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Abstract
In this work, we study the controllability for a class of nonlinear neutral stochastic functional integrodifferential equations
with infinite delay in a real separable Hilbert space. Sufficient conditions for the controllability are established by using
Nussbaum fixed point theorem combined with theories of resolvent operators. As an application, an example is provided
to illustrate the obtained result.
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1 Introduction

Qualitative properties such as existence, uniqueness, stability and controllability for various types of stochas-
tic differential equations have been extensively studied by many researchers (see [4, 6, 8, 17] and references
therein). Many fundamental problems of control theory such as pole-assignment, stabilizability and optimal
control may be solved under the assumption that the system is controllable. The controllability problem for an
evolution equation also consists of driving the solution of the system to a prescribed final target state (exactly or
in some approximate way) in a finite time interval. As an area of application oriented mathematics, the control
problem has been studied extensively in the fields of infinite dimensional nonlinear systems [10]. The theory
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of semigroups of bounded linear operators is closely related to the solution of differential equations. In recent
years, this theory has been applied to a large class of nonlinear differential equations in Banach spaces. Using
the method of semigroups, various types of solutions of semilinear evolution equations have been discussed by
Pazy in [20]. Semigroup theory gives a unified treatment of a wide class of stochastic parabolic, hyperbolic and
functional differential equations, and much effort has been devoted to the study of controllability results for such
evolution equations.

Motivated by the above works, in this paper we address sufficient conditions to ensure the controllability of
neutral stochastic integrodifferential equations with infinite delays in a Hilbert space described by

d[x(t)+F(t,xt)] =
[
A[x(t)+F(t,xt)]+

´ t
0 B(t− s)[x(s)+F(s,xs)]ds+Cu(t)+h(t,xt)

]
dt

+
´ t
−∞

g(t,s,xs)dw(s), t ∈ J := [0,b],

x(0)=ξ ,

(1)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators T (t), t ≥ 0,
on a separable Hilbert space H with inner product (·, ·) and norm ‖ ·‖. Let K be another separable Hilbert space
with inner product (·, ·)K and norm ‖ · ‖K . Suppose {w(t)}t≥0 is a given K-valued Brownian motion or Wiener
process with a finite trace nuclear covariance operator Q ≥ 0. We are also employing the same notation ‖ · ‖
for the norm L(K,H), where L(K,H) denotes the space of all bounded linear operators from K into H. The
histories xt belongs to some abstract phase space B defined axiomatically (see Section 2); F,h : J×B→ H
are the measurable mappings in H-norm, and G : J× J×B→ LQ(K,H)(LQ(K,H) denotes the space of all
Q-Hilbert-Schmidt operators from K into H, which is going to be defined below) is a measurable mapping
in LQ(K,H)-norm. The control function u(·) taking values in L2(J,U) of admissible control functions for a
separable Hilbert space U,C is a bounded linear operator from U into H, and φ(t) is a B-valued random
variable independent of Brownian motion {w(t)} with finite second moment.

The aim of our paper is to present some results on the controllability of (1) based on the Nussbaum fixed
point theorem combined with theories of resolvent operators for integrodifferential equations. Our main results
concerning (1), rely essentially on techniques using strongly continuous family of operators {R(t), t ≥ 0},
defined on the Hilbert space H and called their resolvent. The resolvent operator is similar to the semigroup
operator for abstract differential equations in Banach spaces. However, the resolvent operator does not satisfy
semigroup properties (see, for instance, [11]), and our objective in this paper is to apply the theories of resolvent
operators, which was proposed by Grimmer [2].

The rest of this paper is organized as follows. In Section 2, we recall some basic definitions, notations, and
lemmas which will be needed in the sequel. In Section 3, the controllability of neutral stochastic integrodiffer-
ential equations with infinite delay is studied in Hilbert spaces. Section 4 is devoted to an application which
illustrates the main results.

2 Preliminaries

2.1 Basic Concepts of Stochastic Analysis

For more details on this section, the reader is referred to Da Prato and Zabczyk [5], Gard [12], and the
references therein. Throughout the paper, H and K denote real separable Hilbert spaces.

Let (Ω,F,P) be a complete probability space furnished with a complete family of right continuous increas-
ing sub σ -algebras {Ft , t ∈ J} satisfying Ft ⊂ F. A H-valued random variable is an F-measurable function
x(t) : Ω→ H, and a collection of random variables S = {x(t,w) : Ω→ H|t ∈ J} is called a stochastic process.
Usually, we suppress the dependence on ω ∈ Ω and write x(t) instead of x(t,ω) and x(t) : J→ H in the place

http://www.up4sciences.org


Controllability for neutral stochastic equations with infinite delay 495

of S. Let βn(t)(n = 1,2, ...) be a sequence of real-valued one-dimensional standard Brownian motions mutually
independent over (Ω,F,P). Set

w(t) =
∞

∑
n=1

√
λnβn(t)ζn, t ≥ 0,

where λn ≥ 0(n = 1,2, ...) are nonnegative real numbers and {ζn}(n = 1,2, ...) is complete orthonormal basis in
K. Let Q ∈ L(K,K) be an operator defined by Qζn = λnζn with finite TrQ = ∑

∞
n=1 λn < ∞ (Tr denotes the trace

of the operator). Then the above K-valued stochastic process w(t) is called a Q-Wiener process. We assume that
Ft = σ(w(s) : 0≤ s≤ t) is the σ -algebra generated by w and FT = F. Let ϕ ∈ L(K,H) and define

‖ϕ‖2
Q = Tr(ϕQϕ

∗) =
∞

∑
n=1
‖
√

λnϕζn‖2.

If ‖ϕ‖Q < ∞, then ϕ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space of all Q-Hilbert-
Schmidt operators ϕ : K→H. The completion LQ(K,H) of L(K,H) with respect to the topology induced by the
norm ‖ · ‖Q where ‖ϕ‖2

Q = 〈ϕ,ϕ〉 is a Hilbert space with the above norm topology.
In this work, we will employ an axiomatic definition of the phase space B introduced by Hale and Kato

[13]. The axioms of the space B are established for F0-measurable functions from J0 into H, endowed with a
seminorm ‖ · ‖B. We will assume that B satisfies the following axioms:

(ai) If x : (−∞,a)→ H,a > 0, is continuous on [0,a) and x0 in B, then for every t ∈ [0,a) the following
conditions hold:

(a) xt is in B,
(b) ‖x(t)‖ ≤ L‖xt‖B,
(c) ‖xt‖B ≤ Γ(t)sup{‖x(s)‖ : 0≤ s≤ t}+N(t)‖x0‖B, where L > 0 is a constant; Γ,N : [0,∞)→ [0,∞),

Γ is continuous, N is locally bounded, and L,Γ,N are independent of x(·).

(aii) For the function x(·) in (ai), xt is a B-valued function [0,a).

(aiii) The space B is complete.

Suppose x(t) : Ω→ H, t ≤ a, is a continuous Ft-adapted H-valued stochastic process. We can associate with
another process xt : Ω→B, t ≥ 0 by setting xt = {x(t + s)(w) : s ∈ (−∞,0]}. This is regarded as a B-valued
stochastic process.

The collection of all strongly measurable, square-integrable H-valued random variables, denoted by L2(Ω,F,
P;H)≡ L2(Ω;H), is a Banach space equipped with norm

‖x(·)‖L2 =
(
E‖x(·;ω)‖2

H
) 1

2 ,

where the expectation E is defined by E(h) =
´

Ω
h(ω)dP.

Let J1 = (−∞,b] and C(J1,L2(Ω;H)) be the Banach space of all continuous maps from J1 into L2(Ω;H) sat-
isfying the condition supt∈J1

E‖x(t)‖2 < ∞. An important subspace is given by L0
2(Ω,H) = { f ∈ L2(Ω,H) :

f is F0−measurabale}.
Let Z be the closed subspace of all continuous process x that belong to the space C(J1,L2(Ω;H)) consisting

of Ft-adapted measurable processes such that the F0-adapted processes φ ∈ L2(Ω;B). Let ‖ · ‖Z be a seminorm
in Z defined by

‖x‖Z =

(
sup
t∈J
‖xt‖2

B

) 1
2

,

where
‖xt‖B ≤ N̄E‖φ‖B+Γsup{E‖x(s)‖ : 0≤ s≤ b},

N = supt∈J{N(t)},Γ = supt∈J{Γ(t)}. It is easy to verify that Z furnished with the norm topology as defined
above is a Banach space.
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2.2 Resolvent operator for Eq. (1)

In the present section, we recall some definitions, notations and propreties needed in the sequel. In what
follows, H will denote a Banach space, A and B(t) are closed linear operators on H. Y represents the Banach
space D(A), the domain of operator A, equiped with the graph norm

‖y‖Y := ‖Ay‖+‖y‖ for y ∈ Y.

The notation C([0,+∞);Y ) stands for the space of all continuous function from [0,+∞) into Y. We then consider
the following Cauchy problem{

v
′
(t)=Av(t)+

´ t
0 B(t− s)v(s)ds for t ≥ 0,

v(0)=v0 ∈ H.
(2)

Definition 1. [2] A resolvent operator of Eq. (2) is a bounded linear operator valued function R(t) ∈L (H) for
t ≥ 0, satisfying the following propreties:

1. R(0) = I and ‖R(t)‖ ≤ Ñeβ t for some constant Ñ and β .

2. For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.

3. For x ∈ Y , R(.)x ∈C1([0,+∞);H)∩C([0,+∞);Y ) and

R
′
(t)x = AR(t)x+

ˆ t

0
B(t− s)xds

= R(t)Ax+
ˆ t

0
R(t− s)xds for t ≥ 0.

For additional details on resolvent operators, we refer the reader to [2]. The resolvent operator plays an
important role to study the existence of solutions and to establish a variation of constants formula for nonlinear
systems. For this reason, we need to know when the linear system (2) possesses a resolvent operator. Theorem1
below provides a satisfactory answer to this problem.
In what follows we suppose the following assumptions:
(H1) A is the infinitesimal generator of a C0− semigroup (T (t))t≥0 on H
(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y,‖.‖Y ) into (H,‖.‖H).
Moreover, there exists an integrable function c : [0,+∞)→ R+ such that for any y ∈ Y, t 7→ B(t)y belongs to
W 1,1([0,+∞),H) and

‖ d
dt

B(t)y‖H ≤ c(t)‖y‖Y for y ∈ Y and t ≥ 0.

We recall that W k,p(O) = {ω̃ ∈ Lp(O) : Dα ω̃ ∈ Lp(O),∀‖α‖ ≤ k}, where Dα ω̃ is the weak α-th partial deriva-
tive of ω̃ .

Theorem 1. [2] Assume that hypotheses (H1) and (H2) hold. Then the Eq. (2) admits a resolvent operator
(R(t))t≥0.

Lemma 2. [11] Let hypotheses (H1) and (H2) be satisfied. Then there exists a constant L = L(T ) such that

‖R(t + ε)−R(ε)R(t)‖ ≤ Lε, ∀0≤ ε ≤ t ≤ T.

Theorem 3. [11] Assume that hypotheses (H1) and (H2) hold. Let T(t) be a compact operator for t > 0. Then,
the corresponding resolvent operator R(t) of Eq. (2) is continuous for t > 0 in the operator norm, namely, for
t0 > 0, it holds that limh→0 ‖R(t0 +h)−R(t0)‖= 0.
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In the sequel, we recall some results on the existence of solutions for the following integro-differentiel
equation {

v
′
(t)=Av(t)+

´ t
0 B(t− s)v(s)ds+q(t) for t ≥ 0,

v(0)=v0 ∈ H.
(3)

where q : [0,+∞[→ H is continuous function.

Definition 2. A continuous function v : [0,+∞)→ H is said to be a strict solution of the Eq. (3) if

1. v ∈C1([0,+∞);H)∩C([0,+∞);Y ),

2. v satisfies Eq. (3) for t ≥ 0.

Remark 1. From this definition we deduce that v(t) ∈ D(A), and the function B(t− s)v(s) is integrable, for all
t > 0 and s ∈ [0,+∞).

Theorem 4. [2] Assume that hypotheses (H1) and (H2) hold. If v is a stict solution of Eq. (3), then the following
variation of constant formula holds

v(t) = R(t)v0 +

ˆ t

0
R(t− s)q(s)ds for t ≥ 0. (4)

Accordingly, we can establish the following definiton.

Definition 3. A function v : [0,+∞)→H is called mild solution of Eq. (3), for v0 ∈H, if v satisfies the variation
of constants formula (4).

The next theorem provides sufficient conditions ensuring the regularity of solutions of Eq.(3).

Theorem 5. Let q∈C1([0,+∞);H) and v be defined by (4). If v0 ∈D(A), then v is a strict solution of the Eq.(3).

Definition 4. An Ft-adapted stochastic process x(t) : J1→ H is a mild solution of the abstract Cauchy problem
(1) if x0 = φ ∈B on J0 satisfying ‖φ‖2

B <∞. The restriction of x(·) to the interval [0,b) is a continuous stochastic
process such that the following equation is satisfied

x(t) = R(t)[φ(0)+F(0,φ)]−F(t,xt)

+

ˆ t

0
R(t− s)

[
h(s,xs)+Cu(s)+

ˆ s

−∞

g(s,τ,xτ)dw(τ)
]

ds for a.e t ∈ J. (5)

Definition 5. The nonlinear neutral stochastic integrodifferential equation (1) is said to be controllable on the
interval J, if for every continuous initial stochastic process φ ∈B defined on J0, there exists a stochastic con-
trol u ∈ L2(J,U) that is adapted to the filtration {Ft}t≥0 such that the solution x(·) of (1) satisfies x(b) = x1,
where x(b) is a random variable which is Fb-measurable, x1 and b are preassigned terminal state and time,
respectively.

As a key tool for developing the controllability in this work, the consideration of this paper is based on the
following fixed point theorem due Nussbaum [17]. Throughout the paper, Br[x] ⊂ L2(Ω,B) is the closed ball
centered at x with radius r > 0.

Theorem 6. (Nussbaum Fixed Point Theorem). Let S be a closed, bounded, and convex subset of a Banach
space X. Let Φ1,Φ2 be continuous mappings from S into X such that

(i) (Φ1 +Φ2)S⊂ S.

(ii) ‖Φ1x1−Φ1x2‖ ≤ k‖x1− x2‖ for all x1,x2 ∈ S, where k is a constant and 0≤ k < 1.

(iii) Φ2(S) is compact.

Then the operator Φ1 +Φ2 has a fixed point in S.
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3 Main result

To investigate the controllability of system (1), we assume the following conditions:

(H3) the resolvent operator R(t) is compact with ‖R(t)‖ ≤M, for all t ≥ 0;

(H4) the linear operator W from L2(J,U) into L2(Ω;H), defined by

W =

ˆ b

0
R(b− s)(Cu)(s)ds

has an induced inverse operator W−1 that takes values in L2(J,U)/KerW (see Carmichael and Quinn [7])
and there exist positive constants MC,MW such that

‖C‖ ≤MC and ‖W−1‖ ≤MW ;

(H5) F : J×B→H is a continuous function, and there exist a constant MF > 0 such that the function F satisfies
the Lipschitz condition:

‖F(s1,ψ1)−F(s2,ψ2)‖ ≤MF (|s1− s2|+‖ψ1−ψ2‖B)

for 0≤ s1,s2 ≤ b,ψ1,ψ2 ∈ L2(J,B) ;

(H6) F and h : J×B→ H are continuous and there exists nonnegative constants MF ,Mh such that

‖F(t,ψ)‖ ≤MF and ‖h(t,ψ)‖ ≤Mh (6)

for every 0≤ s≤ t ≤ b,ψ ∈ Br[φ ];

(H7) the function g : J× J×B→ L(K,H) is continuous and there exists Mg ≥ 0 such that

‖g(t,s,η)‖Q ≤Mg

for every 0≤ s≤ t ≤ b and η ∈ Br[φ ];

(H8) For each φ ∈B

l(t) = lim
a→∞

ˆ 0

−a
g(t,s,φ(s))dw(s)

exists and it is continuous. Further, there exists Mg such that ‖l(t)‖Q ≤Mg;

Theorem 7. In addition to hypotheses (H1)-(H8), assume that the following conditions are also satisfied

1. q = r−4ε

4Γ
2 and ρ = 64

[{
1+(6MW MCMb)2

}
(MFΓ)2

]
,
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2. 64
[
M2M2

F +M2
F +(Mb)2[M2

CG
′
+M2

h +M2
g +Tr(Q)bM2

g ]
]
= (1−ρ)q,

3. L0 = 2M2
F < 1.

Then, system (1) is controllable on J.

Proof. Using hypothesis (H4) for an arbitrary x(·) and for a.e t ∈ J, define the control

ub
x(t) = W−1

{
x1−R(b)(φ(0)+F(0,φ))+F(b,xb)−

ˆ b

0
R(b− s)

×
[

h(s,xs)+ l(s)+
ˆ s

0
g(s,τ,xτ)dw(τ)

]
ds
}
(t)

ub
x(t) = W−1

{
x1−R(b)[φ(0)+F(0,φ)]+F(b,xb)−

ˆ b

0
R(b− s)[h(s,xs)+ l(s)]ds

+

ˆ s

0
g(s,τ,xτ)dw(τ)ds

}
(t).

Let Bb be the space of all functions x : (−∞,b]→H such that x0 ∈B and the restriction x : J→H is continuous.
Let ‖ · ‖b be the seminorm in Bb defined by

‖x‖b = ‖x0‖B+ sup{‖x(s)‖ : 0≤ s≤ b}, x ∈Bb

Let Zb =C(J1,L2(Ω;Bb)). Consider the map Φ : Zb→ Zb defined by Φx, by

Φx(t) =



φ(t), if t ∈ J0,

R(t)[φ(0)+F(0,φ)]−F(t,xt)+
´ t

0 R(t−η)Cub
x(η)dη

+
´ t

0 R(t− s)
[
h(s,xs)+ l(s)+

´ t
0 g(s,τ,xτ)

]
ds for a.e t ∈ J.

We shall show that the operator Φ has a fixed point, which then is a solution of the system (1). Clearly, (Φx)(b)=
x1.
For φ ∈ Z, let y(·) : (−∞,b)→ Zb be the function defined by

y(t) =
{

φ(t) if t ∈ (−∞,0]
R(t)φ(0) if t ∈ J.

Set x(t) = z(t)+ y(t),−∞ < t ≤ b. It is clear that x satisfies (5) if and only if z satisfies z0 = 0 and

z(t) = R(t)F(0,φ)−F(t,zt + yt)+

ˆ t

0
R(t−η)Cub

z+y(η)dη

+

ˆ t

0
R(t− s)

[
h(s,zs + ys)+ l(s)+

ˆ s

0
g(s,τ,xτ)dw(τ)

]
ds, t ∈ J,

where

ub
z+y(t) = W−1

{
x1−R(b)(φ(0)+F(0,φ))+F(b,zb + yb)−

ˆ b

0
R(b− s)

×
[

h(s,zs + ys)+ l(s)+
ˆ s

0
g(s,τ,zτ + yτ)dw(τ)

]
ds
}
(t).
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Let
B0

b = {z ∈Bb : z0 = 0 ∈B}
For any z ∈B0

b, we have

‖z‖b = ‖z0‖b+ sup{‖z(s)‖ : 0≤ s≤ b}= {sup{‖z(s)‖ : 0≤ s≤ b}

Thus if Zb
0 =C(J1,L2(Ω;Bb

0), then (Zb
0 ,‖ · ‖b) is a Banach space. Set

Bq = {z ∈ Z0
b : ‖z‖2

b ≤ q} for some q≥ 0;

then Bq ⊆ Z0
b is uniformly bounded. For z(·) ∈ Bq, from axiom (ai) and hypothesis (H8), we remark that

‖zt + yt −φ‖2
B ≤ 4

(
‖zt‖2

B+‖yt −φ‖2
B

)
≤ 4

(
Γ

2q+ ε

)
:= r, (7)

where ε = ‖yt −φ‖2
B.

Thus, zt + yt ∈ Br[φ ] for all 0≤ t ≤ b. Let the operator Q : Z0
b → Z0

b be defined by Qz, by

Qz(t) =


0 t ∈ J0

R(t)F(0,φ)−F(t,zt + yt)+
´ t

0 R(t−η)Cub
z+y(η)dη

+
´ t

0 R(t− s)
[
h(s,zs + ys)+ l(s)+

´ s
0 g(s,τ,zτ + yτ)dw(τ)

]
ds, t ∈ J.

Obviously, the operator Φ has a fixed point is equivalently to prove that Q has a fixed point. For each positive
number q, let

Bq = {z ∈ Z0
b : z(0) = 0,‖z‖2

b ≤ q,0≤ t ≤ b} for some q≥ 0

then for each q, Bq ⊆ Z0
b is clearly a bounded closed convex set. In addition to the familiar Young, Hölder,

and Minkowskii inequalities, the inequality of the form (∑n
i=1 ai)

m ≤ nm
∑

n
i=1 am

i where ai are nonnegative con-
stants (i = 1,2, ...,n) and m,n ∈ N is helpful to establishing various estimates. The Hölder inequality yields the
following relation :

‖
ˆ t

0
R(t− s)h(s,zs + ys)ds‖2 ≤ (bMMh)

2. (8)

Similary from (H7) and together with the Ito’s formula, a computation can be performed to obtain the following:

E‖
ˆ t

0
R(t− s)

[ˆ s

0
g(s,τ,zτ + yτ)dw(τ)

]
ds‖2

≤ Tr(Q)M2b
ˆ t

0

ˆ s

0
E‖g(s,τ,zτ + yτ)‖2

Qdτds

≤ Tr(Q)(M+Mg)
2b3. (9)

Thus, Q is well defined on Bq. Further noting that

E‖ub
z+y‖2 ≤ (6MW )

[
‖x1‖2 +M2[E‖φ(0)‖2 +E‖F(0,φ)‖2]+E‖F(b,zb + yb)−F(b,yb)‖2

+E‖F(b,yb)‖2 +(3M)2b
ˆ t

0

{
E‖h(s,zs + ys)‖2 +E‖l(s)‖2

+

ˆ s

0
E‖g(s,τ,zτ + yτ)‖2dτ

}]
≤ (6MW )2

[
‖x1‖2 +M2‖φ(0)‖2

B+(MFΓ)2‖zb‖2
Z +M2

F

+(3Mb)2(M2
h +M2

g +Tr(Q)M2
g b)
]
.
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Thus

‖ub
z+y‖2

Z ≤ (6MW )2
[
‖x1‖2 +M2‖φ(0)‖2

Z +(MFΓ)2q+M2
F +(3Mb)2(M2

h +M2
g +M2

g b2)
]

:=G. (10)

Also let
(6MW )2

[
‖x1‖2 +M2‖φ(0)‖2

Z +M2
F +(3Mb)2(M2

h +M2
g +M2

g b2)
]

:=G
′
. (11)

Next, we will show that the operator Q has a fixed point on Bq, which implies equation (1) has a mild
solution. To this end, we decompose Q as Q = Q1 +Q2, where the operators Q1,Q2 are defined on Bq,
respectively, by

(Q1z)(t) = R(t)F(0,φ)+F(t,zt + yt)

and

(Q2z)(t) =
ˆ t

0
R(t−η)Cub

z+y(η)dη

+

ˆ t

0
R(t− s)

{
h(s,zs + ys)+ l(s)+

ˆ s

0
g(s,τ,zτ + yτ)dw(τ)

}
ds,

for t ∈ J. In order to apply the Nussbaum fixed point theorem for the operator Q, we prove the following
assertions:

(i) Q1 and Q2 are well defined;

(ii) Q1 satisfies contractive condition;

(iii) Q2 is relatively compact;

(iv) QBq ⊂ Bq

Now, for 0≤ t ≤ b,

E‖Q1z)(t)‖2 ≤ 16E
{
‖R(t)F(0,φ)‖2 +‖F(t,yt)−F(t,zt + yt)‖2 +‖F(t,yt)‖2

}
≤ 16

{
M2M2

F +M2
F‖zt‖2

B+M2
F

}
≤ 16

{
M2M2

F +M2
FΓ

2q+M2
F

}
and

E‖(Q2z)(t)‖2 ≤ 16b
{ˆ t

0
‖R(t−η)‖2‖C‖2E‖ub

z+y‖2dη

+

ˆ t

0
‖R(t− s)‖2E‖h(s,zs + ys)‖2ds

+

ˆ t

0
‖R(t− s)‖2E‖l(s)‖2

+Tr(Q)

ˆ t

0
‖R(t− s)‖2

ˆ s

0
E‖g(s,τ,zτ + yτ)‖2dτds

}
≤ (4Mb)2[M2

CG
′
+M2

h +M2
g +Tr(Q)bM2

g +(6MW MCMFΓ)2q].

Thus, we have

‖(Qz)(t)‖2
Z ≤ 4E‖(Q1z)(t)‖2 +4‖(Q2z)(t)‖2

≤ 64
[{

1+(6MW MCMb)2}(MFΓ)2q+M2M2
F +M2

F

+ (Mb)2[M2
CG

′
+M2

h +M2
g +Tr(Q)bM2

g ]
]
.
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Hence QBq ⊆ Bq. Next, we shall prove that the operator Q1 satisfies the Lipschitz condition, we take z(1),z(2) ∈
Bq, then for each t ∈ J and by condition (H3), equations (3.3) and (3.5), we have

E‖(Q1z(1))(t)− (Q1z(2))(t)‖2

≤ E‖F(t,z(1)t + yt)−F(t,z(2)t + yt)‖2

≤M2
FE‖z

(1)
t − z(2)t ‖2

B

≤ L0 sup
0≤s≤b

‖z(1)(s)− z(2)(s)‖2
B.

Thus,
‖Q1z(1)−Q1z(2)‖2

Z ≤ L0‖z(1)− z(2)‖2
Z

and so Q1 satisfies Lipschitz condition with L0 < 1.
Finally, we prove that Q2 is relatively compact in Bq. To prove this, first we shall show that Q2 maps Bq

into a precompact subset of Q. We now show that for every fixed t ∈ J the set V (t) = {(Q2z)(t) : z ∈ Bq} is
precompact in H.

Obviously for t = 0,V (0) = {Q(0)}. Let 0 < t ≤ b be fixed and ε be a real number satisfying ε ∈ (0, t). For
z ∈ Bq, we define the operators

(Q∗ε2 z)(t) = R(ε)
ˆ t−ε

0
R(t− ε−η)Cub

z+y(η)dη +R(ε)
ˆ t−ε

0
R(t− ε− s)

×
[

h(s,zs + ys)+ l(s)+
ˆ s

0
g(s,τ,zτ + yτ)dw(τ)

]
ds.

and

(Q̃ε
2z)(t) =

ˆ t−ε

0
R(t−η)Cub

z+y(η)dη

+

ˆ t−ε

0
R(t− s)

[
h(s,zs + ys)+ l(s)+

ˆ s

0
g(s,τ,zτ + yτ)dw(τ)

]
ds

= R(ε)
ˆ t−ε

0
R(t− ε−η)Cub

z+y(η)dη +R(ε)
ˆ t−ε

0
R(t− ε− s)

×
[

h(s,zs + ys)+ l(s)+
ˆ s

0
g(s,τ,zτ + yτ)dw(τ)

]
ds.

By Lemma 2 and the compactness of the operator R(ε), the set V ∗ε (t) = {(Q∗ε2 z)(t) : z ∈ Bq} is relatively
compact in H, for every ε, ε ∈ (0, t). Moreover, also by Lemma 2, Hölder’s inequality, for each z∈ Bq, we obtain

E‖(Q∗ε2 z)(t)− (Q̃ε
2z)(t)‖2

≤ 4b
ˆ t−ε

0
‖R(ε)R(t−η− ε)−R(t−η)‖2E‖ub

z+y(η)‖2dη

+36b
ˆ t−ε

0
‖R(ε)R(t− s− ε)−R(t− s)‖2{E‖h(s,zs + ys)‖2

+E‖l(s)‖2 +Tr(Q)

ˆ s

0
E‖g(s,τ,zτ + yτ)‖2dτ

}
ds

≤ 4b(εL)2
ˆ t−ε

0
E‖ub

z+y(η)‖2dη

+36(εL)2
ˆ t−ε

0

{
E‖h(s,zs + ys)‖2

+E‖l(s)‖2 +Tr(Q)

ˆ s

0
E‖g(s,τ,zτ + yτ)‖2dτ

}
ds.
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We obtain that the set Ṽ ∗ε (t) = {(Q̃∗ε2 z)(t) : z ∈ Bq} is precompact in H by using the total boundedness.
Applying this idea again, we obtain

E‖(Q2z)(t)− (Q̃ε
2z)(t)‖ ≤ (2MMCε)2G+4εM2

ˆ t

t−ε

9{M2
h +M2

g +Tr(Q)bM2
g}

≤ (2Mε)2
[
GM2

C +9(M2
h +M2

g +Tr(Q)bM2
g)
]
−→ 0,

when ε → 0, and there are precompact sets arbitrarily close to the set {(Q2z)(t) : z ∈ Bq}. Thus the set
{(Q2z)(t) : z ∈ Bq} is precompact in H.
We now show that the image of Bq,Q(Bq) = {Qz : z ∈ Bq} is an equicontinuous family of functions. To do this,
let ε > 0 small, 0 < t1 < t2, then from (10), we have

E‖(Q2z)(t1)− (Q2z)(t2)‖2

≤ 36
{

b
ˆ t−ε

0
‖R(t2−η)−R(t2−η)‖2E‖Cub

z+y‖2dη

+ε

ˆ t1

t−ε

‖R(t2−η)−R(t1−η)‖2E‖Cub
z+y‖2dη +(t2− t1)

ˆ t2

t1
‖R(t2−η)‖2E‖Cub

z+y‖2dη

+9b
ˆ t1−ε

0
‖R(t2− s)−R(t1− s)‖2E‖Cub

z+y‖2
[
E‖h(s,xs)+ l(s)+Tr(Q)

ˆ s

0
E‖g(s,τ,xτ)dτ

]
ds

+9ε

ˆ t1

t1−ε

‖R(t2− s)−R(t1− s)‖2E‖Cub
z+y‖2

[
E‖h(s,xs)+ l(s)+Tr(Q)

ˆ s

0
E‖g(s,τ,xτ)dτ

]
ds

+9(t2− t1)
ˆ t2

t1
‖R(t2− s)‖2E‖Cub

z+y‖2
[
E‖h(s,xs)+ l(s)+Tr(Q)

ˆ s

0
E‖g(s,τ,xτ)dτ

]
ds.
}

That is,

‖(Q2z)(t1)− (Q2z)(t2)‖2
Z

36
{

bM2
CG
ˆ t1−ε

0
‖R(t2−η)−R(t1−η)‖2dη + εM2

CG
ˆ t1

t1−ε

‖R(t2−η)−R(t1−η)‖2dη

+(t2− t1)M2
CG
ˆ t2

t1
‖R(t2−η)‖2dη

+9b
[
M2

h +M2
g +Tr(Q)bM2

g

]ˆ t1−ε

0
‖R(t2− s)−R(t1− s)‖2ds

+9ε

[
M2

h +M2
g +Tr(Q)bM2

g

]ˆ t1

t1−ε

‖R(t2− s)−R(t1− s)‖2ds

+9(t2− t1)
[
M2

h +M2
g +Tr(Q)bM2

g

]ˆ t2

t1
‖R(t2− s)−R(t1− s)‖2ds

}
.

we see that ‖(Q2z)(t1)− (Q2z)(t2)‖2
Z tends to zero independently of z ∈ Bq as t2→ t1, with ε sufficiently small

since the compactness of T (t) for t > 0 implies the continuity in the uniform operator topology. Hence, Q2
maps Bq into a equicontinuous family of functions.

Also Q2(Bq) is bounded in Z and so by the Arzela–Ascoli theorem, Q2(Bq) is precompact. Hence it follows
from the Nussbaum fixed point theorem there exists a fixed point z(·) for Q on Bq such that Qz(t) = z(t). Since
we have x(t) = z(t)+y(t), it follows that x(t) is a mild solution of (1) on J satisfying x(b) = x1. Thus the system
(1) is controllable on J.
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4 Example

In this section an example is presented for the controllability results to the following partial neutral stochastic
integrodifferential equation:

d
[

v(t,x)+
ˆ t

−∞

ˆ
π

0
µ1(s− t,y,x)v(s,y)dyds

]
=

∂ 2

∂x2

[
v(t,x)+

ˆ t

−∞

ˆ
π

0
µ1(s− t,y,x)v(s,y)dyds

]
dt

+

ˆ t

0
γ(t− s)

[
v(s,x)+

ˆ s

−∞

ˆ
π

0
µ1(τ− s,y,x)v(τ,y)dydτ

]
ds (12)

+µ3(x)v(t,x)+ c(x)u(t)dt +
ˆ t

−∞

µ2(s− t)v(s,x)dw(s), o≤ x≤ π, t ∈ J = [0,b],

v(t,0) = v(t,π) = 0, t ≥ 0,

v(t,x) = φ(t,x), t ∈ J0, 0≤ x≤ π.

where w(t) denotes an R-valued Brownian motion.

To rewrite (12) into the abstract form of (1), we consider H = K =U = L2([0,π]) with the norm ‖.‖. Let

en :=
√

2
π

sin(nx), (n = 1,2,3, · · ·) denote the completed orthonormal basis in H and w := ∑
∞
n=1
√

λnβn(t)en

(λn > 0), where βn(t) are one dimensional standard Brownian motion mutually independent on a usual com-
plete probability space (Ω,F ,{Ft}t≥0,P).
Define A : H→ H by A = ∂ 2

∂ z2 , with domain D(A) = H2([0,π])∩H1
0 ([0,π])where

H1
0 ([0,π] = {δ ∈ L2([0,π]) :

∂δ

∂ l
∈ L2([0,π]),δ (0) = δ (π) = 0}

and

H2([0,π] = {δ ∈ L2([0,π]) :
∂δ

∂ l
,
∂ 2δ

∂ l
∈ L2([0,π]),δ (0) = δ (π) = 0}.

Then Ah = −∑
∞
n=1 n2 < h,en > en, h ∈ D(A), where en, n = 1,2,3, · · · , is also the orthonormal set of

eigenvectors of A.
It is well-known that A is the infinitesimal generator of a strongly continuous semigroup on H, thus (H1) is true .

Let B : D(A)⊂ H→ H be the operator defined by B(t)(z) = γ(t)Az for t ≥ 0 and z ∈ D(A).

Here we take the phase space B = C0×L2(q;H), which contains all classes of functions φ : J0→ H such that
φ is F0-measurable and q(·)‖φ(·)‖2 is integrable on J0 where q : (−∞,0)→ R is a positive integrable function.
The seminorm in B is defined by

‖φ‖= ‖φ(0)‖+
(ˆ t

−∞

q(θ)‖φ(θ)‖2dθ

) 1
2

.

The general form of phase space B=Cr×Lp(q;H),r≥ 0,1≤ p<∞ has been discussed in Hino et al. [15] (here
in particular, we are taking r=0, p= 2). From Hino et al. [15], under some conditions, (B,‖φ‖B) is a Banach
space that satisfies (i)-(iii) with

Γ(t) = 1+
(ˆ 0

−t
q(θ)dθ

) 1
2

.

We assume the following conditions hold for system (12)
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(i) The function µ1(·) is Ft-measurable and

ˆ
π

0

ˆ 0

−∞

ˆ
π

0
µ

2
1 (θ ,y,x)/q(θ))dydθdx < ∞

(ii) The function µ2(·) is Ft-measurable with

ˆ 0

−∞

(
µ

2
2 (θ)/q(θ)

)
dθ < ∞.

(iii) The function φ defined by φ(θ)(x) = φ(θ ,x) belongs to B.

(iv) C : L2([0,π])→ H is a bounded linear operator defined by

Cu(x) = c(x)u, 0≤ x≤ π, u ∈ R, u ∈ L2([0,π]).

(v) The linear operator W : L2(J,U)→ H defined by

Wu =

ˆ b

0
R(b− s)c(x)u(s)ds

has an induced inverse operator W−1 defined on L2(J,R)/kerW and satisfies condition (H4).

Now, define the operators F : [0,∞)×F→H,G : [0,∞)×B→ L(K,H) and h : [0,∞)×B→H respectively, as

F(t,φ) = Ψ1(φ) =

ˆ 0

−∞

ˆ
π

0
µ1(θ ,y,x)φ(θ ,y)dydθ ,

G(t,φ) = Ψ2(φ) =

ˆ 0

−∞

µ2(θ)φ(θ ,x)dθ

h(t,φ) = Ψ3(φ) = µ3(x)φ(θ ,x).

If we put{
x(t) = v(t,ξ ) for t ≥ 0 and x ∈ [0,π]
ϕ(θ)(ξ ) = v0(θ ,ξ ) for θ ∈]−∞,0] and x ∈ [0,π].

then, system (12) is the abstract formulation of the system (1).

d[x(t)+F(t,xt)] =
[
A[x(t)+F(t,xt)]+

´ t
0 B(t− s)[x(s)+F(s,xs)]ds+Cu(t)+h(t,xt)

]
dt

+
´ t
−∞

g(t,s,xs)dw(s), t ∈ J := [0,b],

x(0)=ξ ,

(13)

We suppose γ is a bounded and C1 function such that γ
′

is bounded and uniformly continuous, which implies
that the operator B(t) satisfies (H2) . Consequently by Theorem 1, we deduce that Eq. (2) has a resolvent operator
(R(t))t≥0 on H. Moreover, for 0≤ s1,s2 ≤ b,ψ1,ψ2 ∈ L2(J,B), we have from (i) by using Hölder inequality the
following estimation

‖F(s1,ψ1)−F(s2,ψ2)‖ ≤
[ˆ

π

0

ˆ 0

−∞

ˆ
π

0
µ

2
1 (θ ,y,x)/q(θ))dydθdx

] 1
2

(|s1− s2|+‖ψ1−ψ2‖B) .
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Similarly we can verify under conditions (ii) that F,G and h satisfy respectively the hypotheses (H6)-(H8).
Therefore, under the above assumptions, the stated conditions of Theorem 7 are satisfied, the system (12) is
controllable on J .
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