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Abstract
This paper is devoted to studying Hamiltonian oscillators in 1:1:1:1 resonance with symmetries, which include several
models of perturbed Keplerian systems. Normal forms are computed in Poisson and symplectic formalisms, by mean of
invariants and Lie-transforms respectively. The first procedure relies on the quadratic invariants associated to the sym-
metries, and is carried out using Gröbner bases. In the symplectic approach, hinging on the maximally superintegrable
character of the isotropic oscillator, the normal form is computed a la Delaunay, using a generalization of those variables
for 4-DOF systems. Due to the symmetries of the system, isolated as well as circles of stationary points and invariant
tori should be expected. These solutions manifest themselves rather differently in both approaches, due to the constraints
among the invariants versus the singularities associated to the Delaunay chart.
Taking the generalized van der Waals family as a benchmark, the explicit expression of the Delaunay normalized Hamil-
tonian up to the second order is presented, showing that it may be extended to higher orders in a straightforward way. The
search for the relative equilibria is used for comparison of their main features of both treatments. The pros and cons are
given in detail for some values of the parameter and the integrals.

Keywords: Hamiltonian systems; isotropic oscillator; normal form; singular reduction; relative equilibria.
AMS 2010 codes: 37J15, 37J40, 34C15, 53D20.

1 Introduction

The use of computer algebra systems for normal forms computations is considered at present a routine
operation. As a general reference see e.g. Sanders et al. [36] and Meyer et al. [32]. Nevertheless when we
deal with special classes of differential equations, like Poisson or Hamiltonians systems which is our case, it
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is advisable to employ specific transformations as well as tailored variables for those problems [32], mostly
connected with the symmetries that those systems might possess. More precisely we are interested in perturbed
isotropic oscillators in four dimensions (or perturbed harmonic oscillators in 1:1:1:1 resonance). For those
Hamiltonian systems, Sanders et al. [36] explain that the 1:...:1 resonance is one of the more complicated, due
to large number of terms in the normal form. This proves to be a key issue in computations of higher order
approximations, which is needed in bifurcation analysis for some values of the parameters. For this reason,
any strategy developed to reduce the algebra involved in the normal form process, as well as in the subsequent
analysis built on it, like relative equilibria and their bifurcations, is something really desirable. As we will see,
we have to confront with systems of polynomial equations with parameters, which represent a real challenge,
even with computer algebra assistance.

Continuing previous work [9, 25, 26] in the 1:1:1 resonance, and also [17, 20, 21] in relation to 1:1:1:1
resonance, we consider in R4×R4, the symplectic form w = dQ∧dq and a Hamiltonian function

H = H2 + εP(q,Q;β ) (1)

where
H2 =

1
2
(Q2

1 +Q2
2 +Q2

3 +Q2
4)+

1
2

ω
2 (q2

1 +q2
2 +q2

3 +q2
4) (2)

defines the isotropic oscillator, with ω a positive constant and ε is an small parameter. In the first part of the paper
we simplify expressions assuming ω = 1. The function P is called the perturbation, where β is a parameter
vector, which may include also ε . Moreover, following the same notation as in [21], we consider that systems
defined by Hamiltonian function Eq. (1) have two first integrals in involution given by

Ξ = q1Q2−Q1q2 +q3Q4−Q3q4,

L1 = q3Q4−Q3q4−q1Q2 +Q1q2, (3)

associated to which we have rotational symmetries. Notice that these integrals are precisely the constrains that
should be imposed in order to establish the connection between the isotropic and Kepler problem, see [30].
Moreover, this connection will allow us to make use of appropriate coordinates in Section 3 in order to perform
a normalisation.

Although some of the methods and techniques considered in the paper may be applied to a large family of
Hamiltonian systems defined by (1), to give details of those processes we focus on the uniparametric family of
Hamiltonian systems defined by

Hβ (Q,q) = H2 + ε H6, (4)

where

H6(Q,q;β ) =
(
q2

1 +q2
2 +q2

3 +q2
4
)

×
(

β
2 (q2

1 +q2
2−q2

3−q2
4
)2

+4
(
q2

1 +q2
2
)(

q2
3 +q2

4
))

(5)

where β is now a real parameter. For β = 1 we have a central potential, i.e. an integrable system. When
the system restricts to the manifold Ξ = 0 then it is equivalent to the model for the hydrogen atom subject to a
generalized van der Waals potential. For β = 0 this system reduces to the model for the quadratic Zeeman effect.
When β =

√
2 we have the van der Waals system. For this reason we have named the system as the generalized

van der Waals 4-D oscillator. A search (see [17]) for some special solutions of the Hamiltonian system defined
by the function (4) reveals that there are invariant 2-tori associated to the rotational integrals (3), which include
straight-line orbits over the configuration space.

Normalisation and reduction using invariants and Lie-transforms are approached in both Poisson and sym-
plectic formalisms. The Hamiltonian (4) defines a four-degree-of-freedom system with corresponding phase
space T ∗R4 . It is endowed with two symmetries given by H2 and Ξ. Therefore, we have that, without any

http://www.up4sciences.org


Poisson and symplectic reductions of 4−DOF isotropic oscillators. The van der Waals system as benchmark 475

normalisation process, a 2-DOF reduction is performed on the system by means of the invariants related to the
symmetries H2 and Ξ. This procedure (see [20], [8]) is based on previous work of the authors. Enlarging
previous studies on the 1:1:1 resonance [9, 26], the Hamiltonian (4) is put into normal form with respect to
H2 and Ξ. After the first reduction of the phase space by the H2 symmetry we obtain a reduced phase space
given by CP3 and the second reduction with respect to Ξ leaves us with a twice reduced space isomorphic to
S2

n+ξ
× S2

n−ξ
, where H2 = n, Ξ = ξ . However, further reduction is accomplished by considering the truncated

normal form with respect to L1. Thus, a system is obtained that is invariant under the S1-actions corresponding
to H2, Ξ, and L1. These three actions together generate a T3-action and the whole reduction process leads to a
one-degree-of-freedom system.

Hinging on the maximally superintegrable character of the isotropic oscillator, the symplectic reduction is
carried out a la Delaunay using a generalization of those variables to 4-DOF recently proposed in [24]. Based
on the normalized equations, our studies on this system focus on relative equilibria and their evolution with the
parameter β . Although first order normalization (averaging) is quite generic, the fact that the family includes
some integrable cases, makes it necessary to perform higher order normalization for the stability analysis of
those cases.

The paper is organized as follows. Section 2 summarizes part of the work done in [18], the three steps of
the Poisson reduction are presented with the invariant functions involved, as well as the corresponding reduced
Hamiltonian of our model at each step. In Section 3 we proceed likewise carrying out the reduction, although
in different order, by three symplectic transformations: Projective Euler and Andoyer as well as 4-D Delaunay.
They give again, but now in the symplectic frame, the 1-DOF thrice reduced Hamiltonian system in the open
domain where those charts are defined. Once carried out the toral reduction by the symplectic variables in
Section 3, Section 4 focuses on the computation of the normal form by Lie transform which, taking advantage
of the periodic character of the unperturbed flow, which allows it to solve the homological equation just by
quadratures. Finally Section 5 gathers the analysis on relative equilibria which enlarges the results presented in
previous papers, in particular the search for periodic orbits.

2 Poisson approach. Normalization and reduction

There is a large literature which develops both theoretical and computational aspects of normal forms, see
for example [2, 31, 32, 36]. In this section we briefly describe several normal forms for first order of system (4)
for ω = 1 thoroughly presented in [18]. In such a work, we used the computer algebra system Maple as software,
and as main computational tool, Gröbner bases. A finite set G of multivariate polynomials is called a Gröbner
basis (with respect to a term order) of the ideal generated by G if the remainder on division by G is unique. In
our computations the graded reverse lexicographic order (grevlex) was considered because it is usually the most
efficient for computations (for more details see [3] and [4]). The reader is assumed to distinguish the truncation
order in the Lie Transform method from monomial orders in the multivariate polynomial ring.

The non perturbed model (2) is geometrically reduced in [38] where the connection between the Kepler and
the harmonic oscillator systems is revisited. In the present work we focus on (4) and we review the constructive
geometric reduction in stages performed in [18]. Only the final steps of such a reduction process are presented
along this section. In the Poisson approach the first reduction is done with respect to the H2 symmetry. This is
a regular reduction and the reduced phase space is homeomorphic to CP3 (see [8]). Then we carry out a second
reduction whose resulting orbit space is stratified by four dimensional leaves isomorphic to S2×S2, and two
singular strata isomorphic to S2. Finally, after discarding de higer-order terms, the system in normal form has
another integral, i.e., L1 which allows a third reduction leading to a 1-DOF system on the thrice reduced phase
space. Depending on the relative value of the integrals, the thrice reduced space is isomorphic or homomorphic
to a 2-sphere, containing one or two singular points. Besides there are other singular reduced phase spaces
consisting of a single point (see Fig. 2 and [21]).
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2.1 Normalization with respect to the oscillator symmetry XH2

Given the action associated to the uniparametric group defined by XH2 , by using canonical complex variables,
(see [21] for details) it follows that the algebra of polynomial invariants under that action is generated by

πi = Q2
i +q2

i , i = 1,2,3,4
π5 = Q1 Q2 +q1 q2, π6 = Q1 Q3 +q1 q3, π7 = Q1 Q4 +q1 q4,
π8 = Q2 Q3 +q2 q3, π9 = Q2 Q4 +q2 q4, π10 = Q3 Q4 +q3 q4,
π11 = q1 Q2−Q1 q2, π12 = q1 Q3−Q1 q3, π13 = q1 Q4−Q1 q4,
π14 = q2 Q3−Q2 q3, π15 = q2 Q4−Q2 q4, π16 = q3 Q4−Q3 q4.

(6)

The XH2 normal form up to first order in ε is expressed in those invariants as

H = H2 + εH 6 (7)

where H2 = (π1 +π2 +π3 +π4)/2 = n and

H 6 =
1
2
[
(1−4β

2)n(π2
15 +π

2
14 +π

2
13 +π

2
12)

+2(β 2−1)(π2
11(π4 +π3)−π

2
16(π3 +π4))+β

2n(5n2−3π
2
11) (8)

+5(1−β
2)n(π2

9 +π
2
8 +π

2
7 +π

2
6 )+(β 2−4)nπ

2
16
]

The reduction is now performed using the orbit map

ρπ : R8→ R16; (q,Q)→ (π1, · · · ,π16) .

The image of this map is the orbit space for the H2-action, the images of the level surfaces H2(q,Q) = n under
ρπ are the reduced phase spaces which are isomorphic to CP3. Since the Hamiltonian is invariant respect to H2,
it can be expressed in invariants and therefore naturally lifts to a function on R16, which, on the reduced phase
spaces, leads to the reduced Hamiltonian.

However, in the following we will not use the invariants πi; instead, we rely on (Ki,L j,Jk) invariants intro-
duced in Egea [20] by the following change of coordinates,

H2 =
1
2(π1 +π2 +π3 +π4), J1 =

1
2(π1−π2−π3 +π4),

Ξ = π16 +π11, J2 =
1
2(π1−π2 +π3−π4),

K1 =
1
2(−π1−π2 +π3 +π4), J3 = π8 +π7,

K2 = π8−π7, J4 = π5 +π10,

K3 =−π6−π9, J5 = π5−π10,

L1 = π16−π11, J6 = π6−π9,

L2 = π12 +π15, J7 = π12−π15,

L3 = π14−π13, J8 = π14 +π13.

The first integrals (see Eq. 3) are now among the invariants defining the image.
The first order normal form in these invariants is

H Ξ =
1
2

[
n
(

5K2
2 +5K3

2 +2L1
2 +L2

2 +L3
2 +β

2 (5K1
2 +L2

2 +L3
2)
)

−
(
(4+β

2)(K2 L2 +K3 L3)+(2+3β
2)K1L1

)
ξ

]
. (9)

The reduction of the H2 action may now be performed through the orbit map

ρK,L,J : R8→ R16;(q,Q)→ (H2, · · · ,J8) .

Note that on the orbit space we have the reduced symmetries due to the reduced actions given by the reduced
flows of XΞ and XL1 .
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Fig. 1 Double reduced spaces S2
n+ξ
×S2

n−ξ
for different values of the integral ξ

2.2 Toroidal reduction over CP3 with respect to the rotational symmetry Ξ

Let ρ be the S1-action generated by the Poisson flow of Ξ over CP3. The functions

H2, Ξ, L1, L2, L3, K1, K2, K3,

are ρ-invariants over CP3. This, in turn, leads us to the orbit mapping

ρ2 : R16→ R8; (π1, · · · ,π16)→ (K1,K2,K3,L1,L2,L3,H2,Ξ).

The orbit space ρ2(CP3) is defined as a six dimensional algebraic variety in R8 by the following relations

K2
1 +K2

2 +K2
3 +L2

1 +L2
2 +L2

3 = H2
2 +Ξ

2 , K1L1 +K2L2 +K3L3 = H2 Ξ (10)

The reduced phase spaces are obtained by setting H2 = n, Ξ= ξ and then the second reduced space is isomorphic
to S2

n+ξ
×S2

n−ξ
(see Fig. 1). When ξ = 0, it corresponds to the first reduced space of Keplerian systems by the

energy. The second reduced Hamiltonian up to first order, modulo a constant takes the form

H Ξ = 1
2

[
n
(
5K2

2 +5K3
2 +2L1

2 +L2
2 +L3

2 +β 2 (5K1
2 +L2

2 +L3
2)
)

−
(
(4+β 2)(K2 L2 +K3 L3)+(2+3β 2)K1L1

)
ξ
]

2.3 Reduction by L1 = l. Thrice reduced space Vnζ l

To further reduce from S2
n+ξ
×S2

n−ξ
to Vnζ l , one divides out the S1-action, ρ2, generated by the Poisson flow

defined by L1 = π16−π11 over S2
n+ξ
×S2

n−ξ
. The 8 invariants for the L1 action on R8 are

M =
1
2
(K2

2 +K2
3 +L2

2 +L2
3) , N =

1
2
(K2

2 +K2
3 −L2

2−L2
3) ,

Z = K2L2 +K3L3 , S = K2L3−K3L2 , (11)

K = K1, H2, Ξ, L1 .

There are 2 + 3 relations defining the third reduced phase space

K2 +L2
1 +2M = n2 +ξ

2 , M2−N2 = Z2 +S2 ,

KL1 +Z = nξ , H2 = n, Ξ = ξ , L1 = l . (12)
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{,} M N Z S K L1

M 0 4KS 0 −4KN 0 0
N −4KS 0 −4L1S −4(KM−L1Z) 4S 0
Z 0 4L1S 0 −4L1N 0 0
S 4KN 4(KM−L1Z) 4L1N 0 −4N 0
K 0 −4S 0 4N 0 0
L1 0 0 0 0 0 0

Table 1 Poisson structure in (M,N,Z,S,K,L1) invariants

The Poisson structure of the variables S, K and N is given in Table 1.
For more details see [18]. Then, we have defined the orbit map

ρ2 : R6→ R6;(K1,K2,K3,L1,L2,L3)→ (M,N,Z,S,K,L1).

When we fix a value of L1 = l, relations (12) define the thrice reduced space

Fig. 2 Thrice reduced space over the space of integrals. The vector (K,N,S) represents the coordinates. The axis of
symmetry of the reduced space is the K direction.

Vnξ l = {(K,S,N) | 4N2 +4S2 = f (K),

f (K) = ((n+ξ )2− (K + l)2)((n−ξ )2− (K− l)2)}

which is a surface of revolution, obtained by rotating
√

f (K) around the axis K, . Thus the shape of the reduced
phase space, given in Fig. 2, is determined by the positive part of f (K). Since

f (K) = (K +n+ξ + l)(K−n−ξ + l)(K−n+ξ − l)(K +n−ξ − l),

the roots are

k1 =−l−n−ξ , k2 = l +n−ξ , k3 = l−n+ξ , k4 =−l +n+ξ .
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So f (K) is positive (or zero) in the subsequent intervals of K:

l < ξ ,−l < ξ k1 < k3 < k2 < k4 K ∈ [k3,k2]

l > ξ ,−l < ξ k1 < k3 < k4 < k2 K ∈ [k3,k4]

l < ξ ,−l > ξ k3 < k1 < k2 < k4 K ∈ [k1,k2] (13)

l > ξ ,−l > ξ k3 < k1 < k4 < k2 K ∈ [k1,k4]

The Hamiltonian on the third reduced phase space is

H Ξ,L1 =
3n
4
(
3β

2−2
)

K2 +ξ l(1−β
2)K

+
n
2
(
4−β

2)N +n3(
3
2
+

β 2

4
)−
(
l2 +ξ

2)(β 2

2
+1)

n
2

Note that the reduced phase spaces as well as the Hamiltonian are invariant under the discrete symmetry
S→−S. To see how to exploit it to obtain a full reduction see [10], [19] and [29]. We choose not to further
reduce our reduced phase space with respect to these discrete symmetries, because the three dimensional picture
makes it easy to access information about the reduced orbits, and in this way one does not introduce additional
critical points (fixed points) which need special attention.

In (K,N,S)-space the energy surfaces are parabolic cylinders. Notice that for β 2 = 2/3, the function H
is linear in the variable space (K,N,S). Likewise for β 2 = 1, H modulo constants is independent of ξ and
l. Moreover for β 2 = 4, H is only a function of K. Since (Vnξ l,{·, ·}3,H Ξ,L1) is a Lie-Poisson system, the
corresponding dynamics is given by

dK
dt

= 2n(β 2−4)S,

dN
dt

= 2[3n(3β
2−2)K +2ξ l(1−β

2)]S, (14)

dS
dt

= n(β 2−4)(K2− (ξ 2 + l2 +n2))K

−(3β
2−2)[6nKN +4ξ l(β 2−1)N +2ln2

ξ ].

This system can be integrated by means of elliptic functions, but after a classification of the different types of
flows is made, as functions of the integrals and the parameter. Only then we will be ready for the integration
of a specific initial value problem. Note that in the search of relative equilibria at the thrice reduced level, the
geometry involved is really helpful; the intersection of the Hamiltonian surfaces with the reduced phase space
gives the trajectories of the reduced system. Then, tangency of the Hamiltonian surface with the reduced phase
spaces provides relative equilibria that generically correspond to three dimensional tori in the original phase
space. Details on the analysis of this system, focusing on relative equilibria related to β 2 = 0, ξ = l and the
case of physical interest ξ = 0, are contained in Díaz et al. [18]. The reader should take into account that β 2 is
renamed in [18] as λ .

3 Symplectic charts for 4-D isotropic oscillators

In our study of perturbed oscillators, we switch now from Poisson to symplectic formulation. More precisely,
our goal is to obtain the normal form of isotropic oscillators by Lie transforms, in the presence of symmetries.

Different charts are used for the symplectic treatment of the harmonics oscillators. Among them we find
complex notation [8], action-angle variables of Poincaré type [36], [25], or variations of them in the case of
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resonances [15]. In our case, as we also need to reduce by the actions associated to the rotational symmetries,
we have made use of a symplectic chart which incorporates the functions (3) as momenta. It is well known
in astrodynamics that the Euler and Andoyer variables carry out this task for classical problem as Kepler and
the rigid body. In previous works [5, 27], we extend those variables to the four dimensional case. Moreover
the connection between the isotropic and Kepler problems, two maximally superintegrable systems, allows to
introduce the Delaunay transformation [14]. The result is the 4-D Delaunay transformation proposed by one of
the authors [24], that we will use in what follows. There is an alternative procedure considering the Lissajous
transformation [16], which will be presented elsewhere.

3.1 The family of Euler projective transformations

Let F(ρ) be a smooth real function which is positive in its domain. We consider the family of transforma-
tions: PE F : (ρ,φ ,θ ,ψ)→ (q1,q2,q3,q4), dubbed as Projective Euler variables, given by

q1 = F(ρ) sin
θ

2
cos

φ −ψ

2
, q3 = F(ρ) cos

θ

2
sin

φ +ψ

2
, (15)

q2 = F(ρ) sin
θ

2
sin

φ −ψ

2
, q4 = F(ρ) cos

θ

2
cos

φ +ψ

2
,

with (ρ,φ ,θ ,ψ) ∈ R+× [0,2π)× (0,π)×
(
−π

2 ,
π

2

)
. For F(ρ) = 1, this transformation defines Euler parameters

as functions of Euler angles. In this paper, we only consider the case F(ρ) =
√

ρ .
The canonical extension associated to the transformation (15) is readily obtained as a Mathieu transforma-

tion, which satisfies ∑Qi dqi = Pdρ +Thetadθ +Ψdψ +Φdφ . The relations among the momenta are given
by

P =
1

2∑q2
i
(q1Q1 +q2Q2 +q3Q3 +q4Q4),

Θ =
(q1Q1 +q2Q2)(q2

3 +q2
4)− (q3Q3 +q4Q4)(q2

1 +q2
2)

2
√
(q2

1 +q2
2)(q

2
3 +q2

4)
,

Ψ =
1
2
(−q2Q1 +q1Q2 +q4Q3−q3Q4), (16)

Φ =
1
2
(q2Q1−q1Q2 +q4Q3−q3Q4),

Later on we will need the inverse transformation given by

ρ = q2
1 +q2

2 +q2
3 +q2

4,

sinθ =
2
√

(q2
1 +q2

2)(q
2
3 +q2

4)

q2
1 +q2

2 +q2
3 +q2

4
, cosθ =

q2
3 +q2

4−q2
1−q2

2

q2
1 +q2

2 +q2
3 +q2

4
,

sinψ =
q1q3 +q2q4√

(q2
1 +q2

2)(q
2
3 +q2

4)
, cosψ =

q1q4−q2q3√
(q2

1 +q2
2)(q

2
3 +q2

4)
, (17)

sinφ =
q1q3−q2q4√

(q2
1 +q2

2)(q
2
3 +q2

4)
, cosφ =

q1q4 +q2q3√
(q2

1 +q2
2)(q

2
3 +q2

4)
.

Proposition 1. The isotropic oscillator H2 is expressed by mean of the Euler projective variables as

Hω(ρ,θ ,−,−,P,Ψ,Θ,Φ) =
ω ρ

2
+2ρP2 +

2
ρ

(
Θ

2 +
Ψ2 +Φ2−2ΦΨ cosθ

sin2
θ

)
. (18)
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Proof. Considering any given initial condition for the Hamiltonian Hω = h, by applying relations (15) and
(16), we obtain, by straight forward computations, the above expression for the isotropic oscillator H2.

Note that the Hamiltonian has two cyclic variables, which manifests the two symmetries associated with our
system we have refer in (3)

3.2 From Euler to Projective Andoyer variables

Andoyer [1, 11] symplectic variables are well known in rotational dynamics and recently in attitude and
control. Most often they are denoted by (λ ,µ,ν ,Λ,M,N) or (h,g, `,H,G,L). In the following, in order to avoid
confusion with invariants notation of previous section, we propose to use (u1,u2,u3, U1,U2,U3) for referring to
them. Moreover, as in 3-D, it is convenient to introduce the following functions

c1 = cosσ1 =U1/U2, c2 = cosσ2 =U3/U2, (19)

with si =
√

1− c2
i . Hence the transformation from Euler to Andoyer (φ ,θ ,ψ, Φ,Θ,Ψ)→ (u1,u2,u3,U1,U2,U3)

is given by

cosθ = c1c2 + s1 s2 cosu2, Φ =U3,

sin(ψ−u1) =
sinu2

sinθ
s2, Ψ =U1, (20)

sin(φ −u3) =
sinu2

sinθ
s1, Θ =U2

√
1−

c2
1 + c2

2−2c1 c2 cosθ

sin2
θ

.

with |U1| < U2 and |U3| < U2. By adding the variables (ρ,P) we get a 4-D set (ρ,u1,u2,u3,P,U1,U2,U3) of
symplectic variables that we call ‘Projective Andoyer variables’.

Theorem 2. In Projective Andoyer variables, the system defined by (2), regularized by ds= 1/(4ρ)dτ , includes
the Keplerian system for any value of the integral U3.

Proof. Following Poincaré technique, we first regularize (2) and our new Hamiltonian will be K = (Hω −
h)/(4ρ). Considering now Proposition 1, after some straightforward calculations, the Hamiltonian of the 4-D
isotropic oscillator is given by

˜K =
1
2

(
P2 +

U2
2

ρ2

)
− γ

ρ
(21)

in the manifold ˜K = −ω/8 and γ = h
4 . But the above Hamiltonian corresponds to the Kepler system in polar

nodal variables, see [13, 28].

3.3 Delaunay symplectic chart

Following [14] we plan to normalize perturbed isotropic systems by Lie-transforms a la Delaunay in the
following Section. Thus, we still need to implement (in part of the phase space) another canonical transformation
of Hamilton-Jacobi type: Dγ : (L,G, `,g)→ (ρ,u2,P,U2). The process hinges on the H-J equation built on the
function (21). For details of this transformation Dγ we refer to [14]; here we only include the final expressions.
Among the relations defining Delaunay transformation, which can only be given in implicit form, we take

u2 = g+ f , U2 = G,

ρ = a(1− e cosE), P =
Le sinE

a(1− e sinE)
, (22)

where a = a(L), e = e(L,G) are given by

a = L2/γ, η = G/L, e =
√

1−η2, (23)
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and f and E are auxiliary angles. The symplectic variable ` is related to them by

`= E− e sinE, tan f/2 =
√

(1+ e)/(1− e) tanE/2. (24)

Later on we also need 1/ρ = (1− e cos f )/p, where p = aη2, and

ρ cos f = a(cosE− e), ρ sin f = aη sinE, d`= (1− e cosE)dE. (25)

Completing the functions of the momenta given above (23), it is convenient to introduce two more state functions

w =U1/L, z =U3/L. (26)

The previous results may be summarized in the following theorem:

Theorem 3. By composing the three symplectic transformations(q1, q2, q3, q4
Q1,Q2,Q3,Q4

)
Projective Euler−→

(
ρ,φ ,θ ,ψ
P,Φ,Θ,Ψ

)
y

y PA( `, u1, g, u3
L,U1,G,U3

)
Delaunay←−

(
ρ,u1, u2, u3
P,U1,U2,U3

)
together with the regularization ds = 1/(4ρ)dτ , the Hamiltonian of the 4-D isotropic oscillator is given by

H0 =−
γ2

2L2 (27)

in the manifold H0 =−ω/8.

The set of variables (`,g,u1,u3,L,G,U1,U3) is what we call 4-D Delaunay chart. As in 3-D with the classical
Delaunay variables, they represent a generalized set of action-angle variables (see [34]). In the next section we
show the interest of this symplectic transformation. For the benefit of the reader let us mention that Moser
and Zehnder [33] introduced action-angle variables for the Kepler problem in Rn and called them Delaunay
variables. When we restrict to n = 4, those variables do not coincide with the set built in this paper.

Finally, in order to compare results of our analysis of relative equilibria, we need to establish the connection
between the variables K (Poisson approach) and G (symplectic approach) defining the thrice reduced space.
After some algebraic manipulations, we obtain

4G2 =
1
2
(n2 +ξ

2 + l2)− 1
2

K2−N, (28)

which expresses G as function of K and N, invariants defining the thrice reduced space, and the first integrals.

4 Delaunay normalization of perturbed 4-D isotropic oscillators

Our goal in this section is to make normalization by Lie transforms [12], using 4-D Delaunay variables.
As we will see they allow to express perturbed isotropic oscillators in a ‘convenient’ form, to implement Lie
transforms up to higher order in an efficient way. What we mean by convenient is the following.

It is well known that the isotropic oscillator H0, as the Kepler system, defines a maximally superintegrable
Hamiltonian system (see Fassò [23]), whose flow is made of periodic orbits. In that case Cushman [6] proved
that any smooth function F over its phase space may be decomposed in a unique way into a sum F = Fo +F∗

with the following properties: (i) {Fo, H0} = 0. In other words, Fo belongs to the kernel of the Lie derivative
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generated by H0: L0 : F → {F, H0}; (ii) There exists a smooth function F̃ such that {F̃ , H0}= F∗; in other
words F∗ belongs to the image of the operator L0. In particular when the Lie transform (see [12], [32])

L : (`,g,u1,u3,L,G,U1,U3)→ (`′,g′,u′1,u
′
3,L
′,G′,U ′1,U

′
3)

is carried out a la Delaunay [14], the homological equation, which relates the new Hamiltonian ∑(ε j/ j!)H ′
j

with the generating function ∑(ε j/ j!)W ′
j , is given by

{W j, H0}+H ′
j = H̃ j, j ≥ 1. (29)

Then, considering the splitting coming from Cushman theorem, the equation (29) may be solved choosing

H ′
j =<H̃ j>=

1
2π

ˆ 2π

0
H̃ j d`, W j =

1
n

ˆ
(H̃ j−<H̃ j>)d`, (30)

where, according with (27), ∂H0/∂L = γ2/L3. The Hamiltonian (1) of perturbed isotropic oscillators in Delau-
nay variables is given by

H (`,g,u1,u3,L,G,U1,U3) =−
γ2

2L2 + ε P(`,g,u1,u3,L,G,U1,U3;β ).

and the normalized Hamiltonian up to order k takes the form

H ′ =− γ2

2L′2
+

k

∑
εn

j!
H ′

j (−,g′,u′1,u′3,L′,G′,U ′1,U ′3;β )+O(εk+1).

The main feature of the process is that, at each order, solving the homological equation (29) only involves
quadratures.

4.1 Delaunay normalization and symmetries

Apart from the procedure associated to Delaunay normalization we have just mentioned, when we restrict to
systems with the symmetries (3), the use of Delaunay chart shows its full advantage. Indeed, in that case u1 and
u3 are cyclic, in other words, we have

H (`,g,−,−,L,G,U1,U3) =−
γ2

2L2 + ε P(`,g,−,−,L,G,U1,U3;β ;ε). (31)

In geometric language, the use of Delaunay variables has carried out the toral reduction associated to the actions
defined by the symmetries (3), and the function (31) is the reduced Hamiltonian. The Hamiltonian system given
by (31) is a 2-DOF system. Thus, the normalized system will take the form

H ′ =− γ2

2L′2
+

k

∑
εn

j!
H ′

j (−,g′,−,−,L′,G′,U ′1,U ′3;β )+O(εk+1). (32)

In our case normalizing up to the order needed, after truncating, we will obtain an integrable 1-DOF Hamil-
tonian system. From now on we drop primes in the variables in order to simplify the expressions.

4.2 Carrying out the normalization. The van der Waals model as a benchmark

In order to implement these normalizations, since we are dealing with polynomial perturbations, from expe-
rience with 3-DOF Kepler systems we introduce the auxiliary variable E by using the following proposition.
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Proposition 4. The functions F(ρ,θ) = ρm cosn θ , (m,n ∈ N and m ≥ n), expressed in Delaunay variables,
could be written as F(ρ,θ) = ∑

m
i=0(Ci cos iE +Si sin iE), where Ci and Si are given by expressions of the form

∑ j(ci j cos j g+ si j sin j g) which belong to the kernel of the Keplerian Lie derivative, and ci j, si j are rational
functions of the momenta.

Proof. It is straightforward, based on relations given in (20), (22) and (25).
Applying the above result, the Hamiltonian (4) takes the form

H =− γ2

2L2 +
k

∑
j=0

ε j

j! ∑
i
(Ci j cos iE +Si j sin iE)+O(εk+1), (33)

where functions Ci j =Ci j(g,L,G,U1,U3;β ) and Si j = Si j(g,L,G,U1,U3;β ) belong to the kernel of the Lie trans-
form.

Thus, by considering the differential relation (25) and by replacing in (30), we obtain the part in the kernel
as follows

<H1>=
1

2π

ˆ 2π

0
H1 d`

=
1

2π

ˆ 2π

0
∑
i=0

(Ci1 cos iE +Si1 sin iE)(1− e cosE)dE

=C01 +C11 cosg+C21 cos2g.

with Ci1 =Ci1(L,G,U1,U3;β ) given by

C01 =
1

16
a2(2+3e2)[2+(β 2−1)(2c2

1c2
2 + s2

1s2
2) ],

C11 =−
1
4

a2(β 2−1)(4+ e2)ec1c2s1s2, (34)

C21 =
5

16
a2(β 2−1)e2s2

1s2
2.

Then, we solve the first order homological equation (29). The first order normalized Hamiltonian takes the form

H =− γ2

2L2 + ε (C01 +C11 cosg+C21 cos2g)+O(ε2)

The first order W1 of the generating function is obtained computing the second quadrature in (30), then,
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taking into account the shorthand α = β 2−1, we get the following expression

W1 =
a3L
96γ

(
α(2c2

1c2
2 + s2s2

2)+2
)

(
c1
(
e3 sin(3u)−9e2 sin(2E)+3e(3η

2 +5)sin(u)
)
+αs1s2

+s1s2(1−η)2(−15esin(2g−E)+(9+6η)sin(2g−2E)

−esin(2g−3E)
)

−s1s2(1+η)2(15esin(2g+E)− (9−6η)sin(2g+2E)

+esin(2g+3E)
)

+4c1c2(1−η)
(
e2 sin(g−3E)−3e(3+η)sin(g−2E)

+3(2η
3 +η

2 +5)sin(g−E)
)

−4c1c2(1+η)
(
e2 sin(g+3E)−3e(3−η)sin(g+2E)

+3(−2η
3 +η

2 +5)sin(g+E)
))

.

Analogously we obtain the second order normalization for (32), which will be used in the study of stability.
The second order coefficients are

C02 =−60α
2c2

2c2
1s2

1s2
2 e6

+
(

α2

8
(
1139c2

4c4
1−1486(c2

4c2
1 + c2

2c4
1)+579(c4

1 + c2
4)

+1268c2
2c2

1−518(c2
1 +2c2

2)−61
)
+63(α Λ3,1−1)

)
e4

+
(

α
2 (2089c2

4c4
1−1756(c2

2c4
1 + c2

4c2
1)+399(c4

1 + c2
4)

+2048c2
2c2

1−628(c2
1 + c2

2)+229
)
−396(α Λ3,1−1)

)
e2

+
(

α
2 (557c2

4c4
1−382(c2

4c2
1 +382c2

2c4
1)+17(c4

1 + c2
4)

+308c2
2c2

1−22(c2
2 + c2

1)+5
)
−96(α Λ3,1−1)

)
,

C12 = c2 c1s1s2

((
−155α

2(Λ2,1 +41c2
1c2

2 +36)+192
)
e5

−(447α
2 (

Λ2,1−19c2
1c2

2−290
)
+708α +2)e3

−
(
67α

2 (
Λ2,1 + c2

1c2
2 +27

)
−1200α−16

)
e
)
,

C22 = s1s2

(
−60α

2c2
2c2

1e6

+
(−α2

2
(
71Λ5,2 +8c2

1c2
2−14

)
−57α

)
e4

+
(
α

2 (−147Λ2,1 +25c2
1c2

2−66
)
+486α +3

)
e2
)
,

C32 = c1s3
1c2s3

2α
2
(

85e5 +10e3
)
,

C42 =−
95
8

α
2s2

1s2
2 e4,
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where
Λn,i = c2

1 + c2
2(−1)inc2

1c2
2(−1)i.

As the van der Waals system includes several integrable cases, in order to study stability in those cases,
higher order normalization, at least second order, is needed. This subject will be tackled in future works.

Here we try only to identify relative equilibria. In fact, this is the procedure to follow in order to classify
and compute different types of orbits defined by our system. For the generic case, first order normalization is
sufficient. The second order normalization is required when we consider degenerate situations, connected with
integrable cases. For this reason we give both, first and second order in this section.

5 Searching for relative equilibria and invariant tori of the first order normalized system

Focusing on the task that we have announced before, we use the first order normalization of the Hamiltonian.
Thus the corresponding differential system is given by

˙̀=
∂H

∂L
=

γ2

L3 + ε
∂P

∂L
, L̇ =−∂H

∂`
= 0, (35)

ġ =
∂H

∂G
= ε

∂P

∂G
, Ġ =−∂H

∂g
, (36)

u̇1 =
∂H

∂U1
= ε

∂P

∂U1
, U̇1 =−

∂H

∂u1
= 0 (37)

u̇3 =
∂H

∂U3
= ε

∂P

∂U3
, U̇3 =−

∂H

∂u3
= 0 (38)

In other words L,U1 and U3 are integrals, as we already know, and the system splits into a 1-DOF Hamiltonian
system, namely

ġ = ε
∂P

∂G
, Ġ =−ε

∂P

∂g
(39)

and three quadratures coming from

˙̀=
γ2

L3 + ε
∂P

∂L
, u̇1 = ε

∂P

∂U1
, u̇3 = ε

∂P

∂U3
,

as soon as the system Eqs. (39) is solved. We are not going to explore this way, which moreover involves
hyperelliptic integrals. In other words, it will be more convenient to rely on numerical integrations.

Our previous work on this model concentrated on searching for relative equilibria related to singular points
of the energy-moment map. Furthermore, those singular points correspond to several kind of motion that are
not covered by the symplectic chart. Therefore, a complete analysis should be done using invariants rather than
symplectic variables. In fact the lower dimensional relative equilibria, i.e. those that correspond to invariant S1

or T2, are given by the singularity of the moment map for the T3-symmetry group, and can be described by a
moment polytope; for details see [18].

Excluding those solutions, in the remaining open domain we may use symplectic charts. Relative equilibria
of the system (35) - (38) may be classified as invariant k-tori (k = 1,2,3), since our 4-DOF original system
is endowed with two symmetries and the passage to a 1-DOF system is done by means of just one truncation
process. Notice that the procedure we follow for obtaining periodic solutions and invariant tori is not valid for
arbitrary perturbations. As a consequence of the Reeb Theorem [35, 37] one can only conclude the existence of
periodic solutions as single non-degenerate relative equilibria and their associated linear stability.
• invariant 3-tori. They are the solutions (g,G) of the system defined by

Ġ =−ε
∂P

∂g
= 0, ġ = ε

∂P

∂G
= 0. (40)
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as functions of U1, U3 and β .
• invariant 2-tori. In a similar way, the search for invariant 2-tori splits into the search the roots of the subsys-
tems. Namely

Ġ =−ε
∂P

∂g
= 0, ġ = ε

∂P

∂G
= 0, u̇1 = ε

∂P

∂U1
= 0, (41)

where the possible roots will be function of U3 and β , and

Ġ =−ε
∂P

∂g
= 0, ġ = ε

∂P

∂G
= 0, u̇3 = ε

∂P

∂U3
= 0, (42)

where the possible roots will be function of U1 and β .
• periodic orbits: The research for periodic orbits of the original system is equivalent [37] to find the roots of
the first reduced system of equations

Ġ =−ε
∂P

∂g
= 0, ġ = ε

∂P

∂G
= 0, u̇1 = ε

∂P

∂U1
= 0, u̇3 = ε

∂P

∂U3
= 0, (43)

Solutions of the system given by Eqs. (40) define invariant 3-tori T3(`,u1,u3), except for the singular points [18].
The system defined by Eqs. (41) gives the invariant 2-tori T2(`,u3), each of them is attached to a 2-torus T2(g,u1)
made of fixed points. Likewise the system defined by Eqs. (42) is the invariant 2-tori T2(`,u1), each of them
is attached to a 2-torus T2(g,u3) made of fixed points. Finally, the intersection of the previous types of 2-tori,
defined by the system of Eqs. (43), correspond to periodic solutions S1(`), each of them is attached to a 3-torus
T3(g,u1,u3) made of fixed points. They correspond to the short period solutions related to the unperturbed
system. In what follows we search for invariant 3-tori and periodic solutions of short period.

5.1 Searching for invariant 3-tori

To find families of relative equilibria (periodic orbits, invariant tori, etc), we start searching for invariant
3-tori, the common condition for all the cases. Explicitly, according to above paragraphs, the equations (40) are

∂C01

∂G
+

∂C11

∂G
cosg+

∂C21

∂G
cos2g = 0, (44)

(C11 +4C21 cosg) sing = 0. (45)

Due to the structure of Eq. (45), and keeping in mind the domain of existence of 4-D Delaunay variables, the
only possibility leading to roots is sing = 0. Replacing in (44), we have an equation to be solved for each of the
values of cosg, namely ±1. Such equations are:

∂C01

∂G
+

∂C11

∂G
+

∂C21

∂G
= 0,

∂C01

∂G
− ∂C11

∂G
+

∂C21

∂G
= 0. (46)

Both equations can be solved at one time applying the following strategy. By using the state functions (23) and
(26), both equations (46) can be rewritten in the form; R(η ,z,w)x(η ,z,w)+Q(η ,z,w)= 0 and R(η ,z,w)x(η ,z,w)−
Q(η ,z,w) = 0, in which:

x(η ,z,w) =
√
(1−w2)(1− z2)e,

R(η ,z,w) = (−(3+4α)η6 +(5w2 +7w2z2 +5z2)α η
2−20w2z2

α)η
2,

Q(η ,z,w) = α wz
[
η

8− (10+11w2 +w2z2)η4−11z3
η

3 (47)

+(15w2 +17w2z2 +15z2)η2 +5z5
η−20w2z2] .
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By multipliying equations Rx+Q = 0 and Rx−Q = 0 we obtain a new polynomial P(η) = R2x2−Q2 in η as
independient variable, where w, z and α are taken as parameters. The roots of P represent the set of solutions
for the original equations (46). Explicitly the polynomial is:

P(η) = a6η
6 +a5η

5 +a4η
4 +a3η

3 +a2η
2 +a1η +a0, (48)

where the coefficients are given by

a6 =−9−24α−16α
2,

a5 =w2(16α
2 +9−α

2z2 +24α)+9+24α +16α
2 + z2(24α +9 +16α

2),

a4 =w2(24α
2 +18α z2 +6α −9 −9z2 +30α

2z2w2)+ z2(6α +24α
2−9),

a3 =w4(−40α
2−42α z2−30α −34α

2z2 +2z4)+9z2w2−30z2−40α
2z2

−40α
2z4 +αw2(198z2−34αz4 +30 +285αz2 +40α +42z4)−30α z4,

a2 =α (30w4 +42z4w4 +192z2w4 +15α w4−17α z4w4 +266α z2w4−30z4

+266α z4w2 +192z4w2 +180z2w2 +290α z2w2 +15α z4),

a1 =α
2 (25w4−w6z6 +27w6z4−51w6z2 +25w6 +27z6w4−139z4w4

−225z2w4 +25z6 +25z4−51z6w2−225z4w2−50z2w2)

+150z2w4 +150z4w2 +162z4w4,

a0 =5α (α w6z4−3α w6z6−5α w6 +7α w6z2 +24z4w4 +α z6w4

+5α z2w4 +18α z4w4−5α z6 +5α z4w2 +7α z6w2).

This polynomial corresponds with the one obtained from the system (14) when we look for relative equilibria
within the Poisson approach [18]. The complexity in both analyses is similar because the polynomials are of the
same degree. It is straighforward to check that when we impose the constraint z = 0, we recover the expressions
of the study done with the classical Delaunay variables [22].

The search for possible invariant T2 solutions of Systems (41) and (42) requires a similar analysis. We will
not refer to them here. Instead, we focus on periodic orbits, where we obtain a benefit working in symplectic
formalism.

5.2 Searching for periodic orbits

With Poisson formalism, finding periodic solutions is in correspondence with computing relative equilibria
of the system defined with the normalized Hamiltonian (9). This study requires to deal with the constraints
defining CP3 and leads to a large polynomial system; for details see [18]. Although partial results are obtained,
the presence of the physical parameter introduces complicated expressions.

The situation changes dramatically when we switch to symplectic formalism. The complete system (43)
related to periodic solutions takes the form

∂C01

∂G
+

∂C11

∂G
cosg+

∂C21

∂G
cos2g = 0,

(C11 +4C21 cosg) sing = 0,
∂C01

∂U1
+

∂C11

∂U1
cosg+

∂C21

∂U1
cos2g = 0,

∂C01

∂U3
+

∂C11

∂U3
cosg+

∂C21

∂U3
cos2g = 0.

The solutions of the system are the set of the periodic orbits in the first order normalized problem. By solving
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the above system imposing α 6= 0, we obtain that periodic orbits are characterized by U1 =U3 = 0 and

|U1|= |U3|=

√
ecosg(4+5ecosg+ e2)+1− e2

ecosg(5ecosg+8+2e2)+3+2e2

|U1|= |U3|=

√
ecosg(−4+5ecosg− e2)+1− e2

ecosg(5ecosg−8−2e2)+3+2e2

(49)

Then (43) becomes a system of three equations given by

∂C01

∂G
+

∂C11

∂G
cosg+

∂C21

∂G
cos2g = 0,

(C11 +4C21 cosg) sing = 0,
∂C01

∂U3
+

∂C11

∂U3
cosg+

∂C21

∂U3
cos2g = 0.

(50)

Again we look for solutions when sing = 0. Then, we drop the second equation and we have two systems to
solve related to cosg =±1:

(i)
∂C01

∂G
+

∂C11

∂G
+

∂C21

∂G
= 0,

∂C01

∂U3
+

∂C11

∂U3
+

∂C21

∂U3
= 0, (51)

and

(ii)
∂C01

∂G
− ∂C11

∂G
+

∂C21

∂G
= 0,

∂C01

∂U3
− ∂C11

∂U3
+

∂C21

∂U3
= 0. (52)

Considering case (i), from the second equation we obtain

c2 (e2 +3e+1− c2
2 (2e+3)(e+1)) = 0.

Thus, we have either c2 = 0 or

c2
2 =

1+3e+ e2

(3+2e)(1+ e)
. (53)

If c2 = 0, we obtain α =−3/4. Otherwise, from the first equation we find

α =
3e(3+2e)2

3e4 +2e3−10e2−3e+8
(54)

Likewise, for the case (ii) the equation is

c2 (e2−3e+1− c2
2 (2e−3)(e−1)) = 0.

Hence, again c2 = 0 or

c2
2 =

1−3e+ e2

(2e−3)(e−1)
. (55)

If c2 = 0, we obtain α =−3/4. Otherwise, from the first equation now we find

α =− 3e(3−2e)2

3e4−2e3−10e2 +3e+8
. (56)

Thus, for each member of the van der Waals family defined by α , we have the relation between integrals which
give periodic orbits. The period is computed replacing those values in the right hand terms of (35).
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Conclusions and future work

In contrast to some claims in [7], Poisson and symplectic formulations of perturbed 4-D isotropic oscillators
systems behave as complementary in the analysis of the main features of those systems. The first approach, built
on the invariants and their algebraic relations, is necessary in order to carry out regular and singular reductions
of the systems, in particular when singular points are present in the reduced spaces. Nevertheless the use of
those invariants and their relations, introduce large computations in the search of relative equilibria, specially
when physical parameters are involved. Only those equilibria related to the symmetry groups of the system are
more easily computable.

The situation is rather different when the symplectic approach is followed. From the geometric mechanics
point of view this helps to portrait the toral structure of the phase space, necessary when stability KAM theory is
applied. Moreover, from the algebraic perspective, the number of equations and relations involved falls sharply
because there are no constraints. Normal forms are computed very efficiently in this frame. Of course, this is
at the expense of considering only an open domain of the phase space, where those symplectic variables are
defined. For this reason we should begin with Poisson formalism. It is only after studying singular points that
we can switch to symplectic techniques with properly chosen variables.

As an illustration, the van der Waals family is studied in detail here, showing the pros and cons of both
approaches. The reconstruction process connecting the whole analysis of relative equilibria with the original
system, is still to be tackled. In particular, the analysis of the different types periodic orbits.

An open question is whether there are other invariants which can lead to similar equations to those appearing
in symplectic variables . In the same vein, connected with our choice as 4D-Delaunay variables [24,27], it might
be worth considering other recent proposals [33, 34].
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