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Abstract
In this paper, modified wavelet full-approximation scheme is introduced for the numerical solution of nonlinear Volterra
integral and integro-differential equations. Wavelet Prolongation and Restriction operators are developed using Daubechies
wavelet filter coefficients. Results show that the proposed scheme offers an efficient and good accuracy with faster conver-
gence in less computation cost, which is justified through the error analysis and CPU time.

Keywords: Daubechies wavelet; filter coefficients; full-approximation scheme; wavelet full-approximation scheme; modified wavelet
full-approximation scheme; nonlinear Volterra integral and integro-differential equations.
AMS 2010 codes: 65T60, 97N40, 65R20, 45D05.

1 Introduction

Integral equations arise in various fields of science and engineering. Nowadays integral equations and their
applications is an important subject in applied mathematics. In some cases, it is difficult to solve them, espe-
cially analytically. There are many analytical approaches were introduced, such as A domian decomposition
method, successive substitutions, Laplace transformation method, Picard’s method, etc. [1]. The analytical ap-
proaches have limited applicability either because the analytical solutions of some of the problems those arise
in application do not exists or because they are more time consuming. Therefore, many integral equations aris-
ing in mathematical modelling of physical world problem demands efficient numerical techniques. A number
of numerical techniques such as Galerkin method [2], collocation method [2], Nystrom interpolation [3], etc.
have been proposed by various authors. In numerical analysis, solving integral equations is reduced to solving a
system of algebraic equations. Iterative techniques are available to solve a system of algebraic equations, such
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as Newton, method, Jacobi iterative method, Gauss-Seidel method, etc. In the past several years, considerable
attention has been made for obtaining solutions of nonlinear integral equations. Nonlinearity is one of the inter-
esting topics among the physicists, mathematicians, engineers, etc. Since most physical systems are inherently
nonlinear in nature.

The full-approximation scheme (FAS) is largely applicable in increasing the efficiency of the iterative meth-
ods used to solve nonlinear system of algebraic equations. In the historical three decades the development
of effective iterative solvers for nonlinear systems of algebraic equations has been a significant research topic
in numerical analysis. Nowadays it is recognized that FAS iterative solvers are highly efficient for nonlinear
differential equations introduced by Brandt [4]. For a detailed treatment of FAS is given in Briggs et al. [5].
An introduction of FAS is found in Hackbusch and Trottenberg [6], Wesseling [7] and Trottenberg et al. [8].
Many authors applied the FAS to some class of differential equations; Lubrecht [9], Venner and Lubrecht [10],
Zargari [11] and others have significant contributions in EHL problems. Lee [12] has introduced a multigrid
method for solving the nonlinear Urysohn integral equations. In this paper, we introduce the full-approximation
scheme (FAS) for the numerical solution of nonlinear Volterra integral and integro-differential equations.

Wavelet based numerical methods are used for solving the system of equations with faster convergence
and lower computational cost. Since 1991, the various types of wavelet based methods have been applied for
the numerical solution of different kinds of integral equations, a detailed survey on these papers can be found
in [13–15]. In recent years, wavelet analysis is gaining considerable attention in the numerical solution of
differential equations. Recently, many authors (Leon [16], Bujurke et al. [17–19], Avudainayagam and Vani
[32]) have worked on wavelet multigrid method for the numerical solution of differential equations. Wang et
al. [21] have applied a fast wavelet multigrid algorithm for the solution of electromagnetic integral equations. In
this paper, we introduce the modified wavelet full-approximation scheme (MWFAS) for the numerical solution
of nonlinear Volterra integral and integro-differential equations. Thus, the proposed scheme can be applied to a
wide range of science and engineering problems.

The organization of this paper is as follows. In Section 2, Daubechies wavelets is given. In Section 3
intergrid operators are discussed. In Section 4, method of solution is discussed. In Section 5, presents the
numerical experiments and results are given. Finally, conclusion of the proposed work is given in Section 6.

2 Daubechies Wavelets

The refinement relation of scaling function φ(t) is given by,

φ(t) =
√

2
L−1

∑
k=0

hkφ(2t− k) (1)

where φ(t) is normalized:
´

∞

−∞
φ(t)dt = 1.

Based on the scaling function φ(t) , the wavelet function can be written as,
The refinement relation of wavelet function ψ(t) is given by,

ψ(t) =
√

2
L−1

∑
k=0

gkφ(2t− k) (2)

where {hk}kεZ and {gk}kεZ are known respectively as the low and high pass filter coefficients, and they are
related by gk = (−1)khL−k for k = 0,1, ...,L−1. where, L is an even integer, is the order of the wavelet.
The compactly supported wavelet bases were introduced by Daubechies [22]. They are an orthonormal bases for
functions in L2(R). A family of orthogonal Daubechies wavelets with compactly supported property has been
constructed by Daubechies in [23]. Due to excellent properties of orthogonality and minimum compact support,
Daubechies wavelets can be useful and convenient in a wide variety of situations.
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In this paper, we use Daubechies filter coefficients for L = 4 which are, h0 = 0.4830, h(1) = 0.8365, h(2) =
0.2241, h(3) = −0.1294 are low pass filter coefficients and g0 = 0.1294, g(1) = −0.2241, g(2) = 0.8365,
g(3) =−0.4830 are the high pass filter coefficients.

3 Intergrid operators

3.1 Full-Approximation Scheme (FAS) operators

Brandt [4] was one of the first to introduce nonlinear multigrid, which seeks to use concepts from the
linear multigrid iteration and apply them directly in the nonlinear setting. Since the early application to elliptic
partial differential equations, multigrid methods have been applied successfully to a large and growing class
of problems. Classical multigrid begins with a two-grid process. First, iterative relaxation is applied, whose
effect is to smooth the error. In this paper, we describe how to apply multigrid to nonlinear problems. Applying
multigrid method directly to the nonlinear problems by employing the method so-called Full Approximation
Scheme (FAS). Full approximation scheme suitable for nonlinear problems is the FAS [5,8] which treats directly
the nonlinear equations on finer and coarser grids. In FAS, a nonlinear iteration, such as the nonlinear Gauss-
Seidel method is applied to smooth the error. In FAS, the residual is passed from the fine grids to the coarser
grids. Vectors from fine grids are transferred to coarser grids with Restriction operator (R), while vectors are
transferred from coarse grids to the finer grids with a Prolongation operator (P) respectively given in Section
4.1. The detail survey on FAS is given in [6].

3.2 Wavelet Full-Approximation Scheme (WFAS) operators

Discrete wavelet transform (DWT) matrix: The DWT matrix, which play an important part in the wavelet
method. This is highly expedient and informative, particularly for the numerical computations. As we already
know about the DWT matrix and its applications in the wavelet method and is given in [17] as,

D1 =



h0 h1 h2 h3 0 0 . . . 0 0
g0 g1 g2 g3 0 0 . . . 0 0
0 0 h0 h1 h2 h3 . . . 0 0
0 0 g0 g1 g2 g3 . . . 0 0
...

. . . · · · · · · 0 0
h2 h3 0 0 · · · · · · 0 h0 h1
g2 g3 0 0 · · · · · · 0 g0 g1


N×N

Using this matrix author’s [24] used the restriction operator and prolongation operators respectively given in
Section 4.2.

3.3 Modified Wavelet Full-Approximation Scheme (MWFAS) operators

Modified Discrete wavelet transform (MDWT) matrix: Here, we defined modified DWT matrix from DWT
matrix in which we have added rows and columns consecutively with diagonal element as 1, which is built as,

D2 =



h0 0 h1 0 h2 0 h3 0 0 . . . 0 0
0 1 0 0 0 0 · · · · · · 0 0
g0 0 g1 0 g2 0 g3 0 0 · · · 0 0
0 0 0 1 0 0 0 0 · · · 0 0
...

. . . · · · · · · · · · 0 0
g2 0 g3 0 · · · · · · 0 g0 0 g1 0
0 0 · · · · · · · · · · · · 0 1


N×N
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Using this matrix we defined the new restriction operator and new prolongation operators respectively given in
Section 4.3.

4 Method of solution

4.1 Full-Approximation Scheme (FAS)

Consider the Nonlinear Volterra integral equation of the second kind,

u(t) = f (t)+
ˆ t

0
K(t,s,u(s))ds,0≤ t,s≤ 1, (3)

where k(t,s,u(s)) is a nonlinear function defined on [0,1]× [0,1]. The known function k(t,s,u(s)) is called the
kernel of the integral equation, while the unknown function u(t) represents the solution of the integral equation.
After discretizing the integral equation through the trapezoidal discretization method (TDM) [25], we get the
system of nonlinear equations of the form,

A(u) = b, (4)

It has N equations with N unknowns. Solving (4) through the iterative method that is Gauss Seidel (GS), we get
approximate solution v.
Now, we are deliberating about the Full-Approximation Scheme (FAS) of solutions given by Briggs et. al [5] is
as follows the procedure,
Step 1: From the system (4), we get the approximate solution v for u . Now we find the residual as,

rN×1 = bN×1−A(v)N×1 (5)

Reduce the matrices in the finer level to coarsest level using Restriction operator, i.e.,

R =
1
4


1 2 1 0 0 · · · 0 0
0 0 1 2 1 · · · 0 0
...

. . . · · · 0 0
0 0 · · · · · · 1 2


(N/2)×N

and then construct the matrices back to finer level from the coarsest level using Prolongation operator, i.e.,

P =
1
2



1 0 0 · · · 0
2 0 0 · · · 0

1 1 0 · · ·
...

0 2
... · · ·

...
0 1
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 2


(N)×(N/2)

Step 2:

r(N/2)×1 = R(N/2)×NrN×1

Similarly,

v(N/2)×1 = R(N/2)×NvN×1
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and
A(v(N/2)×1 + e(N/2)×1)−A(v(N/2)×1) = r(N/2)×1 (6)

Solving (6) with initial guess 0, we get e(N/2)×1.
Step 3:

r(N/4)×1 = R(N/4)×(N/2)r(N/2)×1

Similarly,

v(N/4)×1 = R(N/4)×(N/2)v(N/2)×1

and
A(v(N/4)×1 + e(N/4)×1)−A(v(N/4)×1) = r(N/4)×1 (7)

Solving (7) with initial guess 0, we get e(N/4)×1.
Step 4: The procedure is continue up to the coarsest level, we have,

r1×1 = R1×2r2×1

Similarly,

v1×1 = R1×2v2×1

and
A(v1×1 + e1×1)−A(v1×1) = r1×1 (8)

Solving (8), we get e1×1.
Step 5: Interpolate error upto the finer level, i.e.,

e2×1 = P2×1e1×1,
e4×1 = P4×2e2×1,

and so on we have,

eN×1 = PN×(N/2)e(N/2)×1.

Step 6: Correct the solution with error,

uN×1 = vN×1 + eN×1.

This is the required solution of the given integral equation.

4.2 Wavelet Full-Approximation Scheme (WFAS)

In this paper, we applied WFAS for the numerical solution of nonlinear Volterra integral equations. The
same procedure is applied as explained in the FAS in the above Section 4.1. But replacing W and W T as the
restriction and prolongation operators in place of R and P, i.e.,

W =



h0 h1 h2 h3 0 0 · · · 0 0
g0 g1 g2 g3 0 0 . . . 0 0
0 0 h0 h1 h2 h3 · · · 0 0
0 0 g0 g1 g2 g3 · · · 0 0
...

. . . · · · · · · 0 0
0 0 · · · g0 g1 g2 g3 · · · 0


(N/2)×N

and W T respectively.
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4.3 Modified Wavelet Full-Approximation Scheme (MWFAS)

In this paper, we introduced a modified wavelet full-approximation scheme (MWFAS) for the numerical
solution of nonlinear Volterra integral equations. The same procedure is applied as explained in the FAS in
Section 4.1, using MW and MW T as the new restriction and new prolongation operators in place of R and P, i.e.,

MW =



h0 0 h1 0 h2 0 h3 0 0 . . . 0 0
0 1 0 0 0 0 · · · · · · 0 0
g0 0 g1 0 g2 0 g3 0 0 · · · 0 0
0 0 0 1 0 0 0 0 · · · 0 0
...

. . . · · · · · · · · · 0 0
0 · · · g0 0 g1 0 g2 0 g3 0 · · · 0
0 0 · · · 0 0 0 1 0 · · · · · · 0 0


(N/2)×N

and MW T respectively.

5 Illustrative problems

In this section, we implemented FAS, WFAS and MWFAS for the numerical solution of nonlinear Volterra
integral and integro-differential equations and subsequently presented the efficiency of the MWFAS in the form
of tables and figures, here error analysis is considered as,

Emax = max|ue−ua|,

where ue and ua are the exact and approximate solution respectively.

Test problem 5.1. Let us consider the nonlinear Volterra integral equation [28],

u(t) = t− t2− t5

4
+

2t6

5
+

t7

6
+

ˆ t

0
tsu2(s)ds, 0≤ t ≤ 1 (9)

which has the exact solution u(t) = t−t2. After discretizing the (9) through the trapezoidal discretization method
(TDM), we get system of nonlinear algebraic equations of the form (for N = 8),

[A]8×8[u]8×1 = [b]8×1 (10)

Solving (10) through the iterative method, we get the approximate solution v of u . i.e., u = e+ v⇒ v = u− e,
where e is ( 8× 1 matrix) error to be determined. The implementation of MWFAS is discussed in Section 4 is
as follows,
From (10), we find the residual as

r8×1 = [b]8×1− [A]8×8[v]8×1 (11)

we get, = r8×1[0 0 2.30e-06 2.01e-05 6.32e-05 8.89e-05 3.98e-05 -2.03e-07]
we reduce the matrices in the finer level to coarsest level using Restriction operator MW and then construct the
matrices back to finer level from the coarsest level using Prolongation operator MW T .
From (11),

r4×1 = [MW ]4×8[r]8×1 (12)

Similarly,

v4×1 = [MW ]4×8[v]8×1
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t Exact FAS WFAS MWFAS
0 0 0 0 0

0.1428 0.1224 0.1224 0.1224 0.1224
0.2857 0.2040 0.2043 0.2043 0.2043
0.4285 0.2448 0.2457 0.2457 0.2457
0.5714 0.2448 0.2463 0.2463 0.2463
0.7142 0.2040 0.2055 0.2055 0.2055
0.8571 0.1224 0.1231 0.1231 0.1231

1 0 0.0001 0.0001 0.0001

Table 1 Numerical results of test problem 5.1, for N = 8.

and
A(v4×1 + e4×1)−A(v4×1) = r4×1. (13)

Solving (13) with initial guess 0, we get e4×1.
From (12),

r2×1 = [MW ]2×4[r]4×1 (14)

Similarly,

v2×1 = [MW ]2×4[v]4×1

and
A(v2×1 + e2×1)−A(v2×1) = r2×1. (15)

Solving (15) with initial guess 0, we get e2×1.
From (14),

r1×1 = [MW ]1×2[r]2×1 (16)

Similarly,

v1×1 = [MW ]1×2[v]2×1

and
A(v1×1 + e1×1)−A(v1×1) = r1×1. (17)

Solving (17), we get e1×1.
From e1×1 , Interpolate error up to the finer level, i.e.,

e2×1 = [MW T ]2×1[e]1×1,

e4×1 = [MW T ]4×2[e]2×1,

and lastly we have,
e8×1 = [MW T ]8×4[e]4×1, (18)

we get e8×1 = [1.31e−06 0 2.28e−06 2.06e−05 3.04e−05 0 −1.75e−05 0]
From (18), correct the solution with error u8×1 = v8×1 + e8×1.
Lastly, we get u8×1 is the required solution of (9). The numerical solutions of the given equation is obtained
through the method as explained in Section 4 and are presented in comparison with the exact solution are shown
in Table 1 and in Figure 1 for N = 64. Maximum error analysis and CPU time is shown in Table 2.
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Fig. 1 Comparison of numerical solutions with exact solution of test problem 5.1, for N=64.

N Methods Emax Setup time Running time Total time
FAS 7.52e−04 0.0054 0.0321 0.0375

16 WFAS 7.35e−04 0.0031 0.0264 0.0295
MWFAS 7.35e−04 0.0019 0.0254 0.0273

FAS 3.66e−04 0.0099 0.1459 0.1558
32 WFAS 3.62e−04 0.0031 0.1479 0.1510

MWFAS 3.62e−04 0.0019 0.1470 0.1489
FAS 1.80e−04 0.1261 0.1581 1.2842

64 WFAS 1.79e−04 0.0031 0.0369 0.0400
MWFAS 1.79e−04 0.0019 0.0357 0.0376

FAS 8.99e−05 0.1307 0.2185 0.3492
128 WFAS 8.96e−05 0.0085 0.1419 0.1504

MWFAS 8.96e−05 0.0019 0.1162 0.1182

Table 2 Maximum error and CPU time (in seconds) of the methods of test problem 5.1.
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t Exact FAS WFAS MWFAS
0 0 0 0 0

0.0666 0.0666 0.0667 0.0667 0.0667
0.1333 0.1329 0.1332 0.1332 0.1332
0.2000 0.1986 0.1994 0.1994 0.1994
0.2666 0.2635 0.2648 0.2648 0.2648
0.3333 0.3271 0.3291 0.3291 0.3291
0.4000 0.3894 0.3922 0.3922 0.3922
0.4666 0.4499 0.4537 0.4537 0.4537
0.5333 0.5084 0.5133 0.5130 0.5130
0.6000 0.5646 0.5708 0.5703 0.5703
0.6666 0.6183 0.6259 0.6253 0.6253
0.7333 0.6693 0.6784 0.6776 0.6776
0.8000 0.7173 0.7280 0.7270 0.7270
0.8666 0.7621 0.7746 0.7734 0.7734
0.9333 0.8036 0.8174 0.8164 0.8164

1 0.8414 0.8449 0.8441 0.8441

Table 3 Numerical results of test problem 5.2, for N = 16.

Fig. 2 Comparison of numerical solutions with exact solution of test problem 5.2, for N=64.

Test problem 5.2 Next, consider [29]

u(t) = sin(t)+
1
8

sin(2t)− 1
4

t +
1
2

ˆ t

0
u2(s)ds, 0≤ t ≤ 1 (19)

which has the exact solution u(t) = sin(t). The numerical solutions of (19) are presented in Table 3 for N = 16
and in Figure 2 for N = 64. Maximum error analysis and CPU time is shown in Table 4.
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N Methods Emax Setup time Running time Total time
FAS 1.38e−02 0.0624 0.0636 0.1260

16 WFAS 1.28e−02 0.0048 0.0443 0.0491
MWFAS 1.28e−02 0.0019 0.0256 0.0275

FAS 7.08e−03 0.0099 0.1457 0.1556
32 WFAS 6.80e−03 0.0031 0.1469 0.1499

MWFAS 6.80e−03 0.0019 0.1475 0.1494
FAS 3.56e−03 0.2463 1.1761 1.4225

64 WFAS 3.49e−03 0.0031 1.1385 1.1416
MWFAS 3.49e−03 0.0019 1.1456 1.1475

FAS 1.79e−03 0.1819 10.2591 10.4410
128 WFAS 1.77e−03 0.0125 9.5301 9.5426

MWFAS 1.77e−03 0.0019 9.3220 9.3239

Table 4 Maximum error and CPU time (in seconds) of the methods of test problem 5.2.

t Exact FAS WFAS MWFAS
0 1 1.0357 1.0357 1.0357

0.0666 0.9977 0.9972 0.9972 0.9972
0.1333 0.9911 0.9901 0.9901 0.9901
0.2000 0.9800 0.9786 0.9786 0.9786
0.2666 0.9646 0.9628 0.9628 0.9628
0.3333 0.9449 0.9427 0.9427 0.9427
0.4000 0.9210 0.9185 0.9185 0.9185
0.4666 0.8930 0.8903 0.8903 0.8903
0.5333 0.8611 0.8582 0.8582 0.8582
0.6000 0.8253 0.8223 0.8223 0.8223
0.6666 0.7858 0.7829 0.7829 0.7829
0.7333 0.7429 0.7400 0.7400 0.7400
0.8000 0.6967 0.6939 0.6939 0.6939
0.8666 0.6473 0.6448 0.6448 0.6448
0.9333 0.5951 0.5929 0.5929 0.5929

1 0.5403 0.5383 0.5383 0.5383

Table 5 Numerical results of test problem 5.3, for N = 16.

Test problem 5.3 Next, consider the Nonlinear Volterra-Hammerstein integral equations [30],

u(t) = 1+ sin2(t)−
ˆ t

0
3sin(t− s)u2(s)ds, 0≤ t ≤ 1 (20)

which has the exact solution u(t) = cos(t). The numerical solutions of (20) are presented in Table 5 for N = 16
and in Figure 3 for N = 64. Maximum error analysis and CPU time is shown in Table 6.

Test problem 5.4 Next, consider [31]

u(t) =−15
56

t8 +
13
14

t7− 11
10

t6 +
9
20

t5 + t2− t +
ˆ t

0
(t + s)u3(s)ds, 0≤ t ≤ 1 (21)
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Fig. 3 Comparison of numerical solutions with exact solution of test problem 5.3, for N=64.

N Methods Emax Setup time Running time Total time
FAS 3.57e−02 0.0054 0.0121 0.0175

16 WFAS 3.57e−02 0.0031 0.0121 0.0152
MWFAS 3.57e−02 0.0019 0.0108 0.0127

FAS 1.66e−02 0.0099 0.0172 0.0271
32 WFAS 1.66e−02 0.0031 0.0164 0.0195

MWFAS 1.66e−02 0.0019 0.0156 0.0175
FAS 8.06e−03 0.0281 0.0370 0.0651

64 WFAS 8.06e−03 0.0031 0.0360 0.0390
MWFAS 8.06e−03 0.0019 0.0357 0.0375

FAS 3.96e−03 0.1009 0.1168 0.2177
128 WFAS 3.96e−03 0.0044 0.1329 0.1373

MWFAS 3.96e−03 0.0020 0.1300 0.1320

Table 6 Maximum error and CPU time (in seconds) of the methods of test problem 5.3.

http://www.up4sciences.org


540 S. C. Shiralashetti and R. A. Mundewadi. Applied Mathematics and Nonlinear Sciences 1(2016) 529–546

t Exact FAS WFAS MWFAS
0 0 0 0 0

0.0666 -0.0622 -0.0622 -0.0622 -0.0622
0.1333 -0.1155 -0.1155 -0.1155 -0.1155
0.2000 -0.1600 -0.1600 -0.1600 -0.1600
0.2666 -0.1955 -0.1957 -0.1957 -0.1957
0.3333 -0.2222 -0.2224 -0.2224 -0.2224
0.4000 -0.2400 -0.2403 -0.2403 -0.2403
0.4666 -0.2488 -0.2493 -0.2493 -0.2493
0.5333 -0.2488 -0.2494 -0.2494 -0.2494
0.6000 -0.2400 -0.2405 -0.2405 -0.2405
0.6666 -0.2222 -0.2227 -0.2227 -0.2227
0.7333 -0.1955 -0.1959 -0.1959 -0.1959
0.8000 -0.1600 -0.1602 -0.1602 -0.1602
0.8666 -0.1155 -0.1156 -0.1156 -0.1156
0.9333 -0.0622 -0.0622 -0.0622 -0.0622

1 0 0 0 0

Table 7 Numerical results of test problem 5.4, for N = 16.

Fig. 4 Comparison of numerical solutions with exact solution of test problem 5.4, for N=64.

which has the exact solution u(t) = t2− t. The numerical solutions of (21) are presented in Table 7 for N = 16
and in Figure 4 for N = 64. Maximum error analysis and CPU time is shown in Table 8.
Test problem 5.5 Lastly, consider the Nonlinear Volterra integro-differential equation [32],

u′(t) =−1+
ˆ t

0
u2(s)ds,u(0) = 0, 0≤ t ≤ 1 (22)

which has the exact solution u(t) =−t +
t4

12
− t7

252
+

t10
6048

− t13
157248

.
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N Methods Emax Setup time Running time Total time
FAS 5.72e−04 0.0054 0.0404 0.0458

16 WFAS 5.60e−04 0.0030 0.0334 0.0365
MWFAS 5.60e−04 0.0018 0.0315 0.0333

FAS 2.81e−04 0.0105 0.2084 0.2189
32 WFAS 2.77e−04 0.0030 0.2056 0.2086

MWFAS 2.76e−04 0.0018 0.2057 0.2075
FAS 1.38e−04 0.0306 0.0484 0.0790

64 WFAS 1.37e−04 0.0030 0.0471 0.0502
MWFAS 1.37e−04 0.0018 0.0456 0.0474

FAS 6.87e−05 0.1114 0.1810 0.2924
128 WFAS 6.85e−05 0.0044 0.1780 0.1823

MWFAS 6.85e−05 0.0018 0.1804 0.1822

Table 8 Maximum error and CPU time (in seconds) of the methods of test problem 5.4.

We convert the Volterra integro-differential equation to equivalent Volterra integral equation by using the well-
known formula, which converts multiple integrals into a single integral. i.e.,

ˆ t

0

ˆ t

0
...

ˆ t

0
u(t)dtn︸ ︷︷ ︸

n−times

=
1

(n−1)!

ˆ t

0
(t− s)n−1u(s)ds (23)

Integrating (22) on both sides from 0 to t and using the initial condition and also converting the double integral
to the single integral, we obtain

u(t) = f (t)+
ˆ t

0
k(t,s)u2(s)ds, (24)

where k(t,s) = (t− s) and f (t) =−t. The numerical solutions of (22) are presented in Table 9 for N = 32 and in
Figure 5 for N = 64. Maximum error analysis and CPU time is shown in Table 10.
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t Exact FAS WFAS MWFAS
0 0 0 0 0

0.0322 -0.0322 -0.0322 -0.0322 -0.0322
0.0645 -0.0645 -0.0645 -0.0645 -0.0645
0.0967 -0.0967 -0.0967 -0.0967 -0.0967
0.1290 -0.1290 -0.1290 -0.1290 -0.1290
0.1612 -0.1612 -0.1612 -0.1612 -0.1612
0.1935 -0.1934 -0.1934 -0.1934 -0.1934
0.2258 -0.2255 -0.2255 -0.2255 -0.2255
0.2580 -0.2577 -0.2577 -0.2577 -0.2577
0.2903 -0.2897 -0.2897 -0.2897 -0.2897
0.3225 -0.3216 -0.3216 -0.3216 -0.3216
0.3548 -0.3535 -0.3535 -0.3535 -0.3535
0.3870 -0.3852 -0.3852 -0.3852 -0.3852
0.4193 -0.4167 -0.4168 -0.4168 -0.4168
0.4516 -0.4481 -0.4481 -0.4481 -0.4481
0.4838 -0.4793 -0.4793 -0.4793 -0.4793
0.5161 -0.5102 -0.5102 -0.5102 -0.5102
0.5483 -0.5409 -0.5409 -0.5409 -0.5409
0.5806 -0.5712 -0.5712 -0.5712 -0.5712
0.6129 -0.6012 -0.6013 -0.6013 -0.6013
0.6451 -0.6309 -0.6309 -0.6309 -0.6309
0.6774 -0.6601 -0.6601 -0.6601 -0.6601
0.7096 -0.6888 -0.6889 -0.6889 -0.6889
0.7419 -0.7171 -0.7172 -0.7172 -0.7172
0.7741 -0.7449 -0.7449 -0.7449 -0.7449
0.8064 -0.7720 -0.7721 -0.7721 -0.7721
0.8387 -0.7986 -0.7986 -0.7986 -0.7986
0.8709 -0.8244 -0.8245 -0.8245 -0.8245
0.9032 -0.8496 -0.8497 -0.8497 -0.8497
0.9354 -0.8740 -0.8741 -0.8741 -0.8741
0.9677 -0.8976 -0.8977 -0.8977 -0.8977

1 -0.9204 -0.9205 -0.9205 -0.9205

Table 9 Numerical results of test problem 5.5, for N = 32.
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N Methods Emax Setup time Running time Total time
FAS 2.81e−04 0.0054 0.0125 0.0180

16 WFAS 2.81e−04 0.0039 0.0113 0.0152
MWFAS 2.81e−04 0.0025 0.0108 0.0133

FAS 6.56e−05 0.0100 0.0169 0.0268
32 WFAS 6.56e−05 0.0030 0.0161 0.0190

MWFAS 6.56e−05 0.0019 0.0158 0.0177
FAS 1.57e−05 0.0286 0.0368 0.0654

64 WFAS 1.57e−05 0.0030 0.0358 0.0388
MWFAS 1.57e−05 0.0019 0.0353 0.0372

FAS 3.69e−06 0.1042 0.1240 0.2281
128 WFAS 3.69e−06 0.0033 0.1156 0.1189

MWFAS 3.69e−06 0.0019 0.1167 0.1186

Table 10 Maximum error and CPU time (in seconds) of the methods of test problem 5.5.

Fig. 5 Comparison of numerical solutions with exact solution of test problem 5.5, for N=64.
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6 Conclusion

In this paper, we proposed a modified wavelet full-approximation scheme for the numerical solution of
nonlinear Volterra integral and integro-differential equations. The modified wavelet intergrid operators of pro-
longation and restrictions are used in this paper, a modified wavelet based FAS, has been shown to be effective
and versatile. The numerical solutions obtained agree well with the exact ones. Convergence is also observed in
the numerical solutions when the calculation is refined by increasing the number N used. The standard FAS and
WFAS converge slowly with larger computational cost, whereas MWFAS does ensure such slower convergence
with lesser computational cost. Test problems are justified through the error analysis, as the level of resolution
N increases, larger the accuracy increases. Hence, the new scheme is very convenient and efficient than the
existing standard methods.
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