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Abstract
We make a survey of results published by the authors about the backward and forward unilateral weighted shift operators
in Kóthe spaces, the so-called generalized derivation and integration operators, extending well-known results for spaces of
analytic functions.
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1 Introduction

Weighted shift operators have been studied by many authors in different contexts, for instance the work by
N. K. Nikol’skiı̆ in the spaces spaces `p, [15–18], R. Gellar in Banach spaces, [2–4] and Grabiner in Banach
algebras of power series spaces, [5–7].

Forward weighted operators (multiplication and integration operators) play a remarkable role in the study
of bases in spaces of analytic functions and have been considered by many Russian mathematicians, [11]. The
Gončarov polynomials, that under certain conditions are a basis in analytic spaces [1, 9], are related to the
backward weighted operator (derivation operator).

We work with Köthe spaces and weighted shifts on them (generalized integration and derivation operators).
We characterize the forward shift-invariant isomorphisms and then determine some some quasi-power bases.
Our results include, as particular cases, those of Nagnibida for the multiplication and integration operators on
the space of analytic functions on a disc, [11] and Prada for the multiplication operator on infinite power series
spaces, [19, 20]. Using the backward shift operator we get conditions for the Gončarov polynomials to be a
basis.
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2 Basic results

Denote by λ p(A), 1≤ p < ∞, the Köthe (echelon) space given by the matrix A = (ak
n)

∞
n=0, 0 < ak

n ≤ ak+1
n for

all n,k, that is

λ
p(A) =

{
x = (xn)

∞
n=0, xn ∈ C :

∞

∑
n=0

(
|xn|ak

n

)p
< ∞, ∀k = 0,1,2, . . .

}
.

λ p(A) is a Frèchet space, [14], with the norms

‖x‖k =

(
∞

∑
n=0

(
|xn|ak

n

)p
)1/p

, k = 0,1,2, . . .

When p = 0,∞, we have

λ
0(A) =

{
x = (xn),xn ∈ C : ‖x‖k = sup

(
|xn|ak

n

)
< ∞, ∀k = 0,1,2, . . .

}
.

λ
∞(A) =

{
x = (xn),xn ∈ C : ‖x‖k = lim

(
|xn|ak

n

)
= 0, ∀k = 0,1,2, . . .

}
.

The canonical basis in the spaces λ p(A), p = 0, 1 ≤ p < ∞, is denoted by δn = (δn,k)
∞
k=0, where δn,k is the

Kronecker delta.
The dual space of λ p(A), 1≤ p < ∞, p = 0, 1

p +
1
q = 1 is given by

(λ p(A))× =

(xn)
∞
n=0,xn ∈ C :

(
∞

∑
n=0

|xn|q

(ak
n)

q

) 1
q

< ∞, for a suitable k

 , 1 < p < ∞.

(
λ

1(A)
)×

=

{
(xn)

∞
n=0,xn ∈ C : sup

n≥0

{
|xn|
ak

n

}
< ∞, for a suitable k

}
, p = 1.

(
λ

0(A)
)×

=

{
(xn)

∞
n=0,xn ∈ C :

∞

∑
n=0

|xn|
ak

n
< ∞, for a suitable k

}
, p = 0.

Recall that the coordinate operators are continuous, [14].
λ p(A), p∈ [1,∞), p = 0 is the projective limit of the Banach spaces `p(ak), c0(ak), diagonal transformations

of `p, c0, with the usual topology:

`p(ak) =
{

x = (xn)
∞
n=0 : (xn ak

n)
∞
n=0 ∈ `p

}
, 1≤ p < ∞

c0(ak) =
{

x = (xn)
∞
n=0 : (xn ak

n)
∞
n=0 ∈ c0

}
.

The space `1(ak) is a Banach algebra if and only if the following condition holds

∃C(k)> 0 : ak
m+n ≤C(k)ak

mak
n, ∀n,m = 0,1,2, . . .

The space λ 1(A) is nuclear if and only if

∀k, ∃r(k) :
ak

n

ar(k)
n

∈ `1
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and therefore λ p(A) = λ 1(A) = λ 0(A), 1≤ p < ∞ [14].
If λ = (λn) is a sequence of nonzero complex numbers with λ0 = 1 to simplify computations, the operator

Jλ defined by

Jλ (δn) =
λn+1

λn
δn+1

is called the generalized integration operator. If λn =
1
n! , Jλ = J, is the integration operator and if λn = 1, Jλ =U ,

is the multiplication one (shift operator), see [11].
We assume that the operator Jλ , where the sequence (λn) are positive real numbers without lost of generality,

is continuous on λ p(A), that is the following condition is fulfilled

∀k, ∃r = r(k) : sup
n≥0

(
λn+1

λn

ak+1
n

ak
n

)
< ∞

If (dn) is a sequence of positive real numbers, the operator D given by

D(δn) =
dn−1

dn
δn−1

is called the generalized derivation operator, being the usual derivation when dn =
1
n! .

3 Isomorphisms commuting with Jλ . Bases in Köthe spaces

We characterize the isomorphisms between Köthe spaces that commute with the generalized integration
operator Jλ determining some bases, related with it, on λ 1(A).

Theorem 1. Let T : λ 1(A) → λ 1(A) be a continuous linear operator.
{

1
λn

T nx
}∞

n=0
, x ∈ λ 1(A) is a basis in

λ 1(A) if and only if there exists an isomorphism S : λ 1(A)→ λ 1(A) such that T ◦S = S◦ Jλ and x = Sδ0.

Proof. If
{

1
λn

T nx
}
, n ≥ 0, is a basis in λ 1(A), then there exists an isomorphism S such that Sδn = 1

λn
T nx,

n = 0,1,2, . . . It follows that Sδ0 = x and for n ∈ N

(S◦ Jλ )δn =
λn+1

λn
Sδn+1 =

1
λn

(T ◦T nx) = (T ◦S)δn.

Conversely
T nx = (T n−1T S)δ0 = (T n−1SJλ )δ0 = (SJn

λ
)δ0 = λnSδn.

Corollary 2.
{

1
λn

Jn
λ

x
}

, x ∈ λ 1(A) is a basis in λ 1(A) if and only if there exists an isomorphism T : λ 1(A)→
λ 1(A) that commutes with Jλ and x = T δ0.

Proposition 3. [13] A linear operator T : λ 1(A)→ λ 1(A) is continuous and commutes with Jλ if and only if

T =
∞

∑
m=0

bm

λm
Jm

λ
, b = (bm)

∞
m=0 = T δ0

and the condition

∀k, ∃r = r(k) : sup
n

{
∞

∑
m=0
|bm|

λm+n

λmλn

ak
m+n

ar
n

}
< ∞

is fulfilled.
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Proposition 4 (c.f. [13]). Let T be a linear operator from λ 1(A) onto itself commuting with Jλ and b = (bn) =
T (δ0) (b0 6= 0). If T−1 is the formal operator given by the inverse matrix of T , c = (cn) = T−1(δ0) and k,

∀k, ∃r = r(k) : sup
m≥0,n≥0

{
λm+n

λmλn

ak
m+n

ak
mar

n

}
< ∞,

then T is an isomorphism if and only if b,c ∈ λ 1(A).

Remark 1. Recall that the matrix (ti, j) of a continuous linear operator T commuting with Jλ is lower triangular
so, formally, (ti, j) has an inverse of the same type if T δ0 = (bn) with b0 6= 0. The operator T−1 given by this
inverse matrix is always linear and commutes with Jλ . Then a continuous operator T is an isomorphism if and
only if T−1 is continuous and T−1 can be written

T−1 =
∞

∑
n=0

cn

λn
Jn

λ
, c = (cn) = T−1(δ0).

Theorem 5 (c.f. [13]). Assume the following conditions:

1. ak
m+n ≤Ckak

mak
n, ∀k, that is, the spaces `1(ak) are Banach algebras.

2. λm+n ≤Cλmλn, ∀m,n.

3. Let T =
∞

∑
n=0

bn
λn

Jn
λ

be a linear operator on λ 1(A) commuting with Jλ .

Then T is an isomorphism if and only if any of the following equivalent conditions are satisfied:

1. The sequence ( bn
λn
) is an exponential (invertible) element of all the Banach algebras `1(bk), bk

n = λnak
n, for

all k.

2. The sequence (bn) ∈ λ 1(A) and

∞

∑
n=0

bn

λn
zn 6= 0, |z| ≤ rk, rk = lim

n
(λnak

n)
1
n for all k.

Corollary 6 (c.f. [13]). Let T be a linear operator commuting with Jλ

T =
∞

∑
n=0

bn

λn
Jn

λ
, b = (bn) = T δ0, b0 6= 0.

Suppose the following conditions are satisfied:

∀k, ∃Ck > 0 : ak
m+n ≤Ckak

mak
n,

λm+n ≤Cλmλn,∀m,n.

If
(

bn
λn

)
is an exponential (invertible) element of λ 1(B), B =

(
bk

n
)
= (λnak

n), then the system{
λnT n

(
b j

λ j

)∞

j=0

}∞

n=0

is a basis in λ 1(A).

Proposition 7. [13] Let T be a linear operator on λ 1(A) commuting with Jλ , T =
∞

∑
n=0

bn
λn

Jn
λ

, b0 6= 0.
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1. If there exists Mk = lim
n→∞

λn+1
λn

ak
n+1
ak

n
, Mk 6= 0, for a suitable k, then the function φ(z) =

∞

∑
n=0

bn
λn

zn is an holo-

morphic one with no zeros in a disc D(0,ρ), with ρ ≥Mk.

2. If lim
n→∞

λn+1
λn

ak
n+1
ak

n
= ∞ for a suitable k, then the function φ(z) =

∞

∑
n=0

bn
λn

zn is an entire function without zeros.

Proposition 8 (c.f. [13]). Let T be a linear operator on λ 1(A) commuting with Jλ

T =
∞

∑
n=0

bn

λn
Jn

λ
, b0 6= 0.

Suppose that

∀k, ∃Mk = sup
n

{
λn+1

λn

ak
n+1

ak
n

}
< ∞.

If the function φ(z) =
∞

∑
n=0

bn
λn

zn is holomorphic without zeros in a disc Dρ , ρ > supk {Mk} or ρ = ∞, then T is an

isomorphism from λ 1(A) onto itself.

Proposition 9 (c.f. [13]). If for a suitable k,

lim
n→∞

λnak
n = ∞, lim

n→∞

λn+1

λn

ak
n+1

ak
n

= ∞, lim
n→∞

sup
log(n+1)

log(λn+1
λn

ak
n+1
ak

n
)
= 0,

then the only entire functions without zeros that give continuous linear operators on λ 1(A) are the constants.

Example 10. The space of holomorphic functions, H (DR), on the disc DR = D(0,R), 0 < R ≤ ∞ is a Köthe
space λ 1(A), with A = (ak

n) = (tn
k ), where (tk) is an increasing sequence of real positive numbers converging to

R.

• If λn = 1, ∀n then a continuous linear operator T =
∞

∑
n=0

bnUn on H (DR), commuting with the multiplica-

tion operator U, is an isomorphism if and only if the function φ(z) =
∞

∑
n=0

bnzn ∈H (DR) and has no zeros

in the disc DR, see [11].

• If λn = 1
n! , ∀n then Jλ = J and a linear continuous operator T on H (DR), commuting with J, is an

isomorphism if and only if the function φ(z) =
∞

∑
n=0

bnzn ∈H (DR) and b0 6= 0, see [11].

Example 11. The space λ 1(A) = Λ∞(α), A = (ekαn) with (αn) an increasing sequence of positive numbers
going to infinity, is an infinite power series space.

• If λn = 1, ∀n, and αm+n ≤C+αn+αm, ∀m,n, then a continuous linear operator T on Λ∞(α), commuting

with U, is an isomorphismif and only if the sequence T δ0 = (bn)∈Λ∞(α) and the function φ(z) =
∞

∑
n=0

bnzn

has no zeros in the closed disk D(0,1) (if lim
n→∞

αn
n = 0) or has no zeros in the complex plane (if lim

n→∞

αn
n > 0)

[20].

• If λn =
1
n! , ∀n, αm+n ≤ C+αn +αm, ∀m,n, and lim

n→∞

αn
n < ∞, then a continuous linear operator T is an

isomorphism on Λ∞(α) commuting with J if and only if T δ0 = (bn) ∈ Λ∞(α) and b0 6= 0.

http://www.up4sciences.org
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Example 12. The conditions of the proposition 9 are fulfilled, for instance, if λn = 1 or λn =
1
n! and ak

n = enα k,
α > 0.

Two continuous operators commuting with Jλ commute with each other [2] but the converse is not true. For
example, take an operator given by an infinite two-block matrix(

a0,0 a0,1
a1,0 a0,1

)
, a0,1,a1,0 6= 0, a0,0 6= a1,1

and the operator J2
λ

. We show that for certain spaces the result is true.

Theorem 13. Let T be a linear operator from λ p(A) to λ p(A), p = 0, p ∈ [1,+∞) commuting with Jλ , T =
∞

∑
n=0

bn
λn

Jn
λ

and
{

λnUn
(

b j+1
λ j+1

)∞

j=0

}∞

n=0
is a basis of λ 1(A). Then any continuous linear operator S on λ p(A),

commuting with T , commutes with Jλ .

Proof. It is similar to the proof of theorem 3.5 in [20].

4 Gončarov polynomials in a nuclear Köthe space

Conditions for the generalized Gončarov polynomials to be a basis in the nuclear space spaces λ 1(A) are
given.

Given a sequence of complex numbers (zn)
∞
n=0, the Gončarov polynomials Gn(z;z0, . . . ,zn−1) are recursively

defined by
G0(z) = 1

G1(z;z0) = z− z0

. . .

Gn(z;z0, . . . ,zn−1) =
zn

n!
−

n−1

∑
k=0

zn−k
k

(n− k)!
Gk(z;z1, . . . ,zk−1).

The generalized Gončarov polynomials Qn(z;z0, . . . ,zn−1) are given by

Q0(z) = 1

G1(z;z0) = d1(z− z0)

. . .

Qn(z;z0, . . . ,zn−1) = dnzn−
n−1

∑
k=0

dn−kzn−k
k Qk(z;z1, . . . ,zk−1)

where (dn) is a sequence of positive real numbers.
Recall that if X is a locally convex space, a biorthogonal system {ei, fi}, ei ∈ X , fi ∈ X ′, fi(e j) = δi j, is

complete, if the finite linear combinations of (ei) are dense in X , see [14].
If we define the functionals Dm, Lm, m≥ 0 on H (DR) by

Dm( f (z))
∞

∑
n=m

xn
n!

(n−m)!
zn−m

m

Lm( f (z)) =
∞

∑
n=m

xn
dn−m

dn
zn−m

m ,

f (z) =
∞

∑
n=0

xnzn ∈H (DR),

then {Gm(z;z0,z1, . . . ,zm−1);Dm}∞

m=0 and {Qm(z;z0,z1, . . . ,zm−1);Lm}∞

m=0 are biorthogonal systems for H (DR).
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Theorem 14 (c.f. [8]). If λ 1(A) is nuclear, a complete biorthogonal system, (ei, fi), fi = ( fi, j), is a Schauder
basis for λ 1(A) if and only if ∀k ∈ N there exists r = r(k) ∈ N such that:

sup
i, j

(∣∣ fi, j
∣∣

ar
j
‖ei‖k

)
< ∞.

Theorem 15 (c.f. [9]). Let (tk) be a sequence such that tk < tk+1 and lim
k→∞

tk = R, 0 < R ≤ ∞. The Gončarov

polynomials Gn(z; z0, . . . ,zn−1) are a Schauder basis in H (DR), if and only if ∀k ∈N, there exists r = r(k) such
that

sup
n≥0

sup
m≥n

{
m!|zn|m−n

(m−n)!(tr)m

n

∑
j=0

(tk) j

j!

∣∣Gn− j(0;z j, . . . ,zn−1)
∣∣}< ∞.

Theorem 16 (c.f. [10]). The generalized Gončarov polynomials Qn(z; z0, . . . ,zn−1) are a basis in H (DR), 0 <
R≤ ∞, if and only if ∀k ∈ N, ∃r = r(k) such that

sup
n≥0

sup
m≥n

{
dm−n

dm(tr)m |zn|m−n
n

∑
j=0

d j(tk) j
∣∣Qn− j(0;z j, . . . ,zn−1)

∣∣}< ∞.

The generalized Gončarov polynomials {Qn(z;z0, . . . ,zn−1)}∞

n=0 are a complete system in a nuclear space
λ 1(A) and Ln ∈ (λ 1(A))′ if and only if

sup
m≥n

(
dm−n

dmar
m
|zn|m−n

)
< ∞.

Proposition 17. If λ 1(A) is a nuclear space, the generalized Gončarov polynomials {Qn(z;z0, . . . ,zn−1)}∞

n=0 are
a basis in λ 1(A) if and only if ∀k ∈ N, ∃r = r(k) ∈ N such that:

sup
n≥0

{
sup
m≥n

(
dm−n

dmam
r

∣∣zm−n
n

∣∣) ∞

∑
j=0

∣∣Qn− j(0;z j, . . . ,zn−1)d jak
j

∣∣}< ∞.

Proof. Follows easily from Theorem 14.
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