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Abstract
This paper is a small review of Chebyshev’s method. The geometric interpretation as a generalization of Newton’s method
is derived. Using this interpretation its global convergence is proved. Some dynamical properties are studied. As a higher
order method, they are more complicated than in Newton’s method. Finally, some applications are revisited pointing out
the advantages of Chebyshev’s method with respect Newton’s method.
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1 Introduction

One of the most classical problems in Numerical Analysis is the approximation of the zeros of a given
function f , that is, finding the values x∗ for which f (x∗) = 0.

In order to approximate these equations we can use iterative methods. The most used scheme is the second
order Newton method,

xn+1 = xn−
f (xn)

f ′(xn)
. (1)

This paper is devoted to the analysis of Chebyshev’s method that is a third order extension of Newton’s
method. We present the geometric interpretation of the method and its global convergence. We introduce its
extension to Banach spaces and review some applications where this high order method is a good alternative to
Newton’s method.
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Chebyshev is one of the famous mathematicians of the nineteenth century, creator of several mathematical
schools in Russia: number theory, probability theory, function approximation theory, theory of mechanisms and
machines, etc. He received primary education at home. His mother, taught him to read and write, while his
cousin taught arithmetic and the French language, which will be very useful in his relation with Europe. He
followed also completing his secondary education at home, but having as tutor in mathematics Prof. Pogorelsky,
known in his day as the best teacher of elementary mathematics in Moscow. Prof. Brashman was who practically
ran the university studies of Chebyshev ended in 1841. The department of physics and mathematics in which
Chebyshev studied convened an award in the 1840-41 course. Chebyshev submitted a paper on the calculation
of roots of equations, using the series expansion of the inverse function. The work, unpublished at the time,
was rewarded with the silver medal. Chebyshev worked as a professor at the University of St. Petersburg for 35
years. He is recognized as the founder of the mathematical school in St. Petersburg whose echo and influence
has reached our time in many branches of mathematics. This school was distinguished by the tendency to relate
the theoretical problems of mathematics with problems in the art and nature.

2 Geometry, dynamics and convergence of Chebyshev’s method in the scalar case

The geometric interpretation of Newton’s method is well known, given an iterate xn, the next iterate is the
zero of the tangent line

y(x)− f (xn) = f ′(xn)(x− xn),

to the graph of f at (xn, f (xn)).
The following well-known theorem, giving enough conditions for the global convergence of Newton’s

method, follows easily from its geometric interpretation.

Theorem 1. Let f ′′ be continuous on an interval J, containing a root x∗ of f ; let f ′ 6= 0 and f ′′ ≥ 0 or f ′′ ≤ 0
on J. Then Newton’s method converges monotonically to x∗ from any point x0 ∈ J such that f (x0) f ′′(x0)≥ 0.

Chebyshev’s method is obtained by quadratic interpolation of the inverse function of f , in order to approxi-
mate f−1(0), [22]. But it also admits a geometric derivation, from a parabola in the form

ay(x)2 + y(x)+bx+ c = 0, (2)

that after the imposition of the super tangency conditions, y(xn) = f (xn), y′(xn) = f ′(xn) and y′′(xn) = f ′′(xn),
can be written as

− f ′′(xn)

2 f ′(xn)2 (y(x)− f (xn))
2 + y(x)− f (xn)− f ′(xn)(x− xn) = 0.

By calculating the intersection of this parabola with the OX-axis we obtain the next step of Chebyshev’s method:

xn+1 = xn−
(

1+
1
2

L f (xn)

)
f (xn)

f ′(xn)
,

where L f (xn) =
f (xn) f ′′(xn)
( f ′(xn))2 .

We refer to [1] for the geometric interpretation of other third order methods.
By using the geometric interpretation of Chebyshev’s method, we can obtain the following global conver-

gence theorem.

Theorem 2. Let f ′′′ be continuous on an interval J containing a root x∗ of f , let f ′ 6= 0, L f (x) > −2 and
(( η

f ′ (x)
)2)

′′ ≥ 0 in J, with η = sgn( f ′). Then Chebyshev’s method converges monotonically to x∗ from any point
of the interval.
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Proof. We suppose f ′ > 0 (for f ′ < 0 the proof is similar).
First, we begin from a point on the left of x∗, x≤ x∗.
We would like to show that the intersection x̂ of the parabola y(x) given in (2) with the OX-axis will be in

[x,x∗]. By hypothesis L f (x)>−2, in particular, x≤ x̂.
Thus, it will be enough, if for x≥ x, we can prove that

y(x) =
−1+

√
1−4a(bx+ c)

2a
≥ f (x) . (3)

In this case, we will obtain a monotonic increasing sequence, bounded from above by x∗, then it converges at
the limit γ ≤ x∗. So, because the construction of the method and the continuity of f the convergence is obtained,
γ = x∗.

Inequality (3) is equivalent to

−1+
√

1−4a(bx+ c)
2a

−
−1+

√
1−4a(bx+ c)

2a
≥ f (x)− f (x) ,

or ˆ x

x

−b√
1−4a(bt + c)

dt ≥
ˆ x

x
f ′ (t)dt. (4)

As f ′ > 0 then for hypothesis (( 1
f ′
)2)

′′ ≥ 0 in J, i.e., ( 1
f ′
)2 is convex, and therefore

(
1

f ′(x)

)2

≥ 1−4a(bx+ c)
(−b)2 ,

because 1−4a(bx+c)
(−b)2 approximates ( 1

f ′ (x)
)2 up to second order.

Thus,
−b√

1−4a(bx+ c)
≥ f

′
(x)> 0,

and consequently the relation (4) holds.

Finally, if we begin from a point on the right of the root, we will obtain −1+
√

1−4a(bx+c)
2a ≤ f (x) and the

convergence will be monotonic from the right. 2

We refer to [3] for the global convergence of other third order schemes and some comparisons.
In general, the method has not global convergence. We only are able in these cases to ask for local or

semilocal convergence. Around the solutions we looking for regions of convergence.
Consider for instance the problem to find the zeros of a polynomial, p(z) = 0. Let R(z) = P(z)

Q(z) , where
P(z) and Q(z) are complex polynomials with no common factors, be a rational map on the Riemann sphere.
We say that z0 is a fixed point of R(z) if R(z0) = z0 . For z ∈ C we define its orbit as the set orb(z) =
{z,R(z),R2(z), . . . ,Rk(z), . . .} , where Rk means the k –fold iterate of R . A periodic point of period n is a point
z0 such that Rn(z0) = z0 and R j(z0) 6= z0 for 0 < j < n . Observe that if z0 ∈ C is a periodic point of period
n ≥ 1, then z0 is a fixed point of Rn . Also, recall that a fixed point z0 is respectively attracting, repelling
or indifferent in case |R′(z0)| is less than, greater than or equal to 1. A periodic point of period n is said to be
attracting, repelling or indifferent if as a fixed point of Rn(z) is respectively attracting, repelling or indifferent. A
superattracting fixed point of R(z) is a fixed point which is also a zero of the derivative R′(z) . A periodic point
of period n is said to be a superattracting periodic point of R(z) if, as a fixed point of Rn(z) , is superattracting.

Let ζ be an attracting fixed point of R(z) . The basin of attraction of ζ is the set B(ζ ) = {z ∈C : Rn(z)→
ζ as n→ ∞} . The immediate basin of attraction of an attracting fixed point ζ of R(z) , denoted by B∗(ζ ) ,
is the connected component of B(ζ ) containing ζ . Finally, if z0 is an attracting periodic point of period n
of R(z) , the basin of attraction of the orbit orb(z0) is the set B(orb(z0)) = ∪n−1

j=0R j(B(z0)) , where B(z0) is the
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attraction basin of z0 as a fixed point of Rn . The Julia set of a rational map R(z) , denoted by J (R) , is the
closure of the set of repelling periodic points. Its complement is the Fatou set F (R) . If R(z) has an attracting
fixed point z0 , then the basin of attraction B(z0) is contained in the Fatou set and J (R) = ∂B(z0) . Therefore,
the chaotic dynamics of R(z) is contained in its Julia set.

The iterative rational function for Chebyshev’s method is given by

Chp(z) = z−
(

1+
1
2

Lp(z)
)

p(z)
p′(z)

. (5)

We recall the definition of conjugacy.

Definition 1. Let R1,R2 : C→ C be two rational maps. We say that R1 and R2 are conjugated if there exists a
Möbius transformation φ : C→ C such that R2 ◦φ(z) = φ ◦R1(z) for all z .

An important feature of conjugation of rational maps is given by the following classical result.

Theorem 3. Let R1 and R2 be two rational maps and let φ be a Möbius transformation conjugating R1 and
R2 , that is, R2 = φ ◦R1 ◦φ−1 . Then F (R2) = φ(F (R1)) and J (R2) = φ(J (R1)) .

Conjugacy plays a central rôle in understanding the behavior of classes of maps from the point of view of
dynamical systems in the following sense. Suppose that one wishes to describe the quantitative as well as the
qualitative behavior of the map z→Φ f (z) , where Φ f (z) is some iterative function. Since conjugacy preserves
fixed and periodic points and their type as well as attraction basins, the dynamical data concerning f is carried by
the fixed points of Φ f (z) as well as by the nature of such fixed points which may be (super)attracting, repelling
or indifferent. Therefore, it is worthwhile to build up, for polynomials of degree two and three, a parametrized
family consisting of polynomials as simple as possible such that a conjugacy exists between the corresponding
iterative functions.

The result that follows, due to A. Cayley [8,21], has great historical importance. In an attempt to understand
the dynamics of Newton’s method in the complex plane, Cayley investigated the dynamics of Newton’s method
applied to polynomials of a particularly simple form. He realized that major difficulties would arise when
attempting to extend the following result for quadratics to cubics and beyond. It is believed that this circumstance
motivated further work of P. Fatou and G. Julia along these lines.

Theorem 4. Let Np(z) =
z2−ab

2z− (b+a)
be the rational map obtained from Newton’s method applied to a generic

quadratic polynomial p(z) = (z−a)(z−b) . Then Np is conjugated to the map z→ z2 by the Möbius transfor-
mation M(z) = z−a

z−b and J (Np) is the straight line in the complex plane corresponding to the locus of points
equidistant from a and b.

For Chebyshev’s method, also known as super–Newton method, the following result holds.

Theorem 5. ( [18]) Let

Chp(z) =
3z4−2(a+b)z3−6abz2 +6ab(a+b)z−ab(a2 +3ab+b2)

(2z−a−b)3

be the rational map obtained from Chebyshev’s method applied to a generic quadratic polynomial p(z) =
(z−a)(z−b) . Then Chp(z) is conjugated to the map S3(z) = z4+2z3

2z+1 via the Möbius transformation M(z) = z−a
z−b .

For cubic polynomials we have the following result.

Theorem 6. Let p(z) = (z− z0)(z− z1)(z− z2) be a generic cubic polynomial with roots ordered as follows:
0≤ |z0| ≤ |z1| ≤ |z2| . Let T (z) = (z2− z0)z+ z0 . Then
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1. p(z) reduces to a polynomial belonging to the parametrized family qλ ,ρ(z) = p◦T (z) = λ 3z(z−1)(z−
ρ) , where λ = z2− z0 and ρ = z1−z0

z2−z0
,

2. T is a conjugacy between Chp and Chqλ ,ρ
, that is, T−1 ◦Chqλ ,ρ

◦T =Chp , and

3. if q̃ρ(z) = z(z−1)(z−ρ) , then Chqλ ,ρ
is conjugated to Chq̃ρ

. Consequently, Chp is conjugated to Chq̃ρ
.

It is possible to see that the one–parameter family q̃ρ(z) = z(z−ρ)(z−1) reduces to the well–known one–
parameter family pA(z) = z3 +(A−1)z−A (see [10]).

In the two pictures that follow we show the attraction basins of Newton’s and Chebyshev’s iterations applied
to z3−1 = 0. we can see a more rich dynamics in Chebyshev’s method.

Fig. 1 Basins of attraction for the polynomial p(z) = z3−1. Newton’s method.

Fig. 2 Basins of attraction for the polynomial p(z) = z3−1. Chebyshev’s method.

In [4], we study the dynamics of a family of third-order iterative algorithms which includes Chebyshev’s
iteration function, Halley’s iterative method, super-Halley’s iterative method and the c -iterative methods. Using
results of conjugation of rational maps and the definition of the universal Julia set we find the conjugacy classes
of these iterative methods explicitly.

3 Extension to Banach spaces and some applications

To approximate a solution of the nonlinear equation

F (x) = 0, (6)

http://www.up4sciences.org
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F : X → Y , X ,Y Banach spaces, Chebyshev’s method can be written as

xn+1 = xn−
(

I +
1
2

LF (xn)

)
F ′ (xn)

−1 F (xn) , (7)

where

LF (xn) = F ′ (xn)
−1 F ′′ (xn)F ′ (xn)

−1 F (xn) ,

β ∈ [0,1].

Next, we review some applications where Chebyshev’s method can be considered a good alternative to
Newton’s method.

3.1 Quadratic equations

In this case, F
′′
(x) is a constant bilinear operator that we denote by B.

Using Taylor expansions,

F(yn) = F(xn)+F
′
(xn)(yn− xn)+

1
2

F
′′
(xn)(yn− xn)

2 =
1
2

B(yn− xn)
2. (8)

Thus, F
′
(xn)

−1F(yn) =−1
2 LF(xn)(yn− xn), and the method becomes

yn = xn−F
′
(xn)

−1F(xn),

xn+1 = yn−F
′
(xn)

−1F(yn),

equivalently,

F
′
(xn)(yn− xn) = −F(xn), (9)

F
′
(xn)(xn+1− yn) = −F(yn).

Notice that we only need a LU decomposition and three evaluations (F(xn), F(yn) and F
′
(xn)) in each iteration.

In particular, for this problem Chebyshev’s method is more efficient than Newton’s method.
Moreover, we can obtain a very simple semilocal convergence:

Theorem 7. Given x0 such that there exists F
′
(x0)

−1 and condition

||F ′(x0)
−1B|| ||F ′(x0)

−1F(x0)|| ≤
1
2

(10)

holds, then Chebyshev’s method is well defined and converges to x∗, solution of F(x) = 0.

We refer [12] and its references for a general convergence analysis of this type of methods.
Let us consider the equation

F (x) = xT Bx+Cx+D = 0, (11)

where

B = rand(N ∗N ∗N),

C = rand(N ∗N),

and D is compute in order to obtain x∗i = 1, i = 1, . . . ,N, as solution.
In Table1 we consider N = 30. The Chebyshev’s method has third order of convergence.
For quadratic equations we can find efficient higher order methods [2].
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Iteration Cheby.
1 8.41e−03
2 1.78e−09
3 2.90e−13
4 0.00e+00

Table 1 Error max-norm, x0 such that ||x∗− x0||= 0.1

3.2 The inverse of a matrix

Approximating inverse operators is a very common task in several areas of interest, such as physics, chem-
istry, engineering, etc. In a general context, we can formulate the following problem: given g, we are interested
in calculating f ∈ Ω such that H( f ) = g, where H : Ω→ Y is an operator defined in a domain Ω of a Banach
space X with values in a Banach space Y . It is clear that we have to calculate or approximate the inverse operator
H−1 for solving the previous equation. In this case, if g is in the domain of H−1, there is a solution f = H−1(g).

To approximate the inverse operator H−1, we use Newton-type methods, so that better successive approxi-
mations to H−1 are constructed from an initial approximation. The methods considered in this paper, when they
are applied to compute an inverse operator, are not be based on solving linear systems, if not on the product of
matrices. Notice that the formulation of the problem in this manner is very interesting.

Let X and Y be two Banach spaces and GL(X ,Y ) = {H ∈L (X ,Y ) : H−1 exists}, where L (X ,Y ) is the set
of bounded linear operators from the Banach space X into the Banach space Y . The problem that we are thinking
about is the following: given an operator H ∈ GL(X ,Y ), we approximate H−1. To do this, we first consider

F : GL(Y,X)→L (X ,Y ) and F (G) = G−1−H,

so that H−1 is the solution of the equation F (G) = 0.
If we observe Newton’s method,G0 given,

Gn+1 = Gn− [F ′(Gn)]
−1F (Gn), n≥ 0,

it is clear that inverse operators are used, but if we take into account the definition of F , calculate F ′(Gn) and
do

F ′(Gn)(Gn+1−Gn) =−F (Gn), n≥ 0, (12)

then we can avoid the use of inverse operators for approximating Gn+1.
Indeed, to obtain the corresponding algorithm, we only need to compute F ′(Gn). So, given G ∈ GL(Y,X),

as G−1 exists, if

0 < ε <
1

‖α‖‖G−1‖
,

we have ‖εα‖< 1
‖G−1‖ for α ∈ GL(Y,X). Therefore, it is known that G+ εα ∈ GL(Y,X) and then

F ′(G)α = lim
ε→0

1
ε
[F (G+ εα)−F (G)] =−G−1

αG−1.

In consequence, Newton’s method is now given by the following algorithm:G0 given,

Gn+1 = 2Gn−GnHGn, n≥ 0.
(13)
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In addition, Newton’s method does not use inverse operators for approximating an inverse operator and the order
of convergence is two.

If we now consider Chebyshev’s method,G0 given,

Gn+1 = Gn−
[
I + 1

2 LF (Gn)
]
[F ′(Gn)]

−1F (Gn), n≥ 0,

where LF (Gn) = [F ′(Gn)]
−1F ′′(Gn)[F ′(Gn)]

−1F (Gn), we can think that inverse operators are used, but we
can do the same as in Newton’s method to see that Chebyshev’s method does not use them:{

F ′(Gn)(Pn−Gn) =−F (Gn), n≥ 0,

F ′(Gn)(Gn+1−Pn) =−1
2F ′′(Gn)(Pn−Gn)

2,
(14)

so that we can also avoid the use of inverse operators for approximating Gn+1.
Let α,β ∈ GL(Y,X) and then

0 < ε <
1

‖β‖‖G−1‖
,

so that G+ εβ ∈ GL(Y,X) and

F ′′(G)αβ = lim
ε→0

1
ε
[F ′(G+ εβ )α−F ′(G)α] = G−1

αG−1
βG−1 +G−1

βG−1
αG−1.

In consequence, we write Chebyshev’s method asG0 given,

Gn+1 = 3Gn−3GnHGn +GnHGnHGn, n≥ 0.
(15)

Observe that Chebyshev’s method does not use inverse operators for approximating an inverse operator and the
order of convergence is three.

Theorem 8. If ‖I−HG0‖ < 1, Newton and Chebyshev iterative methods are convergent. Moreover, if HG0 =
G0H, then limn→∞ Gn = H−1.

On the other hand, if we observe Newton’s and Chebyshev’s methods, two well-known iterative methods,
we conclude that they can approximate inverse operators without using any inverse operator in their application.
From this feature of both methods, we pay attention in [5] to the construction of iterative methods of any prefixed
order of convergence. Moreover, the final formulation of the methods uses only potencies of matrices that are
close to the identity. This fact is crucial to avoid any stability problem in the implementation of the methods. The
best method of the family will depend on the particular problem to solve. In any case, we find iterative methods
with better behavior than Newton’s method. Finally, we would like to emphasize that in the applications, where
we are interested in the computation of an inverse operator, our methods use matrix-matrix multiplications with
a computational cost similar to that of Gauss-type methods. But, if we are interested only in the application of
the inverse operator, we will be able to implement our methods using only matrix-vector multiplications, so that
we reduce considerably the computational cost.

3.3 The pth root of a matrix

If we consider the complex equation f (x) = xp− a with a ∈ C, then L f (x) =
(

p−1
p

)
xp−a

xp and Cheby-

shev’s method is reduced to

x0 ∈ D, xn+1 =
2p2−3p+1

2p2 xn +
2p−1

p2 ax1−p
n − p−1

2p2 a2 x1−2p
n , n≥ 0.

http://www.up4sciences.org
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If we extend Chebyshev’s method for the computation of the pth root of a matrix, we then consider the space

Θ =
{

A ∈ Cr×r s.t. A has no nonpositive real eigenvalues
}

and approximate A
1
p for a given matrix X ∈Θ. For this, we consider

F : Θ→ Cr×r and F (X) = X p−A,

so that A
1
p is the solution of the equation F (X) = 0. So, Chebyshev’s method is reduced to

X0 ∈Θ, Xn+1 =
2p2−3p+1

2p2 Xn +
2p−1

p2 AX1−p
n − p−1

2p2 A2X1−2p
n , n≥ 0. (16)

Chebyshev’s method, as Newton’s method, cannot be used directly to approximate the principal pth root.
Using the same idea as in [15], one can prove that it is not stable in a neighborhood of A

1
p . A small perturbation

on the value of Xn is amplified in the following steps and in a finite arithmetic computation the algorithm
diverges. This problem can be overcome using another algorithm which provides the same sequence but it is
stable in a neighborhood of A

1
p .

The following iteration, given by Denman and Beavers in [9],
X0 = A, Y0 = I,

Xn+1 =
1
2(Xn +Y−1

n ),

Nn+1 =
1
2(Yn +X−1

n ), n≥ 0.

is a stable variant of the Newton method for the matrix square root.
The instability of the simplified Newton iterations Xn+1 = (Xn+AX−1

n )/2 and Xn+1 = (Xn+X−1
n A)/2, shown

by Higham [15] for the matrix square root, is mainly due to the one-sided multiplication by A. On the other hand,
since Xn and A commute if AX0 = X0A, the iteration can be rewritten as

Xn+1 =
Xn +A

1
2 X−1

n A
1
2

2
, n≥ 0,

and the iteration becomes stable in this form. However, it is useless since it involves the square root of A, but it
helps us to stabilize the iteration by introducing the variable Yn = A

1
2 X−1

n A
1
2 = A−1Xn = XnA−1. The resulting

iteration is that of Denman and Beavers, see [16].
Following these ideas, Iannazo [17] proposes the following two stable versions of the Newton method for

the matrix pth root:

Xn+1 =
(p−1)Xn +

(
A

1
p X−1

n

)p−1
A

1
p

p
, n≥ 0,

and 
X0 = I, N0 = A,

Xn+1 = Xn

(
(p−1)I+Nn

p

)
,

Nn+1 =
(
(p−1)I+Nn

p

)−p
Nn, n≥ 0.

Observe that in the second case, the matrix A does not explicitly appear in the iteration.
Similarly, for Chebyshev’s method, we propose

Xn+1 =

(
p− 3

2 +
1

2p

)
Xn +

(
2− 1

p

)(
A

1
p X−1

n

)p−1
A

1
p

p
−

(p−1)
(

A
1
p X−1

n

)2p−1
A

1
p

2p2 , n≥ 0. (17)
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and 

X0 = I, N0 = A,

Xn+1 = Xn

(
(p− 3

2+
1

2p)I+(2− 1
p)Nn

p − (p−1)N2
n

2p2

)
, n≥ 0,

Nn+1 =

(
(p− 3

2+
1

2p)I+(2− 1
p)Nn

p − (p−1)N2
n

2p2

)−p

Nn.

(18)

Note that (17) is useless, since it involves the matrix pth root of A.
Observe that we need to calculate X−1

n at each step of Chebychev’s method given by (16). We are interesting
in obtaining other expression of Chebyshev’s method which avoids the computation of these inverses. So, if we
consider the complex function f (x) = 1

xp − 1
a = 0, where f : D⊆ C→ C, then algorithm (17) is reduced to

x0 ∈ D, xn+1 = xn

(
1+

1
p

(
1− xp

n

a

)
+

p+1
2p2

(
1− xp

n

a

)2
)
, n≥ 0. (19)

As a consequence, the algorithm of Chebyshev’s method for solving F (X) = 0, where F : Θ→ Cr×r, is then

X0 ∈Θ, Xn+1 = Xn

(
I +

1
p

(
I−A−1X p

n
)
+

p+1
2p2

(
I−A−1X p

n
)2
)
, n≥ 0. (20)

Observe that we only need to calculate A−1 and not X−1
n at each step, so that algorithm (20) is more efficient

than algorithm (16).
For Halley’s method, a similar strategy in order to avoid the use of inverses is not possible. Remember that

the algorithm of Halley’s method,

x0 ∈ D, xn+1 = xn−

(
1

1+ 1
2 L f (xn)

)
f (xn)

f ′(xn)
, n≥ 0,

always involves inverses (the quotient includes L f (xn)). This is the main advantage of Chebyshev’s method with
respect to Halley’s method.

After that, we analyze the convergence of Chebyshev’s method. For this, we suppose AX0 = X0A and
consider the following residual of algorithm (20):

R(Xn) = I−A−1X p
n , n≥ 0.

To prove the convergence of algorithm (20), we consider a submultiplicative matrix norm ‖ · ‖ defined in Cr×r

and prove that {‖R(Xn)‖} is a scalar decreasing sequence convergent to zero. First of all, from AX0 = X0A, it
follows AXn = XnA, AX p

n = X p
n A and A−1X p

n = X p
n A−1. As a consequence, we have

R(Xn) = I− (I−R(Xn−1))

(
I +

1
p

R(Xn−1)+
p+1
2p2 R(Xn−1)

2
)p

.

Next, taking into account Villareal’s formula,

P(y)p =

(
m

∑
i=0

aiyi

)p

=
mp

∑
i=0

Piyi,

where P0 = ap
0 , Pi =

i−1

∑
j=0

Pj
ai− j

a0

(i− j)(p+1)− i
i

, for i = 1,2, . . . ,mp, and ai = 0, for all i ≥ m+ 1, it follows

that

R(Xn) = I− (I−R(Xn−1))
2p

∑
i=0

PiR(Xn−1)
i, (21)
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where a0 = 1, a1 =
1
p

, a2 =
p+1
2p2 , P0 = 1 and Pi =

i−1

∑
j=0

Pj
ai− j

a0

(i− j)(p+1)− i
i

, for i = 1,2, . . . ,2p, and ai = 0,

for all i≥ 3. In addition, we have P1 = P2 = 1 and P3 < 1.
Note that we can always obtain XnA = AXn. For this, it is enough to choose X0 = Ir×r, as Guo does in [11].
Now, we establish the semilocal convergence of Chebyshev’s method in the following theorem.

Theorem 9. Let A ∈ Cr×r and X0 ∈ Θ such that AX0 = X0A and ‖R(X0)‖ = ‖I−A−1X p
0 ‖ < 1. Suppose that

{Pi}2p
i=3 is a nonincreasing sequence such that Pi are nonnegative for all i = 2,3, . . . ,2p. Then, Chebyshev’s

method defined in (20) converges to A
1
p . Moreover, ‖R(Xn)‖ ≤ ‖R(X0)‖3n

, n ∈ N.

In addition, we observe in Table 2 some representative values of p that help to see that the conditions of
Theorem 9 are satisfied.

p {Pi}2p
i=3

2 0.375, 0.1406 . . .
3 0.4814 . . ., 0.2222 . . ., 0.0493 . . ., 0.0109 . . .
5 0.56, 0.296, 0.1059 . . ., 0.0355 . . ., 0.0080 . . .,

0.0017 . . ., 2.0736 . . .×10−4, 2.4883 . . .×10−5

7 0.5918 . . ., 0.3294 . . ., 0.1345 . . ., 0.0512 . . ., 0.0151 . . ., 0.0041 . . ., 0.0008 . . .,
0.0001 . . ., 2.6281 . . .×10−5, 3.6251 . . .×10−6, 2.9592 . . .×10−7, 2.4157 . . .×10−8

Table 2 Sequence {Pi}2p
i=3 for p = 2,3,5,7

From Theorem 9, we also deduce that Chebyshev’s method has R-order of convergence at least three.
In [6], we present a family of high-order iterative methods including both Newton and Chebyshev methods.

We find algorithms of the family with better numerical behavior than Newton and Halley methods. These two
algorithms are basically the iterative methods proposed in the literature to solve this problem.

4 Conclusions

In this paper, we have reviewed some important properties of the classical Chebyshev method. We have
point out the possibility to prove its global convergence from its geometric interpretation. We have mentioned
the richer dynamics of this scheme in comparison with Newton’s method. Finally, we have presented several
applications where this high order method is a good alternative to Newton’s method. These applications include
the approximation of quadratic equations, the approximation of the inverse of a matrix or the pth root of a matrix.

Acknowledgements

Research supported in part by Programa de Apoyo a la investigación de la Fundación Séneca-Agencia de
Ciencia y Tecnología de la Región de Murcia 19374/PI/14 and MTM2015-64382-P (MINECO/FEDER).

References

[1] S. Amat, S. Busquier and J.M. Gutiérrez, (2003), Geometric constructions of iterative functions to solve non-
linear equations, Journal of Computational and Applied Mathematics 157, No 1, 197-205. doi 10.1016/S0377-
0427(03)00420-5

http://dx.doi.org/10.1016/S0377-0427(03)00420-5
http://dx.doi.org/10.1016/S0377-0427(03)00420-5
http://www.up4sciences.org


12 S. Amat and S. Busquier. Applied Mathematics and Nonlinear Sciences 2(2017) 1–12

[2] S. Amat, S. Busquier and J.M. Gutiérrez, (2006), An adaptive version of a fourth-order iterative method for quadratic
equations, Journal of Computational and Applied Mathematics 191, No 2, 259-268. doi 10.1016/j.cam.2005.06.042

[3] S. Amat, S. Busquier, J.M. Gutiérrez and M.A. Hernández, (2008), On the global convergence of Chebyshev’s iterative
method, Journal of Computational and Applied Mathematics 220, No 1-2, 17-21. doi 10.1016/j.cam.2007.07.022

[4] S. Amat, S. Busquier and S. Plaza, (2007), On the dynamics of a family of third-order iterative functions, The ANZIAM
Journal 48, No 3, 343-359. doi 10.1017/S1446181100003539

[5] S. Amat, J. A. Ezquerro and M. A. Hernández-Verón, (2014), Approximation of inverse operators by a new family of
high-order iterative methods, Numerical Linear Algebra with Applications 21, No 5, 629-644. doi 10.1002/nla.1917

[6] S. Amat, J. A. Ezquerro and M. A. Hernández-Verón, (2015), On a new family of high-order iterative methods for the
matrix p th root. Numerical Linear Algebra with Applications 22, No 4, 585-595. doi 10.1002/nla.1974

[7] S. Amat, J. A. Ezquerro and M. A. Hernández-Verón, (2015), Iterative methods for computing the matrix square root,
S~eMA Journal 70, No 1, 11-21. doi 10.1007/s40324-015-0038-9

[8] Professor Cayley, (1879), Desiderata and Suggestions: No. 3. The Newton-Fourier Imaginary Problem, American
Journal of Mathematics 2, No 1, 97-97. doi 10.2307/2369201

[9] E. D. Denman and A. N. Beavers Jr., (1976), The matrix sign function and computations in systems, Applied Mathe-
matics and Computation 2, No 1, 63-94. doi 10.1016/0096-3003(76)90020-5

[10] J. H. Curry , L. Garnett and D. Sullivan, (1983), On the iteration of a rational function: Computer experiments with
Newton’s method, Communications in Mathematical Physics 91, No 2, 267-277. doi 10.1007/BF01211162

[11] C.-H. Guo, (2010), On Newton’s method and Halley’s method for the principal pth root of a matrix, Linear Algebra
and its Applications 432, No 8, 1905-1922. doi 10.1016/j.laa.2009.02.030

[12] J.M. Gutiérrez and M.A. Hernández, (1997), A family of Chebyshev-Halley type methods in Banach spaces, Bulletin
of the Australian Mathematical Society 55, No 1, 113-130. doi 10.1017/S0004972700030586

[13] M.A. Hernández and M. A. Salanova, (1993), A family of Chebyshev-Halley type methods, International Journal of
Computer Mathematics 47, No 1-2, 59-63. doi 10.1080/00207169308804162

[14] M.A. Hernández and M.A. Salanova, (1998), Chebyshev method and convexity, Applied Mathematics and Computation
95, No 1, 51-62. doi 10.1016/S0096-3003(97)10091-1

[15] N. J. Higham, (1986), Newton’s method for the matrix square root, Mathematics of Computation 46 537-549. doi
10.1090/S0025-5718-1986-0829624-5

[16] B. Iannazzo, (2003), A note on computing the matrix square root. Calcolo 40, No 4, 273-283. doi 10.1007/s10092-003-
0079-9

[17] B. Iannazzo, (2006), On the Newton Method for the Matrix pth Root, SIAM Journal on Matrix Analysis and Applica-
tions 28, No 2, 503-523. doi 10.1137/050624790

[18] K. Kneisl, (2001), Julia sets for the super-Newton method, Cauchy’s method, and Halley’s method, Chaos: An Inter-
disciplinary Journal of Nonlinear Science 11, No 2, 359-370. doi 10.1063/1.1368137

[19] A. Melman, (1997), Geometry and Convergence of Euler’s and Halley’s Methods, SIAM Review 39, No 4, 728-735.
doi 10.1137/S0036144595301140

[20] T. R. Scavo and J. B. Thoo, (1995), On the Geometry of Halley’s Method, The American Mathematical Monthly 102,
No 5, 417-426. doi 10.2307/2975033

[21] E. Schröder, (1870), Ueber iterirte Functionen, Mathematische Annalen 3, No 2, 296-322. doi 10.1007/BF01443992
[22] J.F. Traub, (1964), Iterative Methods for Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

©UP4 Sciences. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2005.06.042
http://dx.doi.org/10.1016/j.cam.2007.07.022
https://doi.org/10.1017/S1446181100003539
https://doi.org/10.1002/nla.1917
https://doi.org/10.1002/nla.1974
https://doi.org/10.1007/s40324-015-0038-9
https://doi.org/10.2307/2369201
http://dx.doi.org/10.1016/0096-3003(76)90020-5
http://dx.doi.org/10.1007/BF01211162
http://dx.doi.org/10.1016/j.laa.2009.02.030
https://doi.org/10.1017/S0004972700030586
http://dx.doi.org/10.1080/00207169308804162
http://dx.doi.org/10.1016/S0096-3003(97)10091-1
https://doi.org/10.1090/S0025-5718-1986-0829624-5
https://doi.org/10.1007/s10092-003-0079-9
https://doi.org/10.1007/s10092-003-0079-9
http://dx.doi.org/10.1137/050624790
http://dx.doi.org/10.1063/1.1368137
http://dx.doi.org/10.1137/S0036144595301140
http://dx.doi.org/10.2307/2975033
http://dx.doi.org/10.1007/BF01443992
http://www.up4sciences.org

	Introduction
	Geometry, dynamics and convergence of Chebyshev's method in the scalar case
	Extension to Banach spaces and some applications
	Quadratic equations
	The inverse of a matrix
	The pth root of a matrix

	Conclusions

