
Applied Mathematics and Nonlinear Sciences 2(1) (2017) 201–212

Applied Mathematics and Nonlinear Sciences
http://journals.up4sciences.org

Parallel Solution of Hierarchical Symmetric Positive Definite Linear Systems

José I. Aliaga, Rocío Carratalá-Sáez†, Enrique S. Quintana-Ortí.

Dpto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I Castellón
Spain

Submission Info

Communicated by Juan L.G. Guirao
Received 6th March 2017
Accepted 22th June 2017

Available online 22th June 2017

Abstract
We present a prototype task-parallel algorithm for the solution of hierarchical symmetric positive definite linear systems via
the H -Cholesky factorization that builds upon the parallel programming standards and associated runtimes for OpenMP
and OmpSs. In contrast with previous efforts, our proposal decouples the numerical aspects of the linear algebra operation
from the complexities associated with high performance computing. Our experiments make an exhaustive analysis of
the efficiency attained by different parallelization approaches that exploit either task-parallelism or loop-parallelism via a
runtime. Alternatively, we also evaluate a solution that leverages multi-threaded parallelism via the parallel implementation
of the Basic Linear Algebra Subroutines (BLAS) in Intel MKL.

Keywords: Hierarchical matrices, hierarchical arithmetic, Cholesky factorization, high performance, multicore processors.
AMS 2010 codes: 65F05, 68W10, 68M20.

1 Introduction

Hierarchical matrices (abbreviated as H -matrices), in combination with H -arithmetic, offer an efficient
mathematical abstraction to deal with problems appearing in boundary element methods, elliptic partial dif-
ferential operators or related integral equations [8]. The motivation is that H -matrices can be leveraged to
compress an n×n dense matrix using only O(nc logn) elements, where the parameter c can be tuned to control
the accuracy of the approximation [7]. Furthermore, basic linear algebra operations, such as matrix addition and
matrix-matrix multiplication, as well as more complex matrix factorizations, can all be (approximately) com-
puted in H -arithmetic with a cost of O(n logd n) floating-point operations (flops), for a small constant d [6]. In
addition, for large-scale instances of these problems, the approximation errors introduced by H -arithmetic are
often in the order of the discretization error.

†Corresponding author.
Email address: rcarrata@uji.es

ISSN 2444-8656 doi:10.21042/AMNS.2017.1.00017

http://journals.up4sciences.org
mailto:rcarrata@uji.es
http://dx.doi.org/10.21042/AMNS.2017.1.00017
http://www.up4sciences.org
http://crossmark.crossref.org/dialog/?doi=10.21042/AMNS.2017.1.00017

202 J. I. Aliaga, R. Carratalá-Sáez and E. S. Quintana-Ortí. Applied Mathematics and Nonlinear Sciences 2(2017) 201–212

Over the last years, there have been a number of research efforts to develop mature libraries of linear algebra
operations for H -matrices. Some of the most relevant cases have resulted in the research/teaching packages Hlib
and H2Lib; and the commercial library HLibPro.a In principle, the routines in these software packages can (or
be easily modified to) run in parallel on multicore architectures by linking in a multi-threaded implementation
of the Basic Linear Algebra Subprograms (BLAS) [4] such as that in Intel MKL. More sophisticate parallel
codes for H -matrices exploit the task-parallelism implicit to linear algebra operations in order to orchestrate a
parallel execution on a multicore processor [10]. However, these codes correspond to ad-hoc implementations
that strongly couple the numerical method to the parallelization of the algorithm.

In this paper we pursue the development of a prototype task-parallel algorithm for the solution of hierarchi-
cal symmetric positive definite (SPD) linear systems via the H -Cholesky factorization. Our approach departs
from previous efforts in that we rely on the parallelization mechanisms/runtimes underlying two standard pro-
gramming tools, namely OpenMP [12] and OmpSs [11]. Our proposal thus decouples the numerical aspects of
the linear algebra operation, which are left in the hands of the expert mathematician, physicist or computational
scientist, from the difficulties associated with high performance computing, which are more naturally addressed
by computer scientists and engineers.

In [2] we presented a prototype parallel implementation of the H -LU factorization for dense linear systems
using OmpSs. In this paper we continue our effort towards the analysis and development of parallel algorithms
for H -linear algebra by targeting the Cholesky factorization. We select this particular decomposition because
it corresponds to the most expensive computational stage for the solution of SPD linear systems. Furthermore,
this type of decomposition presents a richer set of dependencies between the linear algebra building blocks that
allows us to illustrate and discuss the difficulties and benefits of a runtime-assisted parallelizations for multicore
architectures when compared with a simpler multi-threaded BLAS-based alternative. In comparison with [2],
which was focussed on the implementation details, this paper makes a more exhaustive experimental analysis of
the efficiency attained by different parallelization approaches.

The OmpSs programming model has been applied to extract task-parallelism for the LU factorization of
dense matrices in [3], for the H -LU factorization of H -matrices in [2], and in iterative methods for sparse
linear systems in [1]. In this paper we also adopt the OmpSs solution to exploit the implicit task-parallelism from
the H -Cholesky factorization. In addition, we analyze the use of the standard OpenMP in order to exploit either
loop-parallelism or task-parallelism, highlighting the programming and performance differences. Moreover, we
explore the limits of an alternative that simply extracts parallelism from within the BLAS kernels.

The rest of the paper is structured as follows. In Section 2 we provide a short review on the mathematical
foundations of H -matrices and H -arithmetic. In Section 3 we visit the H -Cholesky factorization, paying
special attention to the data dependencies, and in Section 4 we describe several approaches to parallelize this
decomposition. Finally, in Section 5 we assess the parallel performance of the different parallel implementation;
and in Section 6 we summarize our insights.

2 Background on H -Matrices

In this section, we briefly review a few basic concepts related to H -matrices. For more details, see [7, 10].
We commence with the definition of a cluster tree for a given index set.

Definition 1. Let I be an index set with cardinality n = #I. The graph TI = (V,E), with vertices V and edges E,
is a cluster tree over I, if I is the root of TI and, for all v ∈V , either v is a leaf of TI or v = ∪̇v′∈S(v)v′, where S(v)
denotes the set of direct descendents of v.

H -matrices represent a hierarchical partitioning of an index set in the form of a cluster tree. Moreover,
when partitioning the product index set I× I using the collection of subsets of I defined by TI , we obtain block
cluster trees over cluster trees.
a Visit https://github.com/gchavez2/awesome-hierarchical-matrices for a survey of software for H -matrices.

https://github.com/gchavez2/awesome-hierarchical-matrices
http://www.up4sciences.org

Parallel Solution of Hierarchical SPD Linear Systems 203

{1,2,3} x {1,2,3} {4,5,6} x {1,2,3} {1,2,3} x {4,5,6} {4,5,6} x {4,5,6}

{1,2,3,...,6} x {1,2,3,...,6} {7,8,9,...,12} x {7,8,9,...,12}

{1,2,3,...,12} x {1,2,3,...,12}

{7,8,9,...,12} x {1,2,3,...,6} {1,2,3,...,6} x {7,8,9,...,12}

{7,8,9} x {7,8,9} {10,11,12} x {7,8,9} {7,8,9} x {10,11,12} {10,11,12} x {10,11,12}

Fig. 1 Block cluster tree obtained from the index set I = {1,2,3, . . . ,12}.

Definition 2. Let TI be a cluster tree over I and consider a node b = p×q. The block cluster tree TI×I over TI

can be defined recursively for the node b, starting with the root I× I, as follows:

S(b) =
{

/0 if b is admissible or S(p) = /0 or S(q) = /0,
S′ otherwise,

,

where S′ := { p′×q′ : p′ ∈ S(p), q′ ∈ S(q) }.

In order to obtain the hierarchy of blocks that defines the H -matrix structure, an admissibility condition
must be used, which ensures that a p×q admissible block D in the block cluster tree can be approximated by
a low-rank factorization, up to a certain accuracy, as D = PQT , where P and Q are respectively p× c and q× c
matrices, and c� p,q.

Figure 1 shows an example of a block cluster tree consisting of leaves that conform a partition of I× I, with
I = {1,2,3, . . . ,12} using weak admissibility criteria; see [9] for details.

The collection of low-rank matrices with maximal rank k is known as the set of H -matrices.

Definition 3. The set of H -matrices for a block cluster tree TI×I over a cluster tree TI is defined as:

H (TI×I,k) := { M ∈ RI×I | ∀p×q ∈L (TI×I) :
rank(M|p×q)≤ k ∨
{p,q}∩L (TI) 6= /0 },

where L (TI) is the set of leaves of TI and k ∈ N.

Following with the example in Figure 1, the block cluster tree defined in that example yields the partitioning
of a matrix of size 12×12 into the H -matrix illustrated in Figure 2.

A1:2,3:4

A1,1

A3:4,1:2

A1,2

A2,1 A2,2

A3,3 A3,4

A4,3 A4,4

 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

Fig. 2 H -matrix obtained by applying the partitioning defined by the block cluster tree in Figure 1 over an 12×12
matrix.

The abstract concept underlying H -matrices can be understood from the last definition: an H -matrix can
be regarded as a data-sparse representation of a dense matrix. Following this approach, the storage costs are
reduced by exploiting the low-rank factorized representation of the data in some of the leaf nodes of the block
cluster tree. (The rest of the leaf nodes are simply dense matrices of full or almost full rank and, therefore, there
is little to be gained by representing them in factorized form.)

http://www.up4sciences.org

204 J. I. Aliaga, R. Carratalá-Sáez and E. S. Quintana-Ortí. Applied Mathematics and Nonlinear Sciences 2(2017) 201–212

In addition, H -matrices employ H -arithmetic to compute matrix addition, inversion, multiplication and
the LU factorization with log-linear computation costs; see [6]. For this purpose, the sum of low-rank matrices
is truncated to rank c (or, preferably, with respect to a given precision ε) via the singular value decomposition
(SVD) [5]. In other words, operations on H -matrices (except the matrix-vector product) are approximative in
order to attain a log-linear arithmetic complexity.

3 Cholesky Factorization of H -Matrices

3.1 Cholesky factorization

In this section we initially provide a definition for the Cholesky factorization. Next, we present a blocked
algorithm that will be later evolved in order to obtain a procedure for the decomposition of hierarchical matrices.

Definition 4. The Cholesky factorization of an SPD matrix A ∈Rn×n returns a lower triangular factor L ∈Rn×n

such that A = LLT . (Alternatively, the Cholesky factorization can deliver an upper triangular factor U ∈ Rn×n

such that A =UTU , where L =UT .)

There exist three algorithmic variants (procedures) to compute the Cholesky factorization [5]. We next
review the blocked right-looking (BRL) procedure, which underlies the scheme to compute the H -Cholesky
factorization detailed later in this section.

Let us assume that the n×n SPD matrix A is partitioned into nt×nt blocks of dimension ts× ts each where,
for simplicity, we consider that n = ntts. This consideration simplifies the description of the algorithms next.
However, our codes operate on blocks on any dimension and this consideration has no effect on the performance
results later in the paper. Let us denote the blocks defined by this partitioning as Ai j, with i, j ∈ {1,2, . . . ,nt}. The
BRL algorithm for the Cholesky factorization then commences by computing the factorization of the top-left
block of matrix A:

A1,1 = L1,1LT
1,1.

Next, it solves nt−1 lower triangular systems (with ts right-hand side vectors each) to obtain the first column of
blocks of L:

Li,1 := Ai,1L−T
1,1 , i = 2,3, . . . ,nt ;

and then it performs the update of the trailing sub-matrix:

Ai, j := Ai, j−Li,1 ·LT
1, j, i = 2,3, . . . ,nt ; j = 2,3, . . . , i.

Note that, because of the symmetry of the matrix, it is not necessary to compute the first row of blocks of L nor
update those blocks in the upper triangular part of A. Therefore, these operations complete the first iteration of
the BRL algorithm, and the process is then (recursively) repeated by computing the Cholesky factorization of
the trailing sub-matrix A2:nt ,2:nt ; see Algorithm 1. A practical implementation of this algorithm overwrites the
entries in the lower triangular part of A with those of L.

An inspection of the operations that compose the BRL procedure exposes a collection of data dependencies
between the blocks of A. For example, L2,1 cannot be computed until the factorization of A1,1 is ready. Similarly,
A2,2 cannot be updated until L2,1 has been computed. Figure 3 illustrates the data dependencies for the operations
that compose the first iteration of the Cholesky factorization applied to a 4×4 (blocked) matrix. In addition to
these dependencies, there exist others connecting the operations of the first iteration of loop k to those appearing
in subsequent iterations of the procedure. For example, at the beginning of the second iteration A2,2 cannot be
factorized until it has been updated with respect to L2,1 during the first iteration.

The BRL algorithm for the Cholesky factorization specifies a unique ordering of the operations, different
from that dictated by the two other algorithmic variants for this factorization [5]. However, this schedule can
be modified, provided the data dependencies are fulfilled, while still computing the same result. For example,

http://www.up4sciences.org

Parallel Solution of Hierarchical SPD Linear Systems 205

Algorithm 1 BRL algorithm for the Cholesky factorization.
Require: A ∈ Rn×n

1: for k = 1,2, . . . ,nt do
2: Akk = LkkLT

kk
3: for i = k+1,k+2 . . . ,nt do
4: Lik := AikL−T

kk
5: end for
6: for i = k+1,k+2, . . . ,nt do
7: for j = k+1,k+2, . . . , i do
8: Ai j := Ai j−Lik ·LT

k j
9: end for

10: end for
11: end for

 Cholesky (1st)
 TRSM (2nd, after Cholesky)
 UPD (3rd, after TRSMs)

Fig. 3 Operations and data dependencies in the first iteration (k = 1) of the BRL algorithm for the Cholesky factorization.

the solution of the nt − 1 lower triangular systems for Li,1, i = 2,3, . . . ,nt , during the first iteration of the BRL
algorithm, can be obtained in any order, as these operations are independent from each other.

3.2 H -Cholesky factorization

We next present a procedure for the H -Cholesky factorization that is obtained from a specialization of the
BRL algorithm that takes into account the hierarchical structure of A. For this purpose, assume that A ∈ Rn×n is
a hierarchical SPD matrix, partitioned as in Figure 2, and consider that all blocks in that partitioning are dense.
Then, the following sequence of operations O1–O10 computes the H -Cholesky factorization of A:

Sequence of operations for the H -Cholesky factorization of A:
O1 : A1,1 = L1,1LT

1,1
O2 : L2,1 := A2,1L−T

1,1
O3 : A2,2 := A2,2−L2,1 ·LT

2,1
O4 : A2,2 = L2,2LT

2,2
O5 : L3:4,1:2 := A3:4,1:2L−T

1:2,1:2
O6 : A3:4,3:4 := A3:4,3:4−L3:4,1:2 ·LT

3:4,1:2
O7 : A3,3 = L3,3LT

3,3
O8 : L4,3 := A4,3L−T

3,3
O9 : A4,4 := A4,4−L4,3 ·LT

4,3
O10 : A4,4 = L4,4LT

4,4

The operations in this sequence correspond to three basic linear algebra building blocks (or computational ker-
nels):

• Cholesky factorization: O1, O4 O7, O10;

• triangular system solve with transposed lower triangular factor: O2, O5, O8; and

http://www.up4sciences.org

206 J. I. Aliaga, R. Carratalá-Sáez and E. S. Quintana-Ortí. Applied Mathematics and Nonlinear Sciences 2(2017) 201–212

• matrix-matrix multiplication, which can be specialized in the form of symmetric rank-ts updates: O3, O6,
O9.

These kernels are also present in the BRL Cholesky factorization procedure introduced in Algorithm 1. The only
difference is that some of the kernels in the H -Cholesky factorization involve operands of different sizes.

Figure 4 provides a graphical representation of the H -Cholesky factorization process and the corresponding
data dependencies between blocks. The five plots in the figure are to be read from left to right, starting with
those in the top row first. They respectively correspond to the groups of operations:

O1−O3 | O4 | O5−O6 | O7−O9 | O10.

that appeared separated with horizontal lines in the sequence of operations for the H -Cholesky factorization
listed above. In the figure, the top-left matrix specifies the sequence of dependencies O1→O2→O3; and the
top-right matrix corresponds to the implicit dependency O5→O6. For simplicity, some of the data dependencies
are not shown, but they can be easily derived from the context.

 Cholesky (1st)
 TRSM (2nd, after Cholesky)
 UPD (3rd, after TRSMs)
 Done

Fig. 4 Operations and data dependencies in the generalization of the BRL algorithm for the H -Cholesky factorization.

We note that if any of the matrix blocks of A is compressed in low-rank factorized form, as is natural in for
an H -matrix, the operations involving this block will have to be performed in the appropriate H -arithmetic.
In any case, the dependencies remain the same. Conversely, in case a matrix block only contains zeros, some of
the operations may become unnecessary. For example, if A2,1 is “null” (that is A2,1 ≡ 0), then L2,1 ≡ 0, and O2,
O3 do not need to be computed. Furthermore, in that case O1 and O4 can be computed in parallel as there exist
no dependency connecting them.

4 Parallel H -Cholesky factorization

In this section we describe three approaches for the parallel computation of the H -Cholesky factorization.
For this purpose, we will employ the BRL procedure for the Cholesky factorization in Algorithm 1 as a case
study. Generalizing the ideas presented next carry over to the hierarchical case in a straight-forward manner.

4.1 Multi-threaded BLAS

The BRL algorithm decomposes the Cholesky factorization into a collection of four types of basic computa-
tional kernels operating on the matrix blocks: Cholesky factorization (of a diagonal block Akk), triangular solve
(line 4), symmetric rank-ts update (line 8, when i = j), and a general matrix-matrix multiplication (line 8, when

http://www.up4sciences.org

Parallel Solution of Hierarchical SPD Linear Systems 207

i 6= j). Efficient implementations of these four building blocks are provided in vendor as well as open-source
libraries for dense linear algebra such as Intel MKL, NVIDIA cuBLAS, IBM ESSL, GotoBLAS, OpenBLAS
and BLIS. Most of these implementations are also multi-threaded yielding a direct parallel execution on a mul-
ticore architecture by simply linking any of them to the application that invokes these kernels. In particular,
this is the case of an implementation of the BRL procedure (or its hierarchical generalization) that relies on a
multi-threaded instance of the BLAS to perform these computations.

This first approach, based on a multi-threaded BLAS and transparent to the programmer (as it does not
require any change in the original code), will only deliver a substantial fraction of the machine peak performance
in case the matrix blocks involved in the operations performed inside the BLAS are sufficiently large with respect
to the number of cores of the platform. Unfortunately, for hierarchical matrices, many of the blocks exhibit a
reduced dimension, constraining the parallel efficiency of this simple approach.

4.2 Loop-parallelism with independent iterations

The BRL algorithm consists of three nested loops, indexed by variables k, j, i. Among them, it was already
argued that the triangular solves inside the loop in lines 3–5 are independent of each other; and the same property
applies to the operations comprised by nested loops in lines 6–10. This implies that a direct approach to extract
loop-parallelism from this code can employ OpenMP to parallelize these two cases using a parallel for directive.
When applied to the first case, for example, this means that the iterations of loop j are distributed among the
threads in charge of executing the code in parallel. The type of distribution can be adjusted via specific clauses.
However, given that all iterations of the loop have the same theoretical cost (and can be expected to contribute a
similar practical cost), a simple static schedule will be, in general, appropriate.

The parallelization of the second case, corresponding to the loops in lines 6–10, is slightly more complex
because of the nested organization of the loops. Here, these loops cannot be tackled by using a collapse clause
that internally transforms them into a single loop, because of the dependency between the counter of the inner-
most loop on the outermost one (index j iterates from k+1 till i.) A solution is to parallelize the outermost loop
only, but tune this with an appropriate scheduling clause that enforces a fair distribution of the workload among
the threads.

In summary, this second approach provides an easy-to-program strategy to parallelize the BRL procedure
(as well as the corresponding generalization to hierarchical matrices). However, the performance will depend
on the number of iterations of the loops and may be constrained because, at execution, each loop parallelized in
this manner implicitly requires a synchronization point for the threads upon completion.

4.3 Dependency-aware task-parallelism

The third parallelization approach is the most sophisticated strategy but also the option that can be expected
to render higher performance. The idea is to rely on the “sequential” BRL procedure in order to identify the
real data dependencies between the operations of the algorithm. Each one of these operations becomes then a
task/node and the dependencies act as vertices connecting pairs of nodes of a task dependency graph (TDG). This
graph defines a partial order that specifies multiple correct orderings for the operations. Concretely, it depends
only on the actual dependencies of the mathematical operation but not on the algorithm itself. For example,
when applied to all three known variants for the computation of the Cholesky factorization, the result is the
same TDG. In other words, the execution of the operations comprised by the Cholesky factorization, executed
in any order that fulfills the dependencies registered in the TDG, will produce the same correct solution as a
sequential run (except for small variations due to the use of finite-precision arithmetic and rounding error).

This third approach aims to maximize the degree of concurrency exposed to the hardware, which offers
multiple (correct) alternatives in the sequencing of the operations involved by the factorization. In principle,
exploiting this type of parallelization approach may seem complex, because it requires to encode the algorithm,
discover the data dependencies between operations (preferably, at execution time), and keep track of the or-
der in which they are issued for execution. Fortunately, this burden can be greatly alleviated by employing a

http://www.up4sciences.org

208 J. I. Aliaga, R. Carratalá-Sáez and E. S. Quintana-Ortí. Applied Mathematics and Nonlinear Sciences 2(2017) 201–212

n nl Block granularity in each level
5,000 2 5,000, 100

3 5,000, 500, 100
4 5,000, 2,500, 1,250, 250

10,000 2 10,000, 500
3 10,000, 500, 100
4 10,000, 1,000, 500, 100

Table 1 Configurations for the experimental evaluation of the H −Cholesky factorization.

proper parallel programming model, assisted by a runtime with support for task-parallelism. This is the case
of OmpSs, which was originally conceived to exploit this type of parallelism, and also for releases 3.0 and
higher of OpenMP. The mechanism to automatically detect dependencies, the implications from the point of
view of decomposing tasks into finer-grain sub-operations, and the consequences of the data storage layout are
all discussed in [2], which was focussed on the implementations details.

5 Experimental results

All the experiments in this section were performed using IEEE double precision arithmetic, on a server
equipped with two Intel E5-2603v3 sockets, each with a 6-core processor (1.6 GHz), and 32 Gbytes of DDR3
RAM. Our codes were linked with Intel MKL (composer_xe_2011_sp1) for the BLAS kernels and the
Cholesky factorization, and OmpSs (version 16.06).

As argued at the beginning of this paper and following previous works (see [2]), our goal is to expose the
performance benefits of leveraging a task-parallel programming model such as OmpSs and OpenMP for the
solution of linear algebra operations on H -matrices. In contrast, we do not aim to develop a mature library that
competes with other implementations. For this reason, the experiments in this section are designed to assess the
scalability of our codes, in a simplified yet practical scenario.

The H -matrices used for the experimental analysis comprise dense and null blocks, but present no low-rank
ones. (In any case, including this last type of blocks has no effect on the task-based parallelization effort but
requires special numerical kernels that change the implementation and costs of the tasks operating on them.)
Concretely, for the evaluation of the parallel implementations, we use two SPD H -matrices of dimensions
n = 5,000 and n = 10,000 with random entries following a normal distribution in (0,1). To avoid numerical
difficulties, the matrices were enforced to be diagonally dominant. Moreover, for each H -matrix we varied
the number of levels (nl) and the granularity of the blocks in each level, as displayed in Table 1. Finally, we
performed experiments for four ratios of null blocks (dispersion): 0% (full matrix), 25%, 50% and 75%, which
specify the number of blocks that are null compared to the total amount of blocks. Note that a higher ratio of
null blocks does not necessarily represent a sparser matrix.

Figures 5 and 6 report the GFLOPS (billions of floating point operations per second) rates attained by the dif-
ferent parallel approaches for each of the matrix configurations on the Intel server using 4, 8 and 12 threads/cores.
These performance rates take into account that some of the blocks may be null when calculating the actual flops
necessary to factorize each matrix. A higher GFLOPS rate thus indicates higher performance/shorter execution
time. The parallel variants evaluated there include:

• MKL Multithread: Parallel algorithm that exploits parallelism inside the BLAS kernels invoked during
the execution of the BRL variant of the hierarchical Cholesky factorization; see subsection 4.1.

• OpenMP - Simple: Loop-parallel algorithm that exploits the loop-parallelism present in the BRL variant
of the hierarchical Cholesky factorization; see subsection 4.2.

http://www.up4sciences.org

Parallel Solution of Hierarchical SPD Linear Systems 209

• OmpSs and OpenMP - Tasks: Task-parallel algorithms that exploit the parallelism defined by the TDG
associated with the hierarchical Cholesky factorization; see subsection 4.3.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0% 25% 50% 75%

G
FL

O
P
S

% Dispersion

Matrix 5000x5000 (2 Levels)

 0

 20

 40

 60

 80

 100

 120

 140

 160

0% 25% 50% 75%

G
FL

O
P
S

% Dispersion

Matrix 5000x5000 (2 Levels)

 0

 20

 40

 60

 80

 100

 120

 140

 160

0% 25% 50% 75%

G
FL

O
P
S

% Dispersion

Matrix 5000x5000 (4 Levels)

Fig. 5 Performance of the task-parallel H -Cholesky factorization of a matrix of order 5,000 using OpenMP and OmpSs
in the Intel E5-2603v3 server using 4, 8 and 12 threads/cores.

The results of this evaluation offer some general conclusions:

• The GFLOPS rates observed with the four parallelization approaches grow with the number of cores for all
tested configurations: problem size, number of levels of the hierarchical matrix, and sparsity (dispersion);
but there are notable differences depending on the specific approach.

• In general, the task-parallel versions (OmpSs and OpenMP - Tasks) outperform OpenMP - Simple or
MKL Multithread variants. Furthermore, when the number of tasks is small, the OpenMP task-parallel
implementation offers higher parallel performance than the task-parallel version that relies OmpSs. For
larger matrices and, when the number of tasks grows, the differences between the two task-parallel solu-

http://www.up4sciences.org

210 J. I. Aliaga, R. Carratalá-Sáez and E. S. Quintana-Ortí. Applied Mathematics and Nonlinear Sciences 2(2017) 201–212

 0

 20

 40

 60

 80

 100

 120

 140

 160

0% 25% 50% 75%

G
FL

O
P
S

% Dispersion

Matrix 10000x10000 (2 Levels)

 0

 20

 40

 60

 80

 100

 120

 140

 160

0% 25% 50% 75%

G
FL

O
P
S

% Dispersion

Matrix 10000x10000 (3 Levels)

 0

 20

 40

 60

 80

 100

 120

 140

 160

0% 25% 50% 75%

G
FL

O
P
S

% Dispersion

Matrix 10000x10000 (4 Levels)

Fig. 6 Performance of the task-parallel H -Cholesky factorization of a matrix of order 10,000 using OpenMP and OmpSs
in the Intel E5-2603v3 server using 4, 8 and 12 threads/cores.

tions is reduced.

• In most cases the parallel performance is slightly reduced as the amount of null blocks is increased in
comparison to denser configurations.

6 Concluding remarks

We have developed and evaluated several parallel algorithms for the solution of hierarchical SPD linear
systems, via the H -Cholesky factorization, on multicore architectures. In particular, our algorithms explore the
benefits of extracting concurrency from within a multi-threaded implementation of the BLAS; from the loops
present in the BRL variant of the Cholesky factorization; or from the tasks that appear when decomposing
this operation via a task-parallel implementation with the support of a parallel programming model as those

http://www.up4sciences.org

Parallel Solution of Hierarchical SPD Linear Systems 211

behind OmpSs and OpenMP. Our results clearly demonstrate that this third option, when combined with the
runtimes underlying OmpSs/OpenMP, clearly outperforms the somehow trivial approaches that target multi-
threaded BLAS and loop-parallelism.

As part of future work, we intend to analyze the possibility of extracting concurrency from a combination
of two or more of these complementary mechanisms, and to shift our parallelization effort to work on a mature
library for H -matrices.

Acknowledgments

This work was supported by project TIN2014-53495-R of MINECO and FEDER. Rocío Carratalá-Sáez is
supported by a fellowship grant of the FPU program of MINECO.

References

[1] José I. Aliaga, Rosa M. Badia, María Barreda, Matthias Bollhöfer, and Enrique S. Quintana-Ortí. Leveraging task-
parallelism with OmpSs in ILUPACK’s preconditioned cg method. In 26th Int. Symp. on Computer Architecture and
High Performance Computing (SBAC-PAD 2014), pages 262–269, 2014.

[2] José I. Aliaga, Rocío Carratalá-Sáez, Ronald Kriemann, and E. S. Quintana-Ortí. Task-parallel LU factorization of
hierarchical matrices using OmpSs. In Proceedings of the 19th IEEE Workshop on Parallel and Distributed Scientific
and Engineering Computing, PDSEC 2017, 2017. To appear.

[3] Rosa M. Badia, Jose R. Herrero, Jesus Labarta, Jose M. Pérez, Enrique S. Quintana-Ortí, and Gregorio Quintana-Ortí.
Parallelizing dense and banded linear algebra libraries using SMPSs. Concurrency and Computation: Practice and
Experience, 21:2438–2456, 2009.

[4] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra subprograms.
ACM Trans. on Mathematical Software, 16(1):1–17, March 1990.

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 3rd
edition, 1996.

[6] Lars Grasedyck and Wolfgang Hackbusch. Construction and arithmetics of H -matrices. Computing, 70(4):295–334,
August 2003.

[7] Wolfgang Hackbusch. A sparse matrix arithmetic based on H -matrices. part i: Introduction to H -matrices. Comput-
ing, 62(2):89–108, May 1999.

[8] Wolfgang Hackbusch. Hierarchical Matrices: Algorithms and Analysis, volume 49 of Springer Series in Computa-
tional Mathematics. Springer-Verlag Berlin Heidelberg, 2015.

[9] Mohammad Izadi. Hierarchical matrix techniques on massively parallel computers. Ph.D. dissertation, Universität
Leipzig, 2012.

[10] Ronald Kriemann. H -LU factorization on many-core systems. Computing and Visualization in Science, 16(3):105–
117, 2013.

[11] OmpSs project home page. http://pm.bsc.es/ompss.
[12] The OpenMP API specification for parallel programming. http://www.openmp.org/.

http://pm.bsc.es/ompss
http://www.openmp.org/
http://www.up4sciences.org

212 J. I. Aliaga, R. Carratalá-Sáez and E. S. Quintana-Ortí. Applied Mathematics and Nonlinear Sciences 2(2017) 201–212

T
hi
s
pa
ge
is
in
te
nt
io
na
lly

le
ft
bl
an
k

©UP4 Sciences. All rights reserved.

http://www.up4sciences.org

	Introduction
	Background on H-Matrices
	Cholesky Factorization of H-Matrices
	Cholesky factorization
	H-Cholesky factorization

	Parallel H-Cholesky factorization
	Multi-threaded BLAS
	Loop-parallelism with independent iterations
	Dependency-aware task-parallelism

	Experimental results
	Concluding remarks

