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Abstract
Let G be a graph, and let k,r be nonnegative integers with k ≥ 2. A k-factor of G is a spanning subgraph F of G such that
dF(x) = k for each x ∈V (G), where dF(x) denotes the degree of x in F . For S⊆V (G), NG(S) =

⋃
x∈S NG(x). The binding

number of G is defined by bind(G) = min
{
|NG(S)|
|S| : /0 6= S⊂V (G),NG(S) 6=V (G)

}
. In this paper, we obtain a binding

number and neighborhood condition for a graph to have a k-factor excluding a given r-factor. This result is an extension of
the previous results.
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1 Introduction

For motivation and background to this work see [1]. In this paper, we consider only finite and simple graphs.
Let G = (V (G),E(G)) be a graph, where V (G) denotes its vertex set and E(G) denotes its edge set. A graph
is Hamiltonian if it admits a Hamiltonian cycle. For each x ∈ V (G), the neighborhood NG(x) of x is the set of
vertices of G adjacent to x, and the degree dG(x) of x is |NG(x)|. For S ⊆V (G), we write NG(S) =

⋃
x∈S NG(x).

G[S] denotes the subgraph of G induced by S, and G− S = G[V (G) \ S]. A vertex subset S of G is called
independent if G[S] has no edges. The symbol δ (G) denotes the minimum degree of G. The binding number
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of G is defined by bind(G) = min
{
|NG(S)|
|S| : /0 6= S⊂V (G),NG(S) 6=V (G)

}
. A spanning subgraph F of G with

dF(x) = k for each x ∈V (G) is called a k-factor of G.
Many authors studied graph factors [1–10]. Anderson [11] gave a binding number condition for graphs to

have 1-factors. Woodall [12] showed a binding number condition for a graph to have a Hamiltonian cycle (or
a 2-factor). Katerinis and Woodall [13] obtained a binding number condition for graphs to have k-factors. The
following theorems of k-factors in terms of binding number are known.

Theorem 1 (Anderson [11]). Let G be a graph of order n. If n is even and bind(G)≥ 4
3 , then G has a 1-factor.

Theorem 2 (Woodall [12]). Let G be a graph. If bind(G)≥ 3
2 , then G has a Hamiltonian cycle (or a 2-factor).

Theorem 3 (Katerinis and Woodall [13]). Let k ≥ 2 be an integer and let G be a graph of order n ≥ 4k− 6
and binding number bind(G) such that kn is even and bind(G)> (2k−1)(n−1)

k(n−2)+3 . Then G has a k-factor.

In this paper, we obtain a binding number condition for a graph to have a k-factor excluding a given r-factor,
which is an extension of Theorems 1, 2, and 3. The main result will be given in the following section.

2 Main Theorems

In this section, we give our main results, which are the following theorems.

Theorem 4. Let k and r be two nonnegative integers with k ≥ 2, and let G be a graph of order n with n ≥
(2k−1)(2k−3)

k , and let G have an r-factor Q. Suppose that kn is even, bind(G)≥ (2k−1)(n−1)
kn−(r+1)(2k−1)+1 and |NG(X)|>

(k−1)n+(2rk−r+1)|X |−2
2k−1 for any nonempty independent subset X of V (G). Then G has a k-factor excluding a given

r-factor Q if G−E(Q) is connected.

If r = 0 in Theorem 4, then we obtain the following corollary.

Corollary 5. Let k be a nonnegative integer with k ≥ 2, and let G be a graph of order n with n ≥ (2k−1)(2k−3)
k .

Suppose that kn is even, bind(G)≥ (2k−1)(n−1)
kn−(2k−2) and |NG(X)|> (k−1)n+|X |−2

2k−1 for any nonempty independent subset
X of V (G). Then G has a k-factor.

If Q is a Hamiltonian cycle in Theorem 4, then we obtain the following corollary.

Corollary 6. Let k be a nonnegative integer with k ≥ 2, and let G be a Hamiltonian graph of order n with n≥
(2k−1)(2k−3)

k . Suppose that kn is even, bind(G)≥ (2k−1)(n−1)
kn−2(3k−2) and |NG(X)|> (k−1)n+(4k−1)|X |−2

2k−1 for any nonempty
independent subset X of V (G). Then G has a k-factor excluding a given Hamiltonian cycle C if G−E(C) is
connected.

Unfortunately, the authors do not know whether the conditions in Theorem 4 are the best possible or not.
Hence, we pose the following conjecture.

Conjecture 7. Let k and r be two nonnegative integers with k ≥ 2, and let G be a graph of order n with n ≥
(2k−1)(2k−3)

k , and let G have an r-factor Q. Suppose that kn is even, bind(G)≥ (2k−1)(n−1)
kn−(r+1)(2k−1)+2 and |NG(X)| ≥

(k−1)n+(2rk−r+1)|X |−2
2k−1 for any nonempty independent subset X of V (G). Then G has a k-factor excluding a given

r-factor Q if G−E(Q) is connected.

Using Theorem 4, we obtain a binding number condition for a graph to have a k-factor including a given
r-factor.
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Theorem 8. Let k and r be two nonnegative integers with k ≥ r + 2, and let G be a graph of order n with
n ≥ (2k−2r−1)(2k−2r−3)

k−r , and let G have an r-factor Q. Suppose that kn and rn are both even, bind(G) ≥
(2k−2r−1)(n−1)

(k−r)n−(r+1)(2k−2r−1)+1 and |NG(X)| > (k−r−1)n+(2rk−2r2−r+1)|X |−2
2k−2r−1 for any nonempty independent subset X of

V (G). Then G has a k-factor including a given r-factor Q if G−E(Q) is connected.

Proof. By the assumption of Theorem 8, G has an r-factor Q. Let m = k− r. Then we have m ≥ 2, mn even,
n≥ (2m−1)(2m−3)

m , bind(G)≥ (2m−1)(n−1)
mn−(r+1)(2m−1)+1 , |NG(X)|> (m−1)n+(2rm−r+1)|X |−2

2m−1 for any nonempty independent
subset X of V (G), and G−E(Q) connected. According to Theorem 4, G has an m-factor F ′ excluding a given
r-factor Q, and G has a k-factor F (F = E(F ′)∪E(Q)) including a given r-factor Q. This completes the proof
of Theorem 8.

If Q is a Hamiltonian cycle in Theorem 8, then we obtain the following corollary.

Corollary 9. Let k be a nonnegative integer with k ≥ 4, and let G be a Hamiltonian graph of order n with
n ≥ (2k−5)(2k−7)

k−2 . Suppose that kn is even, bind(G) ≥ (2k−5)(n−1)
(k−2)n−2(3k−8) and |NG(X)| > (k−3)n+(4k−9)|X |−2

2k−5 for any
nonempty independent subset X of V (G). Then G has a k-factor including a given Hamiltonian cycle C if
G−E(C) is connected.

The previous results on a graph to have a k-factor including a given Hamiltonian cycle are shown in the
following

Theorem 10 (Matsuda [14]). Let k ≥ 2 be an integer and let G be a graph of order n > 8k2− 2(α + 12)k+
3α + 16, where α = 3 for odd k and α = 4 for even k. Suppose that kn is even and the minimum degree δ (G)
of G is at least k. If for any nonadjacent vertices x and y of G, dG(x)+ dG(y) ≥ n+α , then G has a k-factor
including a given Hamiltonian cycle.

Theorem 11 (Gao, Li, and Li [15]). Let k≥ 2 be an integer and let G be a graph of order n> 12(k−2)2+2(5−
α)(k−2)−α . Suppose that kn is even, δ (G) ≥ k and max{dG(x),dG(y)} ≥ n+α

2 for each pair of nonadjacent
vertices x and y in G, where α = 3 for odd k and α = 4 for even k. Then G has a k-factor including a given
Hamiltonian cycle C if G−E(C) is connected.

3 The Proof of Theorem 4

Let G be a graph, and S,T ⊆V (G) with S∩T = /0. We use eG(S,T ) to denote the number of edges that join S
and T . For an integer k≥ 1, a component C of G− (S∪T ) is called an odd component if k|V (C)|+eG(V (C),T )
is odd. We write

δG(S,T ) = k|S|+dG−S(T )− k|T |−hG(S,T ),

where dG−S(T ) = ∑x∈T dG−S(x) and hG(S,T ) is the number of odd components of G− (S∪T ).
The proof of Theorem 4 relies heavily on the following lemmas.

Lemma 12 (Tutte [16]). Let G be a graph of order n and k a positive integer. Then for any disjoint subsets S
and T of V (G), the following statements hold:

1. G has a k-factor if and only if δG(S,T )≥ 0.

2. δG(S,T )≡ kn(mod 2).

Lemma 13 (Katerinis and Woodall [13]). Let G be a graph of order n and k a positive integer with kn even.
Suppose that there exists a pair of disjoint subsets S and T of V (G) such that

δG(S,T )≤−2. (1)

Let W = G− S− T and let ω be the number of components of W. If |S∪ T | is maximal subject to (1), then
|V (C)| ≥ 3 for every component C of W, so that |V (W )| ≥ 3ω .
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Lemma 14 (Woodall [12]). Let G be a graph of order n with bind(G)≥ c. Then δ (G)≥ n− n−1
c .

Proof of Theorem 4. According to the assumption of Theorem 4, G has an r-factor Q. Set H = G−E(Q). Then
V (H) =V (G). Hence G has a desired factor if and only if H has a k-factor. By way of contradiction, we assume
that H has no k-factor. Then, by Lemma 12, there exist two disjoint subsets S and T of V (H) =V (G) such that

δH(S,T ) = k|S|+dH−S(T )− k|T |−hH(S,T )≤−2, (2)

where hH(S,T ) denotes the number of odd components of H− (S∪T ). And subject to (2), we choose S and T
such that |S∪T | is as large as possible. From (2), we have

k|S|+dH−S(T )− k|T |−ω ≤−2, (3)

where ω denotes the number of components of H− (S∪T ). Obviously,

ω ≤ n−|S|− |T |. (4)

If ω > 0, then let m denote the minimum order of components of H− (S∪T ). We shall make use of the obvious
facts that

δ (H)≤ m−1+ |S|+ |T | (5)

and

mω ≤ |V (H)|− |S|− |T |= n−|S|− |T | ≤ n. (6)

Moreover, it follows from Lemma 13 and the choice of S and T that m≥ 3.
According to Lemma 14 and bind(G)≥ (2k−1)(n−1)

kn−(r+1)(2k−1)+1 , we have

δ (G)≥ n− n−1
(2k−1)(n−1)

kn−(r+1)(2k−1)+1

=
(k−1)n+(r+1)(2k−1)−1

2k−1
. (7)

Claim 1. T 6= /0.
Proof. Suppose that T = /0.
If S = /0, then by (3) we obtain

ω ≥ k|S|+dH−S(T )− k|T |+2 = 2,

which contradicts the assumption that H = G−E(Q) is connected.
If S 6= /0, then from (3) and (4) we deduce

0 < k|S|+2≤ ω ≤ n−|S|. (8)

Using (8), we have
n−1− k|S|− |S| ≥ 1. (9)

In view of (5), (6) and (8), we obtain

δ (H) ≤ m−1+ |S| ≤ n−|S|
ω
−1+ |S|

≤ n−|S|
k|S|+2

−1+ |S|< n−|S|
k|S|+1

−1+ |S|

=
n−1
k+1

− (n−1− k|S|− |S|)(k|S|− k)
(k+1)(k|S|+1)

.
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Combining this with (9) and |S| ≥ 1, we have

δ (H)<
n−1
k+1

− (n−1− k|S|− |S|)(k|S|− k)
(k+1)(k|S|+1)

≤ n−1
k+1

. (10)

Note that δ (H) = δ (G)− r. Using (7) and (10), we have

n−1
k+1

> δ (H) = δ (G)− r ≥ (k−1)n+(r+1)(2k−1)−1
2k−1

− r =
(k−1)n+2k−2

2k−1
,

which is a contradiction since k ≥ 2. Hence, T 6= /0. The proof of Claim 3 is complete.
Since T 6= /0, we define

h = min{dH−S(x) : x ∈ T}.

The following proof splits into four cases by the value of h.
Case 1. h = 0.
Set X = {x : x ∈ T,dH−S(x) = 0}. Clearly, X 6= /0 since h = 0 and X is an independent subset of V (H). It is easy
to see that

|S| ≥ |NH(X)|. (11)

Note that |NH(X)| ≥ |NG(X)|− r|X |. According to (11) and the assumption of Theorem 4, we obtain

|S| ≥ |NH(X)| ≥ |NG(X)|− r|X |> (k−1)n+ |X |−2
2k−1

. (12)

In view of (3), (4), (12), |S|+ |T | ≤ n and k ≥ 2, we deduce

−2 ≥ k|S|+dH−S(T )− k|T |−ω

≥ k|S|+dH−S(T )− k|T |− (n−|S|− |T |)
≥ k|S|+ |T |− |X |− k|T |−n+ |S|+ |T |
= (k+1)|S|− (k−2)|T |− |X |−n

≥ (k+1)|S|− (k−2)(n−|S|)−|X |−n

= (2k−1)|S|− (k−1)n−|X |

> (2k−1) · (k−1)n+ |X |−2
2k−1

− (k−1)n−|X |

= −2.

That is a contradiction.
Case 2. 1≤ h≤ k−1.
Note that δ (H)≤ |S|+h and δ (H) = δ (G)− r. And using (7), we obtain

|S| ≥ δ (G)− r−h≥ (k−1)n+2k−2
2k−1

−h. (13)

According to (3), (4), |S|+ |T | ≤ n and 1≤ h≤ k−1, we have

−2 ≥ k|S|+dH−S(T )− k|T |−ω

≥ k|S|+h|T |− k|T |− (n−|S|− |T |)
= (k+1)|S|− (k−1−h)|T |−n

≥ (k+1)|S|− (k−1−h)(n−|S|)−n

= (2k−h)|S|− (k−h)n,

http://www.up4sciences.org


18 S. Zhou, L. Xu and Y. Xu. Applied Mathematics and Nonlinear Sciences 2(2017) 13–20

that is,
−2≥ (2k−h)|S|− (k−h)n. (14)

Multiplying (14) by (2k−1) and rearranging, and then using (13),

0 ≥ (2k−h)(2k−1)|S|− (2k−1)(k−h)n+2(2k−1)

≥ (2k−h)((k−1)n+2k−2− (2k−1)h)− (2k−1)(k−h)n+2(2k−1)

= (h−1)(kn− (2k−1)(2k−h)+1)+2k−1,

that is,
0≥ (h−1)(kn− (2k−1)(2k−h)+1)+2k−1. (15)

If h = 1, then from (15) we obtain
0≥ 2k−1 > 0,

which is a contradiction.
If h = 2, then by (15) and n≥ (2k−1)(2k−3)

k , we obtain

0 ≥ (h−1)(kn− (2k−1)(2k−h)+1)+2k−1

= kn− (2k−1)(2k−2)+1+2k−1

≥ (2k−1)(2k−3)− (2k−1)(2k−2)+1+2k−1

= 1,

a contradiction.
If 3≤ h≤ k−1, then using (15) and n≥ (2k−1)(2k−3)

k , we have

0 ≥ (h−1)(kn− (2k−1)(2k−h)+1)+2k−1

≥ (h−1)(kn− (2k−1)(2k−3)+1)+2k−1

≥ h−1+2k−1

> 2k−1 > 0,

that is a contradiction.
Case 3. h = k.
According to (3), we obtain

−2 ≥ k|S|+dH−S(T )− k|T |−ω

≥ k|S|+h|T |− k|T |−ω

= k|S|−ω,

which implies
ω ≥ k|S|+2. (16)

In view of (6) and Claim 3, we have

ω ≤ n−|S|− |T |
m

≤ n−|S|−1
m

.

Combining this with (16) and m≥ 3, we infer

k|S|+2≤ ω ≤ n−|S|−1
m

≤ n−|S|−1
3

, (17)
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which implies

|S| ≤ n−7
3k+1

. (18)

Using (7), h = k, δ (H) = δ (G)− r and δ (H)≤ |S|+h, we deduce

|S| ≥ (k−1)n+2k−2
2k−1

− k,

which contradicts (18) since k ≥ 2 and n≥ (2k−1)(2k−3)
k .

Case 4. h≥ k+1.
According to (3), we have

−2 ≥ k|S|+dH−S(T )− k|T |−ω

≥ k|S|+h|T |− k|T |−ω

≥ k|S|+ |T |−ω.

Combining this with Claim 3, we obtain

ω ≥ k|S|+ |T |+2≥ |S|+ |T |+2≥ 3. (19)

In view of (5), (6), and (19), m≥ 3 and δ (G) = δ (H)+ r, we obtain

δ (G) = δ (H)+ r ≤ m−1+ |S|+ |T |+ r

≤ m−1+ω−2+ r = m+ω−3+ r

≤ m+ω−3+
(m−3)(ω−3)

3
+ r

=
mω

3
+ r ≤ n

3
+ r,

which contradicts (7).
Hence, G has a desired factor, that is, G has a k-factor excluding a given r-factor. This completes the proof of
Theorem 4.
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