerkin Finite Element Method (FEM), transforming this
differential problem into an algebraic eigenvalue problem. The matrices of the problem obtained from the
discretization with a FEM are large and iterative eigenvalue solvers have to be used. Different methods have been
used to solve the generalized eigenvalue problem such as Krylov methods [3, 4]. However, if it is necessary to
compute an accurate solution, the degree of the polynomial expansions have to be increased. As consequence, the
matrix sizes in the eigenvalue problem increase considerably and efficient methods should be used. Multilevel
strategies are based on the discretization of the problem using different meshes and have been successfully
used for the integration of the time dependent neutron diffusion equation [5]. In this work, a multilevel method
is proposed to solve the λ -modes problem combining two levels of meshes with a Modified Block Newton
method [8]. The Krylov-Schur method is used to initiate the multilevel method.

The structure of the rest of the paper is as follows. In section 2 the spatial discretization of the lambda modes
problem using a high order finite element method is briefly presented. In section 3, the proposed multilevel
method and the eigenvalue solvers are described. Numerical results for the analysis of two different benchmark
problems are presented in section 4. Finally, the main conclusions of the paper are summarized in section 5.

2 Spatial discretization

To solve the problem (1), a spatial discretization of the equations has to be selected. In this work, a high order
continuous Galerkin finite element method is used, [6], leading to an algebraic eigenvalue problem associated
with the discretization of (1) with the following structure,

Lφ̃ =
1
λ

Mφ̃ , (2)
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where φ̃ =
(
φ̃1, φ̃2

)T is the algebraic vector of weights associated with the fast and thermal neutron fluxes. The
matrices elements are given by

Li j =
Nt

∑
e=1

(
D1

ˆ
Ωe

~∇N1i ·~∇N1 jdV −D1

ˆ
Γe

N1i~∇N1 jd~S

+D2

ˆ
Ωe

~∇N2i ·~∇N2 jdV −D2

ˆ
Γe

N2i~∇N2 jdV

+(Σa1 +Σ12)

ˆ
Ωe

N1iN1 jdV +Σa2

ˆ
Ωe

N2iN2 jdV

−Σ12

ˆ
Ωe

N2iN1 jdV

)
,

Mi j =
Nt

∑
e=1

(
νΣ f 1

ˆ
Ωe

N1iN1 jdV +νΣ f 2

ˆ
Ωe

N1iN2 jdV

)
,

where Ni is the prescribed shape function for the ith node. For simplicity, the shape functions used are part of
Lagrange finite elements. Ωe, with e = 1, . . . ,Nt , are the reactor subdomains (cells) in which the reactor domain
is divided. In the same way, Γe are the corresponding subdomain surfaces which are part of the reactor frontier.
The boundary conditions considered, for the reactors analyzed in this work, are zero-flux conditions, and then,
the shape functions of the corresponding nodes are fixed to zero. More details on the spatial discretization used
and more general boundary conditions can be found in [4].

The finite element method has been implemented using the open source finite elements library Deal.II [7].

3 Multilevel method

Let us consider the eigenvalue problem (2) rewritten as

Mφ = λLφ (3)

where L and M are n×n matrices arising from the discretization on a given domain Ω. For simplicity, we have
dropped the tilde in the notation of the algebraic vectors and we assume that Ω is discretized on a uniform grid
Ω f .

To solve (3) one typically calculates the successive approximations to the exact solution, φ , using an iterative
technique, of the form

φ
new = G(L,M,φ old), (4)

where G is some expression involving the old assignment of φ . One natural way to improve this process is to
obtain better initial guesses (closer to the solution) at a computational cost as low as possible. To accomplish this
aim, a coarse grid Ωc is used to generate improved initial guess to the solution in the finest grid Ω f .

In the coarse level, an eigenvalue problem of the form

Mc
φ

c = λ
cLc

φ
c, (5)

is solved, where Mc and Lc are the matrices associated with the spatial discretization Ωc.
To use a vector φ c as an initial guess for the problem associated with the finer grid Ω f , we define the linear

operator called interpolation operator I f
c : Ωc→Ω f . Thus, φ f = I f

c φ c. Similarly, to represent a vector φ f on a
coarser grid Ωc, we use the restriction operator Ic

f : Ω f →Ωc. In the restriction process, besides the coarsening
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of the initial spatial discretization, the materials and their corresponding cross section must be redefined in the
coarse mesh with a homogenization method. In each coarse cell, d that is equal to the join of cells d1, . . . ,dn, i.e.
d = ∪m

i=1di, the value of each cross section XSd is computed with a volume averaged, as,

XSd =
1
V

m

∑
i=1

ViXSdi , (6)

where XSdi is the value of the cross section in cell di. V is the volume of the coarse cell d and Vi the volume of
the cell di.

The multilevel method can be summarized in the following steps:

1. Restrict the problem in a fine mesh to a coarse mesh φ c = Ic
f φ

f .

2. Solve with Krylov-Schur method the eigenvalue problem Mcφ c = λ cLcφ c.

3. Interpolate the solution of coarse mesh φ
f

0 = I f
c φ c .

4. Solve with the modified block Newton method the problem in a fine mesh M f φ f = λ f L f φ f using as initial
guess the interpolated solution φ

f
0 .

3.1 Krylov-Schur method

Krylov-Schur method was introduced in 2002 by Stewart [9] and can be seen as an improvement on
traditional Krylov subspace methods such as Arnoldi and Lanczos for computing a subset of eigenvalues and
their corresponding eigenvectors of a large and sparse matrix.

Given an ordinary eigenvalue problem
Ax = λx,

the Krylov-Schur method is defined by generalizing the Arnoldi decomposition of order m,

AVm =VmHm +hm+1,mvm+1e∗m,

where vm+1 is the result of orthonormalizing Avm with respect to previous columns and Hm is an upper Hessenberg
matrix, to obtain a so-called Krylov decomposition of order m,

AVm =VmBm + vm+1b∗m+1, (7)

in which matrix Bm is not restricted to be upper Hessenberg and bm+1 is an arbitrary vector.
Krylov decompositions are invariant under (orthogonal) similarity transformations, so that

AVmQ =VmQ(QT BmQ)+ vm+1bT
m+1Q,

with QT Q = I, is also a Krylov decomposition. In particular, one can choose Q in such a way that Sm = QT BmQ is
in a (real) Schur form, that is, upper (quasi-)triangular with the eigenvalues in the 1×1 or 2×2 diagonal blocks.
This particular class of relation, called Krylov-Schur decomposition, can be written in block form as

A
[
Ṽ1 Ṽ2

]
=
[
Ṽ1 Ṽ2

][S11 S12
0 S22

]
+ vm+1

[
b̃T

1 b̃T
2
]
,

and has the nice feature that it can be truncated, resulting in a smaller Krylov-Schur decomposition,

AṼ1 = Ṽ1S11 + vm+1b̃T
1 ,

that can be extended again to order m.
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When addressing a generalized eigenvalue problem, Mx = λLx, a reformulation of the problem is used to
obtain an ordinary eigenvalue problem. In particular, L−1Mx = λx, is solved, if L is non-singular. The iterative
methods to solve the eigenvalue problem rely on the matrix-vector multiplication. The computation of L−1Mx is
done solving linear systems. These linear systems are solved with BiCGStab method, together a Cuthill-McKee
reordering to optimize the fill-in and the incomplete LU factorization for preconditioning the matrices.

To solve the ordinary and generalized eigenvalue problems by Krylov-Schur method, the library SLEPc [10]
has been used.

3.2 Modified Block Newton method for generalized eigenvalue problems

Given a partial generalized eigenvalue problem of the form

MV = LV Λ, (8)

where V ∈Rn×q is a matrix of eigenvectors and Λ ∈Rq×q is a diagonal matrix whose diagonal elements are the
dominant eigenvalues, n denotes the degree of freedoms in finite element method and q the number of desired
eigenvalues. It is assumed that the eigenvectors can be factorized as

V = ZS, (9)

where ZT Z = Iq. Problem (8) can be rewritten as

MV = LV Λ⇒MZS = LZSΛ⇒MZ = LZSΛS−1⇒MZ = LZK. (10)

This problem is undetermined since the eigenvectors are defined up to a constant. To determine the problem,
the biorthogonality condition W T Z = Iq is introduced, where W is a fixed matrix of rank q. Newton’s method is
used to solve the following problem

F(Z,Λ) :=
(

MZ−LZK
W T Z− Iq

)
=

(
0
0

)
. (11)

Thus, a new iterated solution arises as,

Z(k+1) = Z(k)−∆Z(k), K(k+1) = K(k)−∆K(k), (12)

where ∆Z(k) and ∆K(k) are solutions of the system{
M∆Z(k)−L∆Z(k)K(k)−LZ(k)∆K(k) = MZ(k)−LZ(k)K(k),

W T ∆Z(k) =W T Z(k)− Iq,
(13)

that is obtained substituting (12) into (11) and removing second order terms.
The system (13) is coupled, since the matrix K(k) is not necessarily a diagonal matrix. To decouple the system,

the Modified Block Newton method applies two previous steps. The first step consists of an orthogonalization to
the matrix Z(k) using the modified Gram-Schmidt Orthogonalization. Once Z(k) is a matrix whose columns are
orthogonal, i.e., Z(k)T

Z(k) = Iq, as a second step, a Rayleigh-Ritz procedure for generalized eigenvalue problems
is applied [11, 12], which consists of obtaining the eigenvectors S(k) and their corresponding eigenvalues Λ(k) that
satisfy

Z(k)T
MZ(k)S(k) = Z(k)T

LZ(k)S(k)Λ(k). (14)

Defining Z̄(k) := Z(k)S(k), we have, from (14), that Λ(k) is a diagonal matrix whose elements, λi are the Ritz
values and Z̄(k) are the approximated Ritz eigenvectors, satisfying the equation

Z(k)T
(MZ̄(k)−LZ̄(k)

Λ
(k)) = 0. (15)
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At each iteration, the matrix W in equation (13) is chosen as the previous approximation for the invariant
subspace, that is, W = Z̄(k). Using the definition of K(k) on (10), system (13) is decoupled into the q linear
systems (

M−Lλ
(k)
i LZ̄(k)

Z̄(k)†
0

)(
∆z̄(k)i

−∆λ
(k)
i

)
=

(
Mz̄(k)i −Lz̄(k)i λ

(k)
i

0

)
(16)

with i = 1, . . . ,q, and ∆z̄(k)i the i-th column of ∆Z̄(k). Vectors Z(k+1) are updated according to equation (12) and
the eigenvalues λ

(k)
i are obtained from the small problem (14).

The Modified Block Newton method can be summarized as in Algorithm 1. In this Algorithm, a deflation
technique is implemented which consists of working only with the non-converged eigenvectors, thus “locking”
those eigenvectors that have already converged. Furthermore, to solve the system (16) a dynamic procedure is
used to set the tolerance. Also, an expansion of the dimension of this method can be considered. In this case,
the initial approximation has a size equal to the dimension, that is denoted in the Algorithm by d. When the
dimension is not indicated this value is set to d = q (number of desired eigenvalues).

Algorithm 1 MBNM
Input: Initial approximation U = [u1, . . . ,ud] for the eigenvectors.
Output: Diagonal matrix of eigenvalues Λ and matrix V with the eigenvectors as its columns.

1: Orthonormalize U . MODIFIED GRAM-SCHMIDT

2: Compute the Ritz approximations U , W . RAYLEIGH-RITZ GEN.
3: conv=0 (conv indicates the number of converged eigenvalues)
4: while conv < q do
5: Compute ∆U = [∆uλ

1 , . . . ,∆uλ
end] . CORRECTION NEWTON EQ. (16)

6: U =U−∆U
7: Orthonormalize(U) . MODIFIED GRAM-SCHMIDT

8: Compute the Ritz approximations U , W . RAYLEIGH-RITZ GEN.
9: for i =conv→ q do

10: if
‖Mui−wiLui‖

‖ui‖
< toli then . CONVERGENCE CHECKING

11: Λ = [Λ,wi] . LOCKING CONVERGED EIGENPAIRS

12: V = [V,ui]
13: else
14: break
15: end if
16: end for
17: conv=i
18: W = [wconv, . . . ,wend]
19: U = [uconv, . . . ,uend]
20: end while

4 Numerical results

In this section, two different benchmark problems are presented to illustrate the efficiency of the multilevel
scheme proposed in this paper.

The options for multilevel method have been: Krylov-Schur method to solve the coarse mesh with tolerance
equal to 10−3. The number of eigenvalues required in each method has been 4. The dimension of the Krylov
subspace set has been equal to 11, which is a reasonable value for the number of eigenvalues required. In
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the modified Block Newton algorithm, the tolerance has been set to 10−6. The linear systems of the Newton
correction (Eq. (16)) have been solved with GMRES method and incomplete LU factorization for preconditioning.
The tolerances in the dynamic procedure have been, in the first iteration 10−2, 10−3 in the second one, 10−5 in
the third one and in the following iterations, 10−8.

For each problem, the computational time of the multilevel method is compared with Krylov-Schur method
for the finest mesh. The Krylov-Schur tolerance to solve directly the fine mesh has been 10−6. The dimension
has been set equal to the one used for the coarse mesh, 11. The time to solve the coarse mesh (CM) has been
added to observe the amount of time in multilevel method spent in this part. The improvement in time of the
multilevel method (improv.) has been computed dividing the difference between the CPU time with Krylov-Schur
and multilevel method by the time with Krylov-Schur.

4.1 Cuboid reactor

This theoretical reactor consists of 3D cuboid with different materials placed heterogeneously in the different
cells. Even though this problem is completely theoretical, it is relevant to analyze the computational time of
multilevel scheme in a mesh with a large difference between the coarse and the fine meshes (8 cells in fine mesh
are joint to form 1 cell in the coarse one). It has been designed with 8000 different assemblies (20 cells in each
axis). The dimensions are 20 cm × 20 cm × 20 cm. The fine and coarse meshes considered in this problem are
represented in Figure 1. Also, the number of cells in each mesh (n. cells) are indicated.

(a) Fine mesh (n. cells = 8000) (b) Coarse mesh (n. cells =1000)

Fig. 1 Meshes for 3D cuboid reactor

The computational times observed in this problem and the improvement of multilevel method with respect to
Krylov-Schur method are shown in Table 1. The results are computed for finite element degrees (FED) equal to
2 and 3. In DoFs, big differences are observed between fine and coarse meshes. The matrices in the fine mesh
are approximately seven times bigger than the matrices in the coarse one. So, the time to solve the problem in
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the coarse mesh for the multilevel method is relatively small. The number of iterations in MBNM to obtain the
tolerances desired have been 4 and 5, for FE= 2 and FE= 3, respectively. This indicates that the solution obtained
in the coarse mesh is close to the solution in the fine mesh.

If we compare the computational times between Krylov-Schur and multilevel method, we observe a difference
of 19s with FED= 2 and a difference of 239s with FED= 3, that are improvements of 17% and 30% with respect
to Krylov-Schur method. So, the improvement, in this case, increases when the degree of polynomials used in the
finite element method is increased. Note that if the dimension in Krylov subspace is increased these differences
are reduced. However, there are not improvements in time with expansions of dimension in the MBNM.

Table 1 Computational times of cuboid reactor

DoFs CPU Time

FED Fine Coarse Krylov-Schur Multilevel (CM) Improv.

2 137842 18522 106s 87s (3.8s) 17%
3 453962 59582 794s 555s (41s) 30%

4.2 Ringhals C9 Case

For a practical application of the multilevel method, we have chosen a configuration of Ringhals rector.
Particularly, we have chosen the C9 point of the Ringhals I stability benchmark, which corresponds to a point
of operation that degenerated in an out-of-phase oscillation [13]. Its geometry (fine mesh) and the coarse mesh
considered are represented in Figure 2.

(a) Fine mesh (n. cells = 19656) (b) Coarse mesh (n. cells =7184)

Fig. 2 Meshes for Ringhals reactor

The computational times computed with multilevel method and Krylov-Schur method are shown in Table 2.
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As in the previous case, the finite element degrees (FED) considered have been 2 and 3. In DoFs, we observe that
the relation in the number of cells between the coarse and the fine mesh is a little higher than 1/3. The number of
iterations in MBNM to obtain the tolerances desired have been relatively low for both cases. So, the solution
obtained with the coarse mesh is also close to the solution in the fine mesh. This fact can be also observed in
Figure 3, where the fast flux corresponding to the first eigenvalue has been represented in the coarse and the fine
mesh with FED= 2. In this figure, we observe that both eigenfunctions have a similar shape. Similar results are
obtained to FED= 3. If the computational times between Krylov-Schur and multilevel method are compared,
similar conclusions to the ones obtained in the cuboid case are obtained. For FED= 3, a difference of 268 seconds
and an improvement of 14% are obtained and for FED= 2, a difference of 57 seconds is observed that is an
improvement of 24%.

To make a better analysis of the multilevel method, the computational times with the residual errors, computed
as

max
i

‖Mφi−λiLφi‖
‖φi‖

,

are represented in Figure 4 and Figure 5 for FED= 2 and FED= 3, respectively. The iterations are indicated with
a dot. Furthermore, the computational times to solve the coarse problem and to build the matrices of fine problem
are plotted. In these figures, it is observed that the initial approximations are near to 1 and the tolerance is reached
with a small number of iterations since the block Newton method has a high rate of convergence. The time used
in each iteration is large, being smaller in the first iterations, due to the dynamic tolerance implemented. The
computational time to solve the coarse mesh represents an important part of the time in multilevel method, so a
greater coarsening of initial mesh means less time in this part. The time to interpolate the solution and to build
the matrices to the fine problem is very small, in both cases.

Table 2 Computational times of Ringhals reactor

DoFs CPU Time

FED Fine Coarse Krylov-Schur Multilevel (CM) its. MBNM Improv.

2 334510 125730 237s 180s (35s) 5 24%
3 1106180 411992 1864s 1596s (463s) 4 14%

(a) Coarse mesh (b) Fine mesh

Fig. 3 Fast fluxes associated with the first eigenvalue
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Fig. 4 CPU time of multilevel method for Ringhals reactor with FED= 2

5 Conclusions

The λ -modes problem has been discretized using a high order finite element method. A multilevel procedure
based on a block Newton method has been proposed to solve the algebraic eigenvalue problem obtained from the
discretization. This method has been based on using two grids and a modified block Newton method.

To investigate the performance of the methodology two benchmark problems have been analyzed: a theoretical
cuboid and the realistic Ringhals reactor. In both problems we have used different finite element degrees, and the
computational times necessary to solve the problem with the multilevel method have been smaller than the ones
used by Krylov-Schur method. For the reactor with prismatic geometry, it is possible to make a further coarsening
of the mesh and to obtain smaller number of cells, so the relative time necessary to solve the problem in the
coarse mesh is smaller than in the realistic reactor. In this last type of problems, it is necessary to study different
strategies to coarse the mesh according to the geometry reactor. Regarding to the modified block Newton method,
it has a high rate of convergence when the initial approximation is close enough to the solution in the fine mesh.

In summary, the multilevel method is a good strategy to compute a set of λ -modes of a nuclear power reactor,
specially when the geometry of the reactor allows to define a coarse mesh with a large reduction of the degrees of
freedom of the problem.
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