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Abstract
In this paper the randomized Cauchy-Euler differential equation is studied. With this aim, from a statistical point of
view, both the first and second probability density functions of the solution stochastic process are computed. Then, the
main statistical functions, namely, the mean, the variance and the covariance functions are determined as well. The study
includes the computation of the first and second probability density functions of the regular-singular infinite point via an
adequate mapping transforming the problem about the origin. The study is strongly based upon the Random Variable
Transformation technique along with some results that have been recently published by some of authors to the random
homogeneous linear second-order differential equation. Finally, an illustrative example is shown.

Keywords: random Cauchy-Euler differential equation, Random Variable Transformation technique, first and second probability
density functions
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1 Introduction

Deterministic differential equations play a key role in many disciplines to model numerous phenomena. In
practice, the application of models based on differential equations requires setting their inputs such as coeffi-
cients and initial conditions. These parameters are usually obtained by experiments where measurement errors
are involved. In addition, there are external sources which can affect the physical system to be modelled. These
facts motivate the treatment of inputs parameters as random variables (RV’s) or stochastic processes (SP’s) rather
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than deterministic constants or functions, respectively. In this contribution, we will focus on random differential
equations (RDE’s), that is, differential equations whose coefficients are RV’s or SP’s.

As a main difference with respect to the deterministic framework, solving a RDE means not only to obtain its
solution but also probabilistic information associated to the solution SP. Indeed, if W (u) denotes the solution SP
of a RDE, then it is also important to compute its mean, µW (u) = E [W (u)], and its variance, σ2

W (u) =V [W (u)].
Additionally, the computation of the first probability density function (1-PDF), f̂1(w,u), is also important be-
cause from it one gets a full probabilistic description of the solution SP in each time instant u. Furthermore,
from the 1-PDF one can compute all the one-dimensional statistical moments of W (u),

E
[
(W (u))k

]
=

ˆ
∞

−∞

wk f̂1(w,u)dw, k = 0,1,2, . . .

Therefore, from it the mean and the variance can be straightforwardly obtained

E [W (u)] =
ˆ

∞

−∞

w f̂1(w,u)dw, V [W (u)] =
ˆ

∞

−∞

w2 f̂1(w,u)dw− (E [W (u)])2 . (1)

In general, to get more probabilistic information, the n-dimensional PDF’s of the solution SP might be com-
puted, but it usually involves complex computations. For example, the 2-PDF, f̂2(w1,u1;w2,u2), provides a full
probabilistic description of W (u) at every arbitrary pair of times, u1 and u2. In particular, from it the correla-
tion function, ΓW (u1,u2), can be computed. This function gives a measure of linear statistical interdependence
between W (u1) and W (u2) and it is given by

ΓW (u1,u2) = E [W (u1)W (u2)] =

ˆ
∞

−∞

ˆ
∞

−∞

w1w2 f̂2(w1,u1;w2,u2)dw1dw2.

Furthermore, ΓW (u1,u2) allows us the computation of the covariance function

CW (u1,u2) = ΓW (u1,u2)−E [W (u1)]E [W (u2)] . (2)

The Cauchy-Euler differential equation is adequate to model a number of phenomena in Engineering, par-
ticularly in Mechanics and in Theory of Potential Fields. For example, in this latter context it is applied to model
the electric potential field between two concentric spheres [8, Sec. 2.5]. The formulation of this problem de-
pends on the potential fields of both spheres, which usually are not known in a deterministic way but randomly
due the heterogeneity of the surrounding medium. This motivates the study of the random Cauchy-Euler differ-
ential equation. Besides, the deterministic Cauchy-Euler differential equation has two regular-singular points,
zero and infinity. Therefore, the goal of this paper is to obtain the 1-PDF and the 2-PDF of the solution SP
of each one of two random IVP’s, on the one hand we shall consider a random IVP based on a Cauchy-Euler
differential equation, and on the other hand, using an adequate transformation, infinity is moved to the origin.
With this aim the results presented in [1] will be applied. In [1], the 1-PDF and 2-PDF of the solution SP of
a random homogeneous linear second-order differential equation has been computed. To conduct our analysis,
we will take advantage of the Random Variable Transformation (RVT) method that is stated below in Theorem
1. This technique allows us to obtain the PDF of a random vector obtained from the mapping of another random
vector whose PDF is known.

Theorem 1 (Multidimensional RVT method [11]). Let us consider X = [X1, . . . ,Xm]
T and Y = [Y1, . . . ,Ym]

>

two m-dimensional absolutely continuous random vectors defined on a complete probability space (Ω,F,P).
Let r : Rm → Rm be a one-to-one deterministic transformation of X into Y, i.e., Y = r(X). Assume that r is
continuous in X and has continuous partial derivatives with respect to each Xi, 1≤ i≤m. Then, if fX(x) denotes
the joint probability density function of vector X, and s = r−1 = (s1(y1, . . . ,ym), . . . ,sm(y1, . . . ,ym)) represents
the inverse mapping of r = (r1(x1, . . . ,xm), . . . ,rm(x1, . . . ,xm)), the joint probability density function of vector Y
is given by

fY(y) = fX (s(y)) |Jm| ,
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where |Jm|, which is assumed to be different from zero, denotes the absolute value of the Jacobian defined by the
determinant

Jm = det


∂ s1(y1,...,ym)

∂y1
· · · ∂ sm(y1,...,ym)

∂y1
...

. . .
...

∂ s1(y1,...,ym)
∂ym

· · · ∂ sm(y1,...,ym)
∂ym

 .

The following result, that will be required later, is a direct consequence of Theorem 1.

Corollary 2. Let X = (X0,C,B,A2) be an absolutely continuous random vector with joint PDF fX(x0,c,b,a2)
and let Y = r(X) = (X0,X1,A1,A2) with X1 = kC , A1 = B−1 and k 6= 0 an arbitrary constant. Then, the joint
PDF of random vector Y is given by

fY(x0,x1,a1,a2) = fX(x0,x1/k,a1 +1,a2)|1/k|. (3)

Finally, we want to notice that the techniques that will be applied throughout this manuscript have been
successfully used to study other random differential equations and discrete and continuous dynamic models
[2–7, 9, 10, 12].

This contribution is organized as follows. Section 2 is devoted to compute the 1-PDF and the 2-PDF of the
solution SP of the problem under study. As the study is based upon a number of results already established, these
findings are previously introduced for the sake of completeness in the presentation. In Section 3, the 1-PDF and
2-PDF of the solution SP of the corresponding random IVP associated to the analysis of the infinity regular-
singular point will be addressed. In Section 4, we show an illustrative numerical example where the 1-PDF and
the 2-PDF of the solution SP and, the mean, the variance and the covariance functions are computed as well. In
this example, the 1-PDF, the mean and the variance functions of the random IVP problem to study the infinity
point will be also shown. Conclusions are drawn in Section 5.

2 Computing the 1-PDF and the 2-PDF of the solution stochastic process of the randomized Cauchy-Euler
differential equation about the regular-singular point u0

Let us consider the following random IVP (4) based on a Cauchy-Euler differential equation

u2W ′′(u)+BuW ′(u)+A2W (u) = 0, u > u0 > 0,
W (u0) = X0,
W ′(u0) = C,

 (4)

where the input parameters X0, C, B and A2 are assumed to be absolutely continuous RV’s, defined on a common
probability space (Ω,F ,P), with a joint PDF fX0,C,B,A2(x0,c,b,a2). Thus, for the sake of generality we are
implicitly assuming that involved RV’s are probabilistically dependent. As usual, hereinafter the notation X ≡
X(ω) will be used indistinctly. Our subsequent analysis is strongly related to the problem studied in [1], this
motivates the notation used in IVP (4) for coefficients, initial conditions and unknown. In order to make clearer
our notation, we will assume that the domain of every random inputs is an interval, although it is not necessary
since we are assuming that X0, C, B and A2 are probabilistically dependent RV’s

DX0={x0 = X0(ω), ω ∈Ω : x0,1 < x0 < x0,2},
DC ={c =C(ω), ω ∈Ω : c1 < c < c2},
DB ={b = B(ω), ω ∈Ω : b1 < b < b2},
DA2={a2 = A2(ω), ω ∈Ω : a2,1 < a2 < a2,2}.

With the transformation u = et u0, ∀u > u0, IVP (4) is equivalent to IVP (5)

Z′′(t)+A1Z′(t)+A2Z(t) = 0, t > 0,
Z(0) = X0,
Z′(0) = X1,

 (5)
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where A1 = B−1, X1 =Cu0 and Z(t) =W (et u0). Then, the domains of RV’s A1 and X1 are defined as follows

DX1={x1 = X1(ω), ω ∈Ω : c1u0 < x1 < c2u0},
DA1={a1 = A1(ω), ω ∈Ω : b1−1 < a1 < b2−1}.

This section is addressed to compute the 1-PDF and the 2-PDF of the solution SP to IVP (4), W (u). With this
aim, first we will apply the theoretical results obtained in [1] to compute the 1-PDF and 2-PDF of the solution SP
to IVP (5), Z(t). In [1], the 1-PDF and the 2-PDF of the random homogeneous linear second-order differential
equation was determined and the mean, the variance and the covariance functions as well. Secondly, we will
take advantage of Corollary 2, to get probabilistic information in terms of the joint PDF fX0,C,B,A2(x0,c,b,a2),
which is known. Finally, we will undo the change of variable u = et u0 to obtain the 1-PDF and 2-PDF of the
solution SP to the random IVP (4).

2.1 1-PDF: First probability density function of the solution stochastic process about the regular-singular
point u0

As it is detailed in [1], the solution SP of the linear second-order random differential equation (5) depends
on the real and complex nature of the roots of the associated characteristic equation. These roots are given by

α1(A1,A2) =
−A1 +

√
∆

2
,

α2(A1,A2) =
−A1−

√
∆

2
,

 ∆ = (A1)
2−4A2. (6)

In the deterministic theory, depending on the value of the discriminant ∆ = ∆(ω), ω ∈ Ω, the roots can be real
or complex. As A1 and A2 are assumed to be absolutely continuous RV’s, this happens with certain probabilities

p1 = P [ω ∈Ω : ∆(ω)> 0] ,
p2 = P [ω ∈Ω : ∆(ω)< 0] ,
p3 = P [ω ∈Ω : ∆(ω) = 0] .

(7)

Notice that, as A1 and A2 are absolutely continuous RV’s, the probability p3 is zero. Then, only the case
0 < p1, p2 < 1 with p1 + p2 = 1 must be considered. As we have two events, depending on the real or complex
nature of αi(A1,A2), i = 1,2, the 1-PDF of the solution SP, Z(t), will be split into two pieces, f1R(z, t) and
f1C(z, t), corresponding to the contribution of real or imaginary roots whose associated probabilities are p1 and
p2, respectively. Then, the complete 1-PDF to the random IVP (5) will be expressed as

f1(z, t) = f1R(z, t)+ f1C(z, t).

Notice that for t > 0, f1R(z, t) and f1C(z, t) are not PDF since their integrals are p1 and p2, respectively. As a
consequence, the 1-PDF to the target random IVP (4) is

f̂1(w,u) = f̂1R(w,u)+ f̂1C(w,u). (8)

Now we will compute f̂1R(w,u). To do that, first we will determine the 1-PDF of random IVP (5), f1R(z, t).
We need to assume that p1 > 0 and then applying Eq. (2.10) of [1], i.e.,

f1R(z, t) =
ˆ c2u0

c1u0

ˆ b2−1

b1−1

ˆ min
[

a2,2,
a2

1
4

]
min

[
a2,1,

a2
1
4

] fX0,X1,A1,A2

(
z−gR(t)x1

hR(t)
,x1,a1,a2

)
|hR(t)|

da2 da1 dx1, (9)

being

gR(t) =
eα1t−eα2t

α1−α2
, hR(t) =

α1 eα2t−α2 eα1t

α1−α2
, (10)
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where αi ≡ αi(a1,a2), i = 1,2, are given in (6).
Applying Corollary 2 with k = u0, the 1-PDF (9) can be written as

f1R(z, t) =
ˆ c2u0

c1u0

ˆ b2−1

b1−1

ˆ min
[
a2,2,

b2
4

]
min

[
a2,1,

b2
4

] fX0,C,B,A2

(
z−gR(t)c

hR(t)
, c

u0
,b+1,a2

)
|hR(t)u0|

da2 dbdc.

Finally, as u = et u0, ∀u > u0, then t = log
(

u
u0

)
. Therefore, for values of u > u0 > 0, we obtain the expression

of the real part of the 1-PDF to the solution SP, W (u),

f̂1R(w,u) =
ˆ c2u0

c1u0

ˆ b2−1

b1−1

ˆ min
[
a2,2,

b2
4

]
min

[
a2,1,

b2
4

] fX0,C,B,A2

(
w−ĝR(u)c

ĥR(u)
, c

u0
,b+1,a2

)
|ĥR(u)u0|

da2 dbdc. (11)

being

ĝR(u) = gR

(
log
(

u
u0

))
, ĥR(u) = hR

(
log
(

u
u0

))
, (12)

with αi ≡ αi(b−1,a2), i = 1,2, given in (6).
Assuming p2 > 0, the contribution corresponding to the complex part can be obtained similarly. In this case,

one obtains

f̂1C(w,u) =
ˆ c2u0

c1u0

ˆ b2−1

b1−1

ˆ max
[
a2,2,

b2
4

]
max

[
a2,1,

b2
4

] fX0,C,B,A2

(
w−ĝC(u)c

ĥC(u)
, c

u0
,b+1,a2

)
|ĥC(u)u0|

da2 dbdc, (13)

being

ĝC(u) = gC

(
log
(

u
u0

))
, ĥC(u) = hC

(
log
(

u
u0

))
, (14)

with

gC(t) =
eRe(α1)t

Im(α1)
sin(Im(α1)t),

hC(t) = eRe(α1)t
[

cos(Im(α1)t)−
Re(α1)

Im(α1)
sin(Im(α1)t)

]
,

(15)

where α1 ≡ α1(b−1,a2) being

α1(A1,A2) = Re(α1)+ i Im(α1), i =
√
−1,


Re(α1) =

−A1

2
,

Im(α1) =

√
−A2

1 +4A2

2
.

(16)

2.2 2-PDF: Second probability density function of the solution stochastic process about the regular-
singular point u0

To compute the 2-PDF of the solution SP, W (u), the same reasoning of Subsection 2.1 will be applied.
Therefore, let u1,u2 ≥ u0, the 2-PDF is given by the sum of the real and complex part which are given by the
following expressions

f̂2R(w1,u1;w2,u2) =

ˆ b2−1

b1−1

ˆ min
[
a2,2,

b2
4

]
min
[
a2,1,

b2
4

] fX0,C,B,A2

(
w1ĝR(u2)−w2ĝR(u1)

ĝR(u2)ĥR(u1)− ĝR(u1)ĥR(u2)
,

(
w2ĥR(u1)−w1ĥR(u2)

ĝR(u2)ĥR(u1)− ĝR(u1)ĥR(u2)

)
1
u0

,b+1,a2

)
× 1
|
(
ĝR(u2)ĥR(u1)− ĝR(u1)ĥR(u2)

)
u0|

da2 db.
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f̂2C(w1,u1;w2,u2) =

ˆ b2−1

b1−1

ˆ max
[
a2,2,

b2
4

]
max

[
a2,1,

b2
4

] fX0,C,B,A2

(
w1ĝC(u2)−w2ĝC(u1)

ĝC(u2)ĥC(u1)− ĝC(u1)ĥC(u2)
,

(
w2ĥC(u1)−w1ĥC(u2)

ĝC(u2)ĥC(u1)− ĝC(u1)ĥC(u2)

)
1
u0

,b+1,a2

)
× 1
|
(
ĝC(u2)ĥC(u1)− ĝC(u1)ĥC(u2)

)
u0|

da2 db,

where the functions ĝR(u), ĥR(u), ĝC(u) and ĥC(u) are given by expression (12) and (14).

3 Computing the 1-PDF and the 2-PDF of the solution stochastic process of the randomized Cauchy-Euler
differential equation about the infinity regular-singular point

This section is addressed in the study of the infinity point of the randomized Cauchy-Euler differential
equation. In the deterministic theory, in order to analyse u = +∞, the first step is to introduce the change of
variable u = 1/s, and then to study a neighbourhood about the point s = 0 in the resulting expression. In our
case, the transformed random IVP is the following

s2V ′′(s)+DsV ′(s)+A2V (s) = 0, 0 < s < s0,
V (s0) = X0,
V ′(s0) = E,

 (17)

where D = 2−B, E =−C/s2
0 and V (s) =W (1/s), ∀s : 0 < s < s0.

The 1-PDF and 2-PDF of the solution SP, V (s), of the IVP (17) can be obtained following the same strategy
exhibited in the previous section, because we are dealing with a random Cauchy-Euler differential equation too.
We use the change of variable s = e−t s0, ∀s : 0 < s < s0, and we obtain the following random IVP

Z′′(t)+A1Z′(t)+A2Z(t) = 0, t > 0,
Z(0) = X0,
Z′(0) = X1,

 (18)

where A1 = (1−D) = B−1, X1 =C/s0, t = log(s0/s), ∀t > 0 and Z(t) =V (s0 e−t). Then, the domains of RV’s
A1 and X1 are defined as follows

DA1={a1 = A1(ω), ω ∈Ω : b1−1 < a1 < b2−1},
DX1={x1 = X1(ω), ω ∈Ω : c1

s0
< x1 <

c2
s0
}.

3.1 1-PDF: First probability density function of the solution stochastic process about the infinite regular-
singular point

Following the same reasoning shown in Subsection 2.1, the 1-PDF of the solution SP to IVP (17), V (s), is
given by

f̄1(v,s) = f̄1R(v,s)+ f̄1C(v,s), (19)

where

f̄1R(v,s) =
ˆ c2

s0

c1
s0

ˆ b2−1

b1−1

ˆ min
[
a2,2,

b2
4

]
min

[
a2,1,

b2
4

] fX0,C,B,A2

(
v−ḡR(s)c

h̄R(s)
,cs0,b+1,a2

)
s0

|h̄R(s)|
da2 dbdc, (20)

being
ḡR(s) = gR

(
log
(s0

s

))
, h̄R(s) = hR

(
log
(s0

s

))
, (21)
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with αi ≡ αi(b−1,a2), i = 1,2, given in (6), and

f̄1C(v,s) =
ˆ c2

s0

c1
s0

ˆ b2−1

b1−1

ˆ max
[
a2,2,

b2
4

]
max

[
a2,1,

b2
4

] fX0,C,B,A2

(
v−ḡC(s)c

h̄C(s)
,cs0,b+1,a2

)
s0

|h̄C(s)|
da2 dbdc, (22)

being

ḡC(s) = gC

(
log
(s0

s

))
, h̄C(s) = hC

(
log
(s0

s

))
, (23)

where the functions gR, hR, gC and hC are given by expressions (10), (15) and (16).

3.2 2-PDF: Second probability density function of the solution stochastic process about the infinite
regular-singular point

To compute the 2-PDF of the solution SP V (s), a direct adaptation of the arguments exhibited in Subsection
2.1 will be applied. Therefore, let s1,s2 ≥ s0, the 2-PDF is given by the sum of the real and complex part which
are given by the following expressions

f̄2R(v1,s1;v2,s2) =

ˆ b2−1

b1−1

ˆ min
[
a2,2,

b2
4

]
min
[
a2,1,

b2
4

] fX0,C,B,A2

(
v1ḡR(s2)− v2ḡR(s1)

ḡR(s2)h̄R(s1)− ḡR(s1)h̄R(s2)
,

(
v2h̄R(s1)− v1h̄R(s2)

ḡR(s2)h̄R(s1)− ḡR(v1)h̄R(v2)

)
s0,b+1,a2

)
× s0

|ḡR(s2)h̄R(s1)− ḡR(s1)h̄R(s2)|
da2 db,

f̄2C(v1,s1;v2,s2) =

ˆ b2−1

b1−1

ˆ max
[
a2,2,

b2
4

]
max

[
a2,1,

b2
4

] fX0,C,B,A2

(
v1ḡC(s2)− v2ḡC(s1)

ḡC(s2)h̄C(s1)− ḡC(s1)h̄C(s2)
,

(
v2h̄C(s1)− v1h̄C(s2)

ḡC(s2)h̄C(s1)− ḡC(s1)h̄C(s2)

)
s0,b+1,a2

)
× s0

|ḡC(s2)h̄C(s1)− ḡC(s1)h̄C(s2)|
da2 db,

where the functions ḡR(u), h̄R(u), ḡC(u) and h̄C(u) are given by expression (21) and (23).

4 An illustrative example

In this section we will show an example where the results obtained in Sections 2 and 3 are illustrated.
As we have pointed out in (8), the 1-PDF and 2-PDF in both regular-singular problems depend on real and
complex nature of the roots of the involved characteristic equation, having as associated probabilities p1 and
p2, respectively. These probabilities are defined in (7). To account for the most interesting cases regarding our
previous analysis, we shall consider the following three possibles scenarios

• Case I. Where p1 � p2, i.e., real and distinct roots are more probable than imaginary roots. Then, the
probabilistic contribution of f̂1R(w,u) ( f̄1R(v,s)) to f̂1(w,u) ( f̄1(v,s)) is greater than f̂1C(w,u) ( f̄1C(v,s)).

• Case II. Where p1 ≈ p2 ≈ 1
2 , i.e., real and distinct roots and imaginary roots are equiprobable. Then, the

probabilistic contribution of f̂1R(w,u) ( f̄1R(v,s)) to f̂1(w,u) ( f̄1(v,s)) is similar than f̂1C(w,u) ( f̄1C(v,s)).

• Case III. Where p1 � p2, i.e., real and distinct roots are less probable than imaginary roots. Then, the
probabilistic contribution of f̂1R(w,u) ( f̄1R(v,s)) to f̂1(w,u) ( f̄1(v,s))is smaller than f̂1C(w,u) ( f̄1C(v,s)).
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In the three cases we will consider a joint Gaussian distribution for the input parameters Ji =(X0,C,B,A2)
>∼

N(µi;Σ), i = 1,2,3 (i corresponding to Cases I, II and III, respectively), where

µi =


(2,1,4,1)> if i = 1,
(1,1,3,1)> if i = 2,
(1,1,3,2)> if i = 3,

Σ =
1
10


4 1 1 1
1 4 1 1
1 1 2 1
1 1 1 3

 . (24)

Probabilities p1 and p2 = 1− p1 are collected in Table 1. Notice that

p1 = P [ω ∈Ω : ∆(ω)> 0] = P
[
ω ∈Ω : (B(ω)−1)2−4A2(ω)> 0

]

= P

[
ω ∈Ω :

(B(ω)−1)2

4
> A2(ω)

]
=

ˆ
∞

−∞

ˆ (b−1)2
4

−∞

fB,A2(b,c)da2

db,

(25)

where fB,A2(b,a2) =
´

∞

−∞

´
∞

−∞
fX0,C,B,A2(x0,c,b,a2)dx0 dc.

Cases p1 p2 ps

I 0.978524 0.021476 0.966055
II 0.530394 0.469606 0.966054
III 0.045171 0.954829 0.999866

Table 1 Columns p1 and p2 = 1− p1 collect the values of the probabilities given by (25) corresponding to Cases I–III,
when Ji ∼ N(µi,Σ), being µi and Σ specified in (24). Values of ps represent the probabilities associated with asymptotic
stability according to (26).

Based on the well-known condition that characterizes the asymptotic stability of the zero-steady state so-
lution, Z(t) ≡ 0, to the deterministic counterpart of random IVP’s (5) and (18), that is A1 > 0 and A2 > 0, we
will study the asymptotic stability of the solution W (u) ≡ 0 to the random IVP (4), hence also of the solution
V (s)≡ 0. This analysis relies on the computation of the following probability, ps,

ps = P [ω ∈Ω : A1(ω)> 0, A2(ω)> 0] = P [ω ∈Ω : (B−1)(ω)> 0, A2(ω)> 0]

=

ˆ
∞

−∞

ˆ
∞

−∞

ˆ
∞

1

ˆ
∞

0
fX0,C,B,A2(x0,c,b,a2)da2 dbdx0 dc.

(26)

Values of ps in the Cases I–III are shown in Table 1.
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Fig. 1 Top: Plots of the 1-PDF of the solution SP, W (u), to the random IVP (4) with u0 = 1 given in (8), (11), (13) in
Cases I–III at different values of u ∈ {2,3, ...,10}. Bottom: Plots of the 1-PDF of the solution SP, V (s), to the random IVP
(17) with s0 = 0.5 given in (19), (20), (22) in Cases I–III at different values of s ∈ {0.05,0.1, ...,0.5}.
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Fig. 2 Top: Plots of the mean, µW (u), and plus/minus the standard deviation, σW (u), of the solution SP, W (u), to IVP (4)
in Cases I–III at different values of u ∈ [1,10]. Bottom: Plots of the mean, µV (s), and plus/minus the standard deviation,
σV (s), of the solution SP, V (s), to IVP (17) in Cases I–III at different values of s ∈ [0.05,0.5].
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Fig. 3 Covariance function given by (3) in the Case I to both problems, IVP (4) (left) and IVP (17) (right) for the values
of u1,u2 ∈ [1,3] and s1,s2 ∈ [0.05,0.5].

In Figure 1, the graphical representations for the 1-PDF, f̂1(w,u), at u ∈ {2,3, ...,10} and f̄ (v,s), at v ∈
{0.05,0.1, ...,0.5} in Cases I–III are shown. In these graphical representations, we can see how the PDFs
evolves over the times u and s in each Case I–III. The behaviour of the PDFs is in full agreement with the plots
shown in Figure 2 where the means µW (u) and µV (s) plus/minus the standard deviations σW (u) and σV (s) have
been plotted for both problems. Regarding the IVP (4), in the three cases we observe as the mean function
decreases as u increases and the standard deviation increases slowly. To the IVP (17) we can observe that the
mean increase at first and then decrease. In addition, in Figure 3 the covariance function given by the expression
(2) has been plotted to Case I for both problems.

5 Conclusions

In this work we have given a full probabilistic solution to the randomized Cauchy-Euler differential equation
under very general conditions. Specifically, we have obtained closed explicit formulas for the first and the second
probability density functions of the solution stochastic process of the random Cauchy-Euler differential equation
assuming that input parameters (coefficients and initial conditions) are absolutely continuous random variables
with a joint probability density function. In this manner, all one-dimensional statistical moments of the solution
can be computed including the mean, the variance and the covariance functions. The method allows us to
construct punctual and probabilistic predictions in practical applications where the random Cauchy-Euler model
appears. Furthermore, the technique applied in our study could be extended to perform an analogous analysis of
other important randomized differential equations.
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