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Abstract
Along the years, the foundations of Fractal Geometry have received contributions starting from mathematicians like Cantor,
Peano, Hilbert, Hausdorff, Carathéodory, Sierpiński, and Besicovitch, to quote some of them. They were some of the
pioneers exploring objects having self-similar patterns or showing anomalous properties with respect to standard analytic
attributes. Among the new tools developed to deal with this kind of objects, fractal dimension has become one of the most
applied since it constitutes a single quantity which throws useful information concerning fractal patterns on sets. Several
years later, fractal structures were introduced from Asymmetric Topology to characterize self-similar symbolic spaces.
Our aim in this survey is to collect several results involving distinct definitions of fractal dimension we proved jointly with
Prof.M.A. Sánchez-Granero in the context of fractal structures.
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1 Introduction

The word fractal, which derives from the Latin term frangere (that means “to break”), has led to a very
important concept in mathematics since Mandelbrot first introduced it in early eighties [1]. In fact, both the
study and analysis of fractal patterns have become more and more important in the last years due to the large
number of applications to diverse scientific fields where fractals have been identified. They include economics,
physics, and statistics (c.f. [2, 3]). In addition, there has also been a special interest in the application of fractals
to social sciences (c.f. [4] and the references therein).
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The main tool used in these areas to deal with fractals is the fractal dimension since it is their main invariant
which throws some useful information about the complexity and irregularitires that a certain set presents once it
has been explored with enough level of detail. It is worth mentioning that fractal dimension theory has also been
applied in several scientific fields including the study of dynamical and mechanical systems [5, 6], diagnosis of
diseases (such as osteoporosis [7] or cancer [8]), ecology [9], earthquakes [10], detection of eyes in human face
images [11], analysis of the human retina [12], and brain computer interface systems [13], to name a few.

Usually, they are used both the Hausdorff and box dimensions, which can be defined on any metric space.
Thus, while the former is “better” from a theoretical approach (since its definition is based on a measure), the
latter is “better” from the viewpoint of applications, since it becomes easier to be empirically calculated or
estimated. In this way, we should mention here that most empirical applications involving fractal dimension
have been carried out in the context of Euclidean spaces through the box dimension.

The idea consisting of defining measures by means of coverings of certain subsets was first introduced
by Carathéodory (c.f. [14]). Afterwards, Hausdorff applied this method to define the measures that now bear
his name and showed that the middle third Cantor set has positive and finite measure of dimension equal to
log2/ log3 (c.f. [15]). Some properties and technical aspects regarding Hausdorff measures and dimensions
have been developed mainly by Besicovitch [16], Besicovitch and his pupils [17], Falconer [2, 18], Feder [3],
and Rogers [19].

On the other hand, it seems that the origins of box dimensions go back to the twenties, when they were
first explored by pioneers of Hausdorff measure and dimension. Nevertheless, they were rejected for being
less appropriate from a theoretical viewpoint. In this way, Bouligand adapted the Minkowski content to non-
integral dimensions (c.f. [20]), and the classical definition of box dimension was provided by Pontrjagin and
Schnirelman (c.f. [21]). Popularity of box dimension is mainly due to the possibility of its effective calculation
and empirical estimation. Box dimension is also known as Kolmogorov entropy, entropy dimension, capacity
dimension, metric dimension, information dimension, logarithmic density, . . . , etc.

The introduction of fractal structures, which were first sketched in [22] and then formally defined and applied
in [23] to characterize non-Archimedeanly quasi-metrizable spaces, has allowed to formalize some topics on
Fractal Geometry from both theoretical and applied viewpoints. A fractal structure is a countable collection
of coverings of a given set which provides better approximations to it as deeper stages (called levels of the
fractal structure) are explored. Accordingly, if we analyze the standard definition of the box dimension, then
we can observe that fractal structures provide a perfect context where new models of fractal dimension can be
provided. It is worth pointing out that the use of fractal structures allows to connect diverse interesting topics on
Topology like transitive quasi-uniformities, non-Archimedean quasi-metrization, metrization, topological and
fractal dimensions, self-similar sets, and even space-filling curves (c.f. [24]).

Moreover, self-similar sets constitute a kind of fractals which can be always endowed with a fractal structure
on a natural manner (first introduced in [25]). Along this survey, we shall provide some results allowing to
calculate the fractal dimension of self-similar sets throughout an easy equation only involving the similarity
ratios associated with the corresponding iterated function system.

First, we shall motivate each definition of fractal dimension and provide useful expressions to deal with its
effective calculation. We collect some connections of each definition of fractal dimension with the classical
definitions of fractal dimension, namely, both the box and the Hausdorff dimensions. In addition, we also
provide some links to other fractal dimensions defined from a fractal dimension approach. Interestingly, we
shall generalize the box dimension throughout the so-called fractal dimensions I, II, and III, whereas we shall
generalize the Hausdorff dimension by means of fractal dimensions V and VI. It is also worth mentioning that
fractal dimension IV constitutes a middle definition between Hausdorff and box dimensions.

Next, we summarize the content of each section in this survey.
In Section 2, we recall some concepts, results, and notations that become useful to develop a new theory of

fractal dimension for fractal structures. This section is focused on the following topics: quasi-pseudometrics,
fractal structures, iterated function systems, box and Hausdorff dimensions.
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In both Sections 3 and 4, we formally introduce fractal dimension I and II models to calculate the fractal
dimension of a set with respect to a fractal structure.They extend the classical box dimension theory to the
more general context of fractal structures. Thus, if it is selected the so-called natural fractal structure which any
Euclidean set can be always endowed with, then the box dimension remains a particular case. This idea allows
us to consider a wide range of fractal structures to calculate the fractal dimension of any set. Unlike it happens
with the classical theory of fractal dimension, the definitions we provide along this section can be computed
in contexts where the box dimension can lack sense or cannot be calculated. In fact, the new models can be
applied to calculate the fractal dimension of any space admitting a fractal structure as easy as the boxdimension
in empirical applications. The results contained in this section were first contributed in [26].

In Section 5, it is provided a new model to calculate the fractal dimension of a set with respect to a fractal
structure which generalizes the box dimension in Euclidean spaces. This has been carried out by means of
a suitable discretization regarding both the Hausdorff measure and dimension. Thus, we shall provide some
connections among this middle definition and the classical ones as well as with both fractal dimensions I and II
explored in previous Sections 3 and 4. In this way, we shall generalize them and provide an easy expression to
calculate the fractal dimension of strict self-similar sets not required to satisfy the so-called open set condition.
The results appeared along this section were first contributed in [27].

In Section 6, we study how to generalize the Hausdorff dimension throughout three new models of fractal
dimension for a fractal structure: two of them consist of discretizations of the Hausdorff dimension (fractal
dimensions IV and V), while the remaining one becomes a new continuous approach to Hausdorff dimension
from a fractal structure approach. We shall collect several results where the three new definitions are connected
among them and also with fractal dimensions I, II, and III as well as with classical dimension. It is worth
noting that the analytic construction of fractal dimension VI is based on a measure as it is the case of Hausdorff
dimension. Additionally, we shall generalize Hausdorff dimension by means of fractal dimensions V and VI in
the context of Euclidean sets endowed with their natural fractal structures. The results appeared in this section
first appeared in [28].

2 Preliminaries

The main goal in this section is to recall some notations, definitions, and notations that will result useful
to tackle with a new theory of fractal dimension for fractal structures. In this way, we shall be focused on
quasi-pseudometrics, fractal structures, iterated function systems, and Hausdorff and box dimension topics.

2.1 Quasi-pseudometrics

A quasi-pseudometric on a set X is a non-negative real-valued function ρ defined on X ×X such that for all
x,y,z ∈ X , the two following conditions are satisfied:

1. ρ(x,x) = 0.

2. ρ(x,y)≤ ρ(x,z)+ρ(z,y).

Moreover, if ρ satisfies also the next one:

3. ρ(x,y) = ρ(y,x) = 0 if and only if x = y,

then ρ is called a quasi-metric. In particular, a non-Archimedean quasi-pseudometric is a quasi-pseudometric
which also satisfies that ρ(x,y) ≤ max{ρ(x,z),ρ(z,y)} for all x,y,z ∈ X . Each quasi-pseudometric ρ on X
generates a quasi-uniformity Uρ on X which has as a base the family of sets of the form {(x,y) ∈ X ×X :
ρ(x,y)< 1/2n} : n ∈N. The topology τ(Uρ) induced by the quasi-uniformity Uρ will be denoted τ(ρ), merely.
Therefore, a topological space (X ,τ) is said to be (non-Archimedeanly) quasi-pseudometrizable if there exists
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a (non-Archimedean) quasi-pseudometric ρ on X such that τ = τ(ρ). The theory of quasi-uniform spaces is
covered in detail in [29].

Let (X ,ρ) be a (quasi-)metric space. Then we shall denote the diameter of a subset A ⊆ X by diam(A) =
sup{ρ(x,y) : x,y∈ A}, as usual. In addition, Bρ(x,ε) will denote the ball centred in x ∈ X with radius ε > 0 with
respect to the metric (resp. quasi-metric) ρ , namely, Bρ(x,ε) = {y ∈ X : ρ(x,y)< ε}.

2.2 Fractal structures

The concept of fractal structure was first introduced in [23] to characterize non-Archimedeanly quasi-
metrizable spaces though it can be also used to deal with fractals. For instance, in [25] it was used to study
attractors of iterated function systems.

Fractal structures constitute a powerful tool to introduce new models for a fractal dimension definition since
it is a natural context where the concept of fractal dimension can be developed. Further, they will allow to
calculate the fractal dimension in new spaces and situations.

A family Γ of subsets of a given space X is called a covering if X = ∪{A : A ∈ Γ}. Let Γ be a covering
of X . Then we shall denote St(x,Γ) = ∪{A ∈ Γ : x ∈ A} and UxΓ = X \ ∪{A ∈ Γ : x /∈ A}. Furthermore, if
ΓΓΓ = {Γn}n∈N is a countable family of coverings of X , then we shall denote Uxn = UxΓn , U ΓΓΓ

x = {Uxn}n∈N, and
St(x,ΓΓΓ) = {St(x,Γn)}n∈N.

Next, we provide a first approach to define a fractal structure on a set X . Indeed, let Γ1 and Γ2 be two
coverings of X . Thus, we shall denote Γ1 ≺ Γ2 that Γ1 is a refinement of Γ2, namely, for all A ∈ Γ1 there exists
B ∈ Γ2 such that A ⊆ B. In addition to that, the notation Γ1 ≺≺ Γ2 means that Γ1 is a strong refinement of Γ2,
namely, Γ1 ≺ Γ2, and in addition, for all B ∈ Γ2 we can write B = ∪{A ∈ Γ1 : A⊆ B}. Thus, a fractal structure
on a set X can be defined as a countable family of coverings of X , ΓΓΓ = {Γn}n∈N, such that Γn+1 ≺≺ Γn for all
n ∈ N. Next, we provide the definition of a fractal structure on a topological space.

Definition 1. (c.f. [23, Definition 3.1]) Let X be a topological space.

1. A pre-fractal structure on X is a countable family of coverings, ΓΓΓ = {Γn}n∈N such that U ΓΓΓ
x is an open

neighborhood base for each x ∈ X .

2. Moreover, if Γn+1 is a refinement of Γn such that for all x ∈ A with A ∈ Γn, there exists B ∈ Γn+1 such that
x ∈ B⊆ A, then we will say that ΓΓΓ is a fractal structure on X .

3. If ΓΓΓ is a (pre-)fractal structure on X , then we will say that (X ,ΓΓΓ) is a generalized (pre-)fractal space or
merely a (pre-)GF-space. If there is no doubt concerning the fractal structure ΓΓΓ, then we will say that X is
a (pre-)GF-space.

It is worth noting that covering Γn is called level n of the fractal structure ΓΓΓ.
Remark 1. (c.f. . [27, Remark 2.2]) To simplify the theory, the levels of any fractal structure ΓΓΓ will not be
coverings in the usual sense. Thus, we shall allow that a set may appear more than once in any level of ΓΓΓ,
instead. For instance, Γ1 = {[0,1/2], [1/2,1], [0,1/2]} can be the first level of a fractal structure defined on
[0,1].

If ΓΓΓ is a pre-fractal structure, then any of its levels is a closure-preserving closed covering (c.f. [30, Propo-
sition 2.4]). Let ΓΓΓ be a fractal structure on X such that St(x,ΓΓΓ) is a neighborhood base for all x ∈ X . Then ΓΓΓ

is called a starbase fractal structure. Interestingly, starbase fractal structures are connected with metrizability
(c.f. [30, 31]). A fractal structure ΓΓΓ is finite provided that all its levels are finite coverings. A fractal structure
ΓΓΓ is said to be locally finite if for each level Γn of the fractal structure ΓΓΓ, it holds that any point x ∈ X belongs
to a finite number of elements A ∈ Γn. Additionally, a fractal structure ΓΓΓ is said to be ΓΓΓ−Cantor-complete if for
each decreasing sequence {An}n∈N (namely, An+1 ⊆ An for all n ∈ N) of subsets of X with An ∈ Γn, we have
∩n∈NAn 6= /0. In general, if Γn has the property P for all n ∈ N and ΓΓΓ = {Γn}n∈N is a fractal structure on X ,
then we will say that ΓΓΓ is a fractal structure with the property P and also that (X ,ΓΓΓ) is a GF-space under such
a property P .
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2.3 Iterated function systems

Self-similar sets are a kind of fractals that can be always endowed with a fractal structure in a natural way.
Along this section, we recall a standard approach to construct attractors of iterated function systems. In addition,
we shall also describe their natural fractal structure as self-similar sets. The results and properties described
below are essential to understand some results appeared in upcoming sections.

Firstly, let f : X −→X be a mapping defined on a metric space (X ,ρ). Recall that f is said to be Lipschitz if it
satisfies the following condition: ρ( f (x), f (y))≤ c ·ρ(x,y) for all x,y ∈ X , where c > 0 is the Lipschitz constant
associated with f . In particular, if c < 1, then f is said to be a contraction and c is called the contraction ratio
associated with f . In addition, if it is reached the equality in the previous expression, namely, ρ( f (x), f (y)) =
c ·ρ(x,y) for all x,y ∈ X , then we have a similarity and its Lipschitz constant is called its similarity ratio.

Next, let us recall the standard construction of self-similar sets provided by Hutchinson (c.f. [32]). Assume
that (X ,ρ) is a complete metric space and let { fi}m

i=1 be a finite set of contractions defined on X . The scheme
(X ,{ fi}m

i=1) is called an iterated function system (IFS). Thus, let us consider that IFS in order to define the
map W : H −→ H by W (A) = ∪m

i=1 fi(A) for all A ∈ H, where H denotes the hyperspace of X , namely, the set
consisting of all non-empty compact subsets of X .

It can be proved that W is a contraction with respect to the Hausdorff metric dH on H (c.f. [2, Section 9.1]),
with associated contraction ratio c < 1. In addition, since (X ,ρ) is a complete metric space, then (H,dH) also
is (due to Zenor-Morita’s Theorem). Hence, since we have a contraction on a complete metric space, then the
Banach fixed-point Theorem guarantees that there exists a unique non-empty compact subset K ⊆ X such that
K = W (K ). K is said to be the attractor of the corresponding IFS. A strict self-similar set is an attractor of
an IFS such that all its contractions are similarities. Along the sequel, by an IFS-attractor, we shall understand
the attractor of an IFS whose contractions are similarities.
The next example describes analytically the so-called Sierpiński gasket, first defined in [33].

Example 1. Let I = {1,2,3} and { fi}i∈I be a finite set of similarities defined from the Euclidean plane into itself
as follows:

fi(x,y) =


( x

2 ,
y
2) if i = 1

f1(x,y)+(1
2 ,0) if i = 2

f1(x,y)+(1
4 ,

1
2) if i = 3

for all (x,y) ∈ R2. Thus, the Sierpiński gasket is fully determined as the unique non-empty compact subset K
satisfying the following Hutchinson’s equation: K =∪i∈I fi(K ). It is worth noting that each component fi(K )
is a self-similar copy of the whole Sierpiński gasket.

As it was mentioned previously, attractors of IFSs can be always endowed with a natural fractal structure, first
sketched in [22] and formally defined later in [25]. It is worth pointing out that the latter provides the definition
of a fractal structure as a mathematical concept, whereas the former deals with the (natural) fractal structure of
a self-similar set. Next, we recall the description of such a fractal structure as provided in [25, Definition 4.4].

Definition 2. (c.f. [23, Definition 4.4]) Let I = {1, . . . ,m} be a finite index set, (X ,{ fi}i∈I) an IFS, and K the
attractor of that IFS. The natural fractal structure on K as a self-similar set is the countable family of coverings
ΓΓΓ = {Γn}n∈N, where Γn = { fω(K ) : ω ∈ In} for each n ∈N. Here, for n ∈N and each word ω = ω1 ω2 · · · ωn ∈
In, we shall denote fω = fω1 ◦ · · · ◦ fωn .

Remark 2. (c.f. [26, Remark 2.5]) Another suitable description concerning the levels of such a fractal structure
is as follows: Γ1 = { fi(K ) : i ∈ I} and Γn+1 = { fi(A) : A ∈ Γn, i ∈ I} for all n ∈ N.

In Example 1, it was analytically described the IFS whose attractor is the Sierpiński gasket. Next, we
describe the natural fractal structure that can be defined on this strict self-similar set.

Example 2. (c.f. [26, Example 2]) The natural fractal structure on the Sierpiński gasket as a self-similar set is
the countable family of coverings ΓΓΓ = {Γn}n∈N, where Γ1 is the union of three equilateral “triangles” with sides
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equal to 1/2, Γ2 consists of the union of 32 equilateral “triangles” with sides equal to 1/22, and in general, Γn is
the union of 3n equilateral “triangles” whose sides are equal to 1/2n for each natural number n. In addition, this
is a finite starbase fractal structure.

2.4 The box dimension

Fractal dimension is one of the main tools applied to study fractals since it is a single quantity which throws
useful information regarding their complexity when being examined with enough level of detail. It is worth not-
ing that fractal dimension is usually understood as the classical box-counting dimension (box dimension along
the sequel, for short) which is also known as information dimension, Kolmogorov entropy, capacity dimension,
entropy dimension, metric dimension, logarithmic density, . . . , etc. (c.f. [2, Section 3.1]).

Though the Hausdorff dimension can be also considered a fractal dimension, in practical applications it is
always used the box dimension since it can be easily calculated for a finite range of scales, which is the case of
empirical applications.Popularity of the box dimension is mainly due to the possibility of its effective calculation
and empirical estimation in Euclidean contexts. It is worth pointing out that, concerning applications of fractal
dimension, the box dimension can be estimated as the slope of the regression line of a log− log graph plotted
for a suitable discrete range of scales.

The basic theory on box dimension is covered in detail in [2]. Next, we recall the definition of the standard
box dimension.

Definition 3. (c.f. [2, Section 3.1] and [2, Equivalent definitions 3.1]) The (lower/upper) box-counting dimen-
sion of a subset F ⊆ Rd is given by the following (lower/upper) limit:

dimB(F) = lim
δ→0

logNδ (F)

− logδ
, (1)

where δ is the scale and Nδ (F) can be calculated equivalently throughout any of the following quantities
(see [2, Equivalent Definitions 3.1]):

1. The number of δ−cubes that intersect F , where a δ−cube in Rd is a set of the form
[k1δ ,(k1 +1)δ ]×·· ·× [kdδ ,(kd +1)δ ], where k1, . . . ,kd ∈ Z.

2. The number of δ = 1/2n−cubes that intersect F with n ∈ N.

3. The smallest number of sets of diameter at most δ that cover F .

4. The largest number of disjoint balls of radius δ with centres in F .

Notice also that the limit in Eq. (1) can be discretized by taking, for instance, δ = 1/2n. This is formalized
in the next remark.

Remark 3. (c.f. [2, Section 3.1] and c.f. [26, Remark 2.7]) To calculate the (lower/upper) box dimension of
any subset F of a Euclidean space Rd , it suffices with taking limits as δ → 0 through any decreasing sequence
{δn}n∈N satisfying that c ·δn ≤ δn+1 for all n ∈ N, where c ∈ (0,1) is a suitable constant. In particular, it holds
for δn = 1/2n.

2.5 The Hausdorff dimension

The main purpose of this section is to include a sketch about the construction of both Hausdorff measure
and dimension whose definitions and properties can be found out in [2, Chapter 2].

The first to define a measure by means of coverings of sets was Carathéodory in [14]. Later (1919), Hausdorff
used this method to define the measures that now bear his name, and showed that the middle third Cantor set
has positive and finite measure of dimension equal to log2/ log3 [15]. A detailed study regarding the analytical
properties of both Hausdorff measure and dimension was mainly developed by Besicovitch and his pupils.
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The Hausdorff dimension, which is the oldest definition of fractal dimension, presents the best analytical
properties. Indeed, note that this fractal dimension can be defined for any subset of a Euclidean (resp. metrizable)
space and its definition is based on a measure which makes it quite appropriate from a mathematical viewpoint.
Nevertheless, it presents some disadvantages, especially from the viewpoint of applications, since it can be hard
to calculate or to estimate.

Thus, while this fractal dimension is “better” from a theoretical approach, the box-counting dimension is
“better” for a wide range of applications. Next, let us recall the analytical construction of the Hausdorff dimen-
sion. Let (X ,ρ) be a metric space and δ be a positive real number. For any subset F of X , a δ−cover of F is a
countable family of subsets {Ui}i∈I such that F ⊆∪i∈IUi with diam(Ui)≤ δ for all i ∈ I. Let Cδ (F ) denote the
collection of all δ−covers of F . The underlying idea to define the Hausdorff measure consists of minimizing
the sum of the s−powers of the diameters of all the subsets for any δ−cover, where s is the fractal dimension to
be calculated. In this way, the following quantity can be defined:

H s
δ
(F) = inf

{
∑
i∈I

diam(Ui)
s : {Ui}i∈I ∈ Cδ (F)

}
. (2)

Note that when δ decreases, then the class Cδ (F) of all δ−covers of F is reduced and hence, the measure of F
increases. Accordingly, the next limit always exists:

H s
H(F) = lim

δ→0
H s

δ
(F) (3)

which is called the s−dimensional Hausdorff measure of F .
It is worth mentioning that Hausdorff measure generalizes the classical Lebesgue measure for Euclidean

subspaces. Indeed, if F is a Borel subset of Rd , then we have H d
H (F) = cd · vol d(F), where the constant

cd = π
d
2 /(2d ·(d

2 )!) is the volume of a d−dimensional ball of diameter equal to 1. In particular, H 0
H (F)= cd(F),

namely, the number of points in F ; H 1
H (F) is the length of a smooth curve F ; H 2

H (F) = π

4 · area(F), if F is a
smooth surface; H 3

H (F) = 4
3 π ·vol(F); and in general, H m

H (F) = cm ·vol m(F), if F is a smooth m−dimensional
submanifold of Rd , namely, an m−dimensional surface in the classical sense.

From Eq. (2), it becomes clear that for any set F and any scale δ ∈ (0,1), the quantity H s
δ
(F) is non-

increasing with s. Accordingly, H s
H(F) is also non-increasing with s (c.f. Eq. (3)). Let t > s and let {Ui}i∈I be a

δ -cover of F . Then ∑i∈I diam(Ui)
t ≤ δ t−s ·∑i∈I diam(Ui)

s, and taking infima in the last expression on the class
Cδ (F), it holds that H t

δ
(F) ≤ δ t−s ·H s

δ
(F). Letting δ → 0, we have H t

H(F) ≤ δ t−s ·H s
H(F). If H s

H(F) < ∞

when t > s, then H t
H(F) = 0. Thus, the point s where H s

H(F) “jumps” from ∞ to 0 is called the Hausdorff
dimension of F (also called the Hausdorff-Besicovitch dimension). In fact, the Hausdorff dimension of F can
be described in the following terms:

dimH(F) = inf{s≥ 0 : H s
H(F) = 0}= sup{s≥ 0 : H s

H(F) = ∞},

or equivalently,

H s
H(F) =

{
∞ if s < dimH(F)
0 if s > dimH(F).

(4)

In particular, if s = dimH(F), then H s
H(F) can be equal to 0,∞, and even it can happen that H s

H(F) ∈ (0,∞).
Next theorem collects several properties that are satisfied by Hausdorff dimension as a dimension func-

tion. Such a result will be referred to afterwards to compare these properties for the different models of fractal
dimension for fractal structures we shall introduce along upcoming sections.

Theorem 3. (c.f. [2, Section 2.2])

1. Monotonicity: if E ⊆ F , then dimH(E)≤ dimH(F).
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2. Countable stability: if {Fi}i∈I is a countable collection of sets, then

dimH (∪i∈IFi) = sup{dimH(Fi) : i ∈ I} . (5)

3. Countable sets: if F is a countable set, then dimH(F) = 0.

It is also worth mentioning that the finite stability property consists of dim(E∪F) = max{dim(E),dim(F)}.
Clearly, if countable stability implies finite stability. In addition, we say that a dimension function satisfies the
closure dimension property if there exists a subset F of X such that dim(F) 6= dim(F), where F denotes the
closure of F , namely, the smallest closed subset of Rd containing F .

The countable stability property satisfied by the Hausdorff dimension (c.f. Eq. (5)) is the key for the next
result.

Remark 4. There exists a Euclidean subset F such that dimH(F) 6= dimH(F).

Proof. Let F = Q∩ [0,1] considered as a Euclidean subset of the closed unit interval. Since F is countable,
then we have dimH(F) = 0 (due to Theorem 3 (3)). On the other hand, since F = [0,1], then it is clear that
dimH(F) = 1. Accordingly, dimH(F) 6= dimH(F).

It is also possible to calculate the Hausdorff dimension of a Euclidean subset F throughout δ−covers of F
consisting of open balls. In fact, if we define

Bs
δ
(F) = inf

{
∑
i∈I

diam(Bi)
s : {Bi}i∈I is a δ − cover of F by balls

}
,

then we obtain the measure Bs(F) = limδ→0 Bs
δ
(F) and also a dimension (we have to find out the point s

where Bs(F) “jumps” from ∞ to 0) which agrees with the classical Hausdorff dimension described above
(c.f. [2, Section 2.4]).

3 A box dimension type model

The main goal in this section is to generalize the classical box dimension in the broader context of fractal
structures. We state that whether the so-called natural fractal structure (which any Euclidean subset can be
always endowed with) is selected, then the box dimension remains as a particular case of the generalized fractal
dimension model we shall explore along this section. That idea allows to consider a wide range of fractal
structures to calculate the fractal dimension. Interestingly, unlike it happens with the classical box dimension,
the new model of fractal dimension can be further calculated in non-Euclidean contexts, where the classical
definitions of fractal dimension may lack sense. Another advantage of this new model of fractal dimension
regards the possibility of its effective calculation or estimation for any space admitting a fractal structure. To
calculate such a fractal dimension, we can proceed as easy as to estimate the box dimension in Euclidean
applications.

3.1 The natural fractal structure on Euclidean subsets

Let F be a subset of Rd and Nδ (F) be the number of 1/2n−cubes that intersect F (c.f. Definition 3 (2)).
Consider also Remark 3. First, we shall define a fractal structure which every Euclidean set can be always
endowed with. Such a fractal structure is locally finite and starbase.

Definition 4. (c.f. [26, Definition 3.1]) The natural fractal structure on every Euclidean space Rd is the countable
family of coverings ΓΓΓ = {Γn}n∈N whose levels are given by

Γn =

{[
k1

2n ,
k1 +1

2n

]
×·· ·×

[
kd

2n ,
kd +1

2n

]
: k1, . . . ,kd ∈ Z

}
.
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Next, we highlight that natural fractal structures can be induced on Euclidean subsets.

Remark 5. (c.f. [26, Remark 3.2]) Natural fractal structures can be always defined on Euclidean subsets from
previous Definition 4. For instance, the natural fractal structure (induced) on the closed unit interval [0,1] is
defined as the family of coverings ΓΓΓ = {Γn}n∈N whose levels are

Γn =

{[
k
2n ,

k+1
2n

]
: k = 0,1, . . . ,2n−1

}
.

The natural fractal structure on Rd is the tiling consisting of 1/2n−cubes on Rd . Hence, note that both
Definition 3 (2) of Nδ (F) and Definition 4 allow to affirm that N1/2n(F) equals the number of elements in level
n of the natural fractal structure that intersect a given subset F of Rd . Following the analogy with the Euclidean
case, we will define Nn(F) as the number of elements in level n of the fractal structure that intersect F .

3.2 Generalizing box dimension throughout fractal dimension I

Let us introduce our first generalized box dimension type model of fractal dimension.

Definition 5. (c.f. [26, Definition 3.3]) Let F be a subset of X , ΓΓΓ be a fractal structure on X , and Nn(F) be the
number of elements in level n of that fractal structure that intersect F . The (lower/upper) fractal dimension I of
F is defined as the following (lower/upper) limit:

dim1
ΓΓΓ(F) = lim

n→∞

1
n
· log2 Nn(F).

The following remark becomes especially appropriate to deal with empirical applications involving the cal-
culation of fractal dimensions.

Remark 6. (c.f. [26, Remark 3.4]) Fractal dimension I can be estimated in empirical applications throughout the
slope of a regression line comparing level n vs. log2 Nn(F), just like with box dimension estimation.

The first theoretical result we provide in this section establishes that fractal dimension I generalizes classical
box dimension in the context of Euclidean subsets endowed with their natural fractal structures.

Theorem 4. (c.f. [26, Theorem 3.5]) Let F be a subset of a Euclidean space Rd and ΓΓΓ be the natural fractal
structure on Rd . Then the (lower/upper) fractal dimension I of F equals the (lower/upper) box dimension of F,
namely:

dimB(F) = dim1
ΓΓΓ(F).

3.3 Theoretical properties of fractal dimension I

Recall that Hausdorff dimension constitutes the main theoretical model of fractal dimension that we should
be mirrored in when providing new definitions of fractal dimension. In this way, our next goal is to explore some
theoretical properties from those listed in both Theorem 3 and Remark 4 for fractal dimension I.

Proposition 5. (c.f. [26, Proposition 3.6]) Let ΓΓΓ be a fractal structure on X. The following statements hold.

1. Both the lower fractal dimension I and the upper fractal dimension I are monotonic.

2. The upper fractal dimension I is finitely stable.

3. There exist a countable subset F of X and a fractal structure ΓΓΓ on X such that dim1
ΓΓΓ
(F) 6= 0.

4. Neither the lower fractal dimension I nor the upper fractal dimension I are countably stable.

5. There exists a locally finite starbase fractal structure ΓΓΓ defined on a certain subset F ⊆ X such that
dim1

ΓΓΓ
(F) 6= dim1

ΓΓΓ
(F).
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3.4 Linking fractal dimension I to box dimension

Next step is to explore how box dimension and fractal dimension I are theoretically connected for any
generalized-fractal space. To deal with, first we shall define the diameter of any level of a fractal structure
and the diameter of any subset in a level of a fractal structure. Recall that a distance is a non-negative map
ρ : X×X −→ R such that ρ(x,x) = 0 for all x ∈ X .

Definition 6. (c.f. [26, Definition 3.7]) Let ΓΓΓ be a fractal structure on a distance space (X ,ρ) and F be a subset
of X .

1. The diameter of level n of ΓΓΓ is given by δ (Γn) = sup{diam(A) : A ∈ Γn}.

2. The diameter of F in level n of ΓΓΓ is calculated throughout the following expression:

δ (F,Γn) = sup{diam(A) : A ∈An(F)},

where An(F) = {A ∈ Γn : A∩F 6= /0}.

A feasible condition to be satisfied by a fractal structure consists of a geometric decrease regarding the
sequence of diameters {δ (F,Γn)}n∈N. That assumption leads to an upper bound to the box dimension of F in
terms of its fractal dimension I (up to a constant).

Theorem 6. (c.f. [26, Theorem 3.9]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of X,
and assume that there exists a constant c ∈ (0,1) such that the following condition stands:

δ (F,Γn+1)≤ c ·δ (F,Γn).

The three following hold:

1. dimB(F)≤ γc ·dim1
ΓΓΓ(F).

2. dimB(F)≤ γc ·dim1
ΓΓΓ
(F).

3. Additionally, if there exist both the fractal dimension I of F and the box dimension of F, then

dimB(F)≤ γc ·dim1
ΓΓΓ(F),

where the constant γc depends on c.

3.5 Fractal dimension I for IFS-attractors

It is worth noting that Theorem 6 can be extended to deal with IFS-attractors. In fact, this is due to the fact
that the sequence of diameters {δ (Γn)}n∈N for this kind of sets decrease geometrically. With this aim, we shall
select their natural fractal structures as self-similar sets.

Theorem 7. (c.f. [26, Corollary 3.10]) Let (X ,F ) be an IFS where X is a complete metric space and K is its
IFS-attractor. Moreover, let ΓΓΓ be the natural fractal structure on K as a self-similar set. Then

dimB(K )≤ γc ·dim1
ΓΓΓ(K ),

where c is the maximum of the contraction factors associated with F .
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3.6 Dependence of fractal dimension I on the fractal structure

Next, we highlight how fractal dimension I depends on a selected fractal structure.

Remark 7. (c.f. [26, Remark 3.11]) There exists a Euclidean subset C ⊂ R endowed with two distinct fractal
structures, say ΓΓΓ1 and ΓΓΓ2, such that dim1

ΓΓΓ1
(C ) 6= dim1

ΓΓΓ2
(C ).

Proof. Let ΓΓΓ1 be the natural fractal structure on the standard middle third Cantor set C . By Theorem 4, we have
dim1

ΓΓΓ1
(C ) = dimB(C ) and such a value equals log2/ log3 (c.f. [2, Example 3.3]). On the other hand, let ΓΓΓ2 be

the natural fractal structure on C as a self-similar set (c.f. Definition 2). Hence, dim1
ΓΓΓ2
(C ) = 1 since each level

n of ΓΓΓ2 contains 2n “subintervals” with lengths equal to 1/3n.
A fractal structure is a kind of uniform structure. In fact, if there is no metric available in the space, the only

way to “measure” a subset is by determining which level of the fractal structure contains that subset. In other
words, it becomes quite natural that fractal dimension I depends on a fractal structure as well as box dimension
depends on a metric.

4 A further step: fractal dimension II

Recall that fractal dimension I actually considers all the elements in level n of a fractal structure as having
the same “size” (equal to 1/2n). In addition to a fractal structure, we can define a metric in the space to powerful
effect. In fact, that metric can allow to “measure” the size of the elements in each level of the fractal structure.
This is the case of any Euclidean subset, where they can be always considered both the natural fractal structure
and the Euclidean metric.

Definition 7. (c.f. [26, Definition 4.1]) By a distance function (or a distance, for short), we shall understand a
non-negative map ρ : X×X −→ R such that ρ(x,x) = 0 for all x ∈ X .

Diameters of subsets, coverings, . . . with respect to a distance are defined as in the case of a metric.
The second model for fractal dimension we shall provide with respect to a fractal structure is formulated in terms
of a distance function.

Definition 8. (c.f. [26, Definition 4.2]) Let ΓΓΓ be a fractal structure on a distance space (X ,ρ), F be a subset of
X , and Nn(F) be the number of elements in level n of ΓΓΓ that intersect F . The (lower/upper) fractal dimension II
of F is defined as the following (lower/upper) limit:

dim2
ΓΓΓ(F) = lim

n→∞

logNn(F)

− logδ (F,Γn)
,

where δ (F,Γn) is the diameter of F in level n of ΓΓΓ.

4.1 A first connection between fractal dimensions I and II

In this subsection, we shall explore several conditions on the elements of each level of a fractal structure
to reach the equality between fractal dimensions I and II. To tackle with, first we shall define the concepts of a
semimetric on a topological space (c.f. [34, Definition 9.5]) and a semimetric associated with a starbase fractal
structure.

Definition 9.

1. (c.f. [34, Definition 9.5]) A semimetric on a topological space X is a non-negative map ρ : X ×X −→ R
satisfying the three following conditions:

(a) ρ(x,y) = 0, if and only if, x = y.
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(b) ρ is symmetric, namely, ρ(x,y) = ρ(y,x) for all x,y ∈ X .
(c) The family {Bρ(x,ε) : ε > 0} is a neighborhood base for all x ∈ X . Equivalently, the topology

induced by the semimetric ρ yields the starting topology.

2. (c.f. [25, Theorem 6.5]) Let ΓΓΓ be a starbase fractal structure on X . The semimetric associated with ΓΓΓ is
defined as the non-negative map ρ : X×X −→ R given by

ρ(x,y) =


0 if x = y
1/2n if y ∈ St(x,Γn)\St(x,Γn+1)
1 if y /∈ St(x,Γ1).

(6)

It is worth pointing out that Eq. (6) implies Bρ(x,1/2n)= St(x,Γn+1) for all n∈N and each x∈X . Moreover,
since ΓΓΓ is starbase, we can affirm that the topology induced by the semimetric ρ matches with the topology
induced by the fractal structure. Next, we contribute a condition concerning the levels of a (starbase) fractal
structure to reach the equality between fractal dimensions I and II.

Theorem 8. (c.f. [26, Theorem 4.6]) Let ΓΓΓ be a starbase fractal structure on (X ,ρ), where ρ is the semimetric
associated with the fractal structure ΓΓΓ, and F be a subset of X. Moreover, assume that for all n ∈ N there exists
x ∈ F such that St(x,Γn) 6= St(x,Γn+1). The three following hold.

1. dim1
ΓΓΓ(F) = dim2

ΓΓΓ(F).

2. dim1
ΓΓΓ
(F) = dim2

ΓΓΓ
(F).

3. Additionally, if there exists either the fractal dimension I of F or the fractal dimension II of F, then
dim1

ΓΓΓ
(F) = dim2

ΓΓΓ
(F).

Moreover, it can be also proved that fractal dimension II generalizes both fractal dimension I and box di-
mension in the context of Euclidean subsets endowed with their natural fractal structures. That result, which
extends former Theorem 4, is stated next.

Theorem 9. (c.f. [26, Theorem 4.7]) Let ΓΓΓ be the natural fractal structure on Rd and F ⊆ Rd . Then the
(lower/upper) box dimension of F equals both the (lower/upper) fractal dimension I of F and the (lower/upper)
fractal dimension II of F, namely:

dimB(F) = dim1
ΓΓΓ(F) = dim2

ΓΓΓ(F).

Notice that Theorem 9 allows to calculate the box dimension of any plane subset by counting triangles in-
stead of squares, for instance. To deal with, we could define a fractal structure on R2 consisting of triangulations
whose triangles have a diameter of 1/2n−order.

4.2 Theoretical properties of fractal dimension II

In this section, we theoretically explore the behavior of fractal dimension II as a dimension function similarly
to Proposition 5 for fractal dimension I.

Proposition 10. (c.f. [26, Remark 4.8 and Example 4]) Let ΓΓΓ be a fractal structure on a distance space (X ,ρ).
The following statements hold.

1. Both the lower fractal dimension II and the upper fractal dimension II are monotonic.

2. Neither the lower fractal dimension II nor the upper fractal dimension II are finitely stable.

3. There exist a countable subset F of X and a fractal structure ΓΓΓ on X such that dim2
ΓΓΓ
(F) 6= 0.

4. Neither the lower fractal dimension II nor the upper fractal dimension II are countably stable.

5. There exists a locally finite starbase fractal structure ΓΓΓ defined on a certain subspace F ⊆ X such that
dim2

ΓΓΓ
(F) 6= dim2

ΓΓΓ
(F).
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4.3 Dependence of fractal dimension II on both a fractal structure and a metric

In Remark 7, we highlighted the dependence of fractal dimension I on the selected fractal structure. Next,
we point out the additional dependence of fractal dimension II on a metric. In particular, we shall justify why
the fractal dimension II of the standard middle third Cantor set (endowed with its natural fractal structure as a
self-similar set) equals its box dimension.

Remark 8. (c.f. [26, Remark 4.9]) Let C denote the middle third Cantor set and ΓΓΓ be the natural fractal structure
on C as a self-similar set (c.f. Definition 2). Then the fractal dimension I of C does not equal its box dimension
(c.f. Remark 7). More specifically, it holds that dimB(C ) = log2/ log3, whereas dim1

ΓΓΓ
(C ) = 1. Observe that

these fractal dimensions have been calculated with respect to distinct fractal structures. In fact, the natural
fractal structure (induced) on C as a Euclidean subset is always chosen for box dimension calculation purposes.
Nevertheless, if the natural fractal structure on C as a self-similar set is considered to calculate the fractal
dimension II of C , then we still have

dimB(C ) = dim2
ΓΓΓ(C ) = log2/ log3.

Proof. Indeed,

dim2
ΓΓΓ(C ) = lim

n→∞

log2n

− log3−n =
log2
log3

= dimB(C ),

since level n of ΓΓΓ consists of 2n “subintervals” with diameters equal to 1/3n.
Even more, though the value obtained in Remark 7 for dim1

ΓΓΓ
(C ) may seem counterintuitive at a first glance,

it still becomes possible to justify it through its fractal dimension II value. Once again, the key reason lies in the
fact that fractal dimension I only depends on the selected fractal structure. This is emphasized along the next
remark.

Remark 9. (c.f. [26, Remark 4.10]) Fractal dimension I only depends on a fractal structure whereas fractal
dimension II also depends on a distance.

Proof. To highlight that difference, we shall construct a family of spaces which are the same from the viewpoint
of fractal structures. To deal with, let us consider slight modifications from the middle third Cantor set C ,
which will we shall denote by Ci. Let us assume that their similarity ratios are ci ∈ [1

3 ,
1
2) for each of the two

similarities that yield Ci. In addition, let ΓΓΓi be the natural fractal structure on each space Ci as a self-similar set.
Then δ (Ci,Γn) = cn

i and hence, easy calculations lead to (or apply upcoming Theorem 17)

dimB(Ci) = dim2
ΓΓΓi
(Ci) =−

log2
logci

−→ 1 = dim1
ΓΓΓ(C ),

provided that ci→ 1/2.

4.4 Linking fractal dimension II to box dimension

In this subsection, we provide an upper bound for both the Hausdorff and the box dimensions of any subset
F in terms of its fractal dimension II.

Theorem 11. (c.f. [26, Theorem 4.11]) Let ΓΓΓ be a fractal structure on a distance space (X ,ρ), F be a subset of
X, and let us assume that δ (F,Γn)→ 0. The three following hold.

1. dimH(F)≤ dimB(F)≤ dim2
ΓΓΓ
(F).

2. If there exist both the box dimension and the fractal dimension II of F, then

dimH(F)≤ dimB(F)≤ dim2
ΓΓΓ(F).
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3. If there exists a constant c > 0 such that δ (F,Γn)≤ c ·δ (F,Γn+1), then dimB(F)≤ dim2
ΓΓΓ(F).

Theorem 11 also allows to achieve an upper bound for the box dimension of IFS-attractors throughout their
fractal dimension II values. That result is stated next.

Theorem 12. (c.f. [26, Corollary 4.12]) Let F be a Euclidean IFS whose IFS-attractor is K . In addition, let
F be a subset of K and ΓΓΓ be the natural fractal structure on K as a self-similar set. The three following hold.

1. dimB(F)≤ dim2
ΓΓΓ
(F).

2. If there exist both the box dimension and the fractal dimension II of F, then dimB(F)≤ dim2
ΓΓΓ
(F).

3. Assume that fi is a bi-Lipschitz function for some i ∈ I. Then dimB(F) ≤ dim2
ΓΓΓ(F). In particular, this

stands for strict self-similar sets.

Our next goal is to explore which properties underlying the natural fractal structure on any Euclidean space
(c.f. Definition 4) could allow to generalize Theorem 9. With this aim, observe that given a scale δ > 0, it holds
that any Euclidean subspace F of Rd such that diam(F) ≤ δ intersects at most to 3d δ−cubes. In this way,
a similar property in the broader context of fractal structures would lead to an additional connection between
fractal dimension II and box dimension.

Definition 10. Let ΓΓΓ be a fractal structure on X and F be a subset of X . We shall understand that ΓΓΓ is under
the κ−condition if there exists a natural number κ such that for all n ∈ N, every subset A of X with diam(A)≤
δ (F,Γn) intersects at most to κ elements in level n of ΓΓΓ.

Theorem 13. (c.f. [26, Theorem 4.13]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of X,
and assume that δ (F,Γn)→ 0. In addition, assume that ΓΓΓ is under the κ−condition. The three following hold.

1. dimB(F)≤ dim2
ΓΓΓ
(F)≤ dim2

ΓΓΓ(F)≤ dimB(F).

2. If there exists dimB(F), then dimB(F) = dim2
ΓΓΓ
(F).

3. If there exists a constant c ∈ (0,1) such that c · δ (F,Γn) ≤ δ (F,Γn+1), then dimB(F) = dim2
ΓΓΓ(F) and

dimB(F) = dim2
ΓΓΓ
(F).

It is worth pointing out that the main hypothesis in Theorem 13 to reach the equality between fractal dimen-
sion II and box dimension is necessary as the following counterexample highlights.

Counterexample 14. (c.f. [26, Remark 4.14]) There exists a Euclidean IFS F whose IFS-attractor K , endowed
with its natural fractal structure as a self-similar set, satisfies that dimB(K ) 6= dim2

ΓΓΓ
(K ).

Proof. Let I = {1, . . . ,8} be a finite index set and (R2,F ) be a Euclidean IFS whose associated attractor is
K = [0,1]× [0,1]. Further, define the contractions fi : R2 −→ R2 as follows:

fi(x,y) =
{
( x

2 ,
y
4)+(0, i−1

4 ) if i = 1,2,3,4
( x

2 ,
y
4)+(1

2 ,
i−5

4 ) if i = 5,6,7,8.

In addition, let ΓΓΓ be the natural fractal structure on K as a self-similar set. First, notice that the self-maps fi are
not similarities but affinities and all of them have the same contraction ratio, namely, ci = 1/2. It is also clear
that dimB(K ) = 2.
On the other hand, there are 8n rectangles in level n of ΓΓΓ whose dimensions are 1

2n × 1
22n . Hence,

diam(A) = δ (K ,Γn) =

√
1+22n

24n
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for all A ∈ Γn. Next, we calculate the fractal dimension II of K .

dim2
ΓΓΓ(K ) = lim

n→∞

logNn(K )

− logδ (K ,Γn)
= lim

n→∞

3n log2

−1
2 log 1+22n

24n

= lim
n→∞

3n log2
n log2

= 3.

We also provide lower bounds for the ratios between δ (K ,Γn) and the sides of each 1
2n × 1

22n−rectangle:√
1+22n

24n

1
22n

=
√

1+22n > 2n,

√
1+22n

24n

1
2n

=

√
1+

1
22n ≥

1
2n .

Accordingly, each subset A ⊂K whose diameter is at most
√

1+22n

24n intersects at most to 3 · 2n+1 elements in
level n of ΓΓΓ. Since that quantity depends on each n ∈ N, then the κ−condition is not satisfied.

4.5 Generalizing fractal dimension I by fractal dimension II

Let us recall when two sequences of positive real numbers are said to be of the same order.

Definition 11. (c.f. [26, Section 4]) Let f ,g : N−→ R be two sequences of positive real numbers. It is said that
f and g are of the same order, namely, O( f ) = O(g), if and only if, the following condition stands:

lim
n→∞

f (n)
g(n)

∈ (0,∞).

Thus, if it is assumed that all the elements in each family An(F) have a diameter of 1/2n−order, then it can
be proved that fractal dimension II equals fractal dimension I.

Theorem 15. (c.f. [26, Theorem 4.15]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of
X, and assume that diam(A) = δ (F,Γn) for all A ∈An(F). If O(δ (F,Γn)) = O(1/2n), then the (lower/upper)
fractal dimension I of F equals the (lower/upper) fractal dimension II of F, namely,

dim1
ΓΓΓ(F) = dim2

ΓΓΓ(F).

4.6 Fractal dimension II for IFS-attractors

Fractal dimension II provides an upper bound concerning the box dimension of any Euclidean IFS-attractor
(c.f. Corollary 12). Going beyond, it is even possible to reach that equality under certain conditions on the
corresponding IFS. More specifically, this kind of result stands provided that the elements in each level of the
fractal structure do not overlap “too much”. Hence, due to the shape of the elements in the natural fractal
structure which any IFS-attractor can be endowed with, this restriction will rely on the similarities of the IFS. In
this context, the so-called open set condition (OSC) plays a key role.

Definition 12. Let F be an IFS and K be its IFS-attractor.

1. (c.f. [32, Section 5.2]) We understand that F is under the OSC if there exists a (non-empty) bounded open
subset V ⊆ X such that ∪i∈I fi(V )⊂ V , where fi(V )∩ f j(V ) = /0 for all i 6= j.

2. (c.f. [35]) Additionally, if V ∩K 6= /0, then F is said to satisfy the strong open set condition (SOSC).

Schief proved that both the OSC and the SOSC are equivalent for Euclidean IFSs (c.f. [36, Theorem 2.2]).
In 1946, P.A.P. Moran contributed a strong result allowing the calculation of both the box and the Hausdorff
dimensions for a certain class of Euclidean IFS-attractors throughout the (unique) solution of an equation only
involving the similarity ratios associated with each similarity of the IFS (c.f. [37, Theorem III] and [2, Theorem
9.3]). That classical result is stated next.
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Theorem 16 (Moran, 1946). Let F = { f1, . . . , fk} be a Euclidean IFS under the OSC whose IFS-attractor is K
and ci be the similarity ratio associated with each similarity fi ∈F . Then dimH(K ) = dimB(K ) = s, where s
is the unique solution of the following expression:

k

∑
i=1

cs
i = 1. (7)

Additionally, for that value of s, H s
H(K ) ∈ (0,∞).

Accordingly, under the OSC, the box dimension of any IFS-attractor equals its Hausdorff dimension, and that
common value can be easily calculated from Eq. (7). The next result we provide guarantees the equality between
the box dimension and the fractal dimension II of IFS-attractors lying under the OSC. Indeed, the calculation of
these dimensions follows immediately from the number of similarities in the IFS and their common similarity
ratio, as in [37, Theorem II].

Theorem 17. (c.f. [26, Theorem 4.19]) Let F = { f1, . . . , fm} be a Euclidean IFS under the OSC whose IFS-
attractor is K and let ΓΓΓ be the natural fractal structure on K as a self-similar set. Moreover, assume that all
the similarities fi ∈F have a common similarity ratio c ∈ (0,1). Then

dimB(K ) = dim2
ΓΓΓ(K ) =− logm

logc
.

We would like to point out that the hypothesis consisting of equal similarity ratios in Theorem 17 is neces-
sary. Recall that Counterexample 14 implies that all the contractions involved in Theorem 17 must be similari-
ties. Further, the following counterexample justifies why all the similarity ratios must be equal.

Counterexample 18. (c.f. [26, Remark 4.20]) There exists a Euclidean IFS F under the OSC whose IFS-
attractor K , endowed with its natural fractal structure as a self-similar set, satisfies that dimB(K )< dim2

ΓΓΓ
(K ).

Proof. Let F = { f1, f2} be a Euclidean IFS with similarities f1, f2 : R−→ R defined by

fi(x) =
{ x

2 if i = 1
x+3

4 if i = 2.

It is clear that their associated contraction ratios are c1 = 1/2 and c2 = 1/4, respectively. Moreover, it holds
that K is a strict self-similar set. It is also possible to justify that F is under the OSC. In fact, let V =
(0,1) ⊂ R. Thus, Moran’s Theorem allows to affirm that the box dimension of K equals the solution of the
equation 1

2s +
1
4s = 1. Hence, dimB(K ) = log(1+

√
5

2 )/ log2. Finally, observe that there are 2n “subintervals” of
[0,1] in level n of the fractal structure ΓΓΓ, where the diameter of the largest of them equals 1/2n. Accordingly,
dim2

ΓΓΓ
(K ) = 1 > dimB(K ).

5 A middle definition between Hausdorff and box dimensions

In both Sections 3 and 4, two novel definitions of fractal dimension for a fractal structure have been explored.
Recall that fractal dimension I allows a selection involving a larger collection of fractal structures than box
dimension. In fact, the natural fractal structure on any Euclidean subset (c.f. Definition 4) throws the classical
box dimension as a particular case (c.f. Theorem 4).

On the other hand, though the fractal dimension II model allows the possibility that different diameter sets
could appear in a level of a fractal structure, it does not actually distinguish among different diameter sets (c.f.
Remark 9). Recall that we have to count the number of elements in each level of a fractal structure that intersect
a given set F to calculate its fractal dimensions I and II. Then we have to weigh these quantities by a discrete
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scale: either a fixed quantity for each level (in the case of fractal dimension I) or the “largest” diameter of all the
elements in each family An(F)= {A∈Γn : A∩F 6= /0} (in the case of fractal dimension II). Both ideas give rise to
suitable discretizations regarding the classical box dimension definition. Nevertheless, the Hausdorff dimension
still constitutes the most accurate model to calculate the fractal dimension in metrizable spaces. Being based on
this classical definition of dimension, our main goal along this section is to analytically construct a new definition
of fractal dimension with respect to a fractal structure which someway seems the Hausdorff dimension.

5.1 Analytical construction of a new fractal dimension

Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of X , and s ≥ 0. We shall “measure”
the size of each element in any collection An(F) by its diameter. Notice that the sum of the s−powers of the
diameters of all the elements in each family An(F) allows to “measure” the level of irregularity and complexity
of F provided that it is explored by a whole range of scales. In this way, we shall define the following expression
for each natural number n:

H s
n (F) = ∑{diam(A)s : A ∈An(F)}, (8)

as well as its asymptotic behavior,
H s(F) = lim

n→∞
H s

n (F). (9)

Recall that Hausdorff dimension is fully determined throughout the (unique) value of s satisfying the equality
sup{s : H s

H(F) = ∞} = inf{s : H s
H(F) = 0}, where H s

H(F) denotes the s−dimensional Hausdorff measure.
Following the above, our next goal is to verify a property of this kind for the set function H s(F) just defined in
Eq. (9) with respect to a fractal structure. To deal with, let t be another non-negative real number and consider
Eq. (8). Then

∑
A∈An(F)

diam(A)t ≤ δ (F,Γn)
t−s · ∑

A∈An(F)

diam(A)s. (10)

Observe that Eq. (10) is equivalent to

H t
n (F)≤ H s

n (F) ·δ (F,Γn)
t−s.

Letting n→ ∞, we have
H t(F)≤H s(F) · lim

n→∞
δ (F,Γn)

t−s.

Hence, if H s(F) < ∞ and δ (F,Γn)→ 0 for all t > s, then it holds that H t(F) = 0. Accordingly, under the
natural hypothesis consisting of the sequence of diameters {δ (F,Γn)}n∈N goes to 0 (such a condition regarding
the elements in each level of ΓΓΓ makes the fractal structure being starbase, c.f. [26, Proposition 3.8]), our new
theoretical method to calculate the fractal dimension of a subset with respect to a fractal structure establishes
that this value is exactly the unique critical point where H s(F) “jumps” from ∞ to 0. Formally, the new fractal
dimension for a fractal structure can be described as follows:

sup{s≥ 0 : H s(F) = ∞}= inf{s≥ 0 : H s(F) = 0},

provided that δ (F,Γn)→ 0. Going beyond, that hypothesis, which is only a natural constraint concerning the
size of the elements in each level of the involved fractal structure, becomes necessary as the next counterexample
highlights.

Counterexample 19. (c.f. [27, Remark 4.1]) There exist a fractal structure ΓΓΓ on a metric space (X ,ρ) and a
subset F of X with δ (F,Γn)9 0, satisfying that

inf{s≥ 0 : H s(F) = 0} 6= sup{s≥ 0 : H s(F) = ∞}.
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Proof. Indeed, let F = [0,1]× [0,1] and ΓΓΓ be the natural fractal structure on the unit square as a Euclidean subset
but adding F itself to each level of ΓΓΓ. We shall apply Eqs. (8) and (9) to calculate the fractal dimension of F . In
this case, we have δ (F,Γn) =

√
2 for all n ∈ N, leading to δ (F,Γn)9 0. Moreover, the next expression holds:

H s
n (F) = 2

s
2 ·
(

1+
1

2n(s−2)

)
.

Hence, it becomes clear that

H s(F) =

{
∞ if s < 2
2

s
2 if s > 2,

which implies inf{s≥ 0 : H s(F) = 0} 6= sup{s≥ 0 : H s(F) = ∞}.
However, unlike it happens with the s−dimensional Hausdorff measure H s

H(F) (which always exists for all
subsets of X), the set function H s

n (F) described in Eq. (8) is not monotonic in n ∈ N. This implies that H s(F)
does not exist in general. Consequently, it becomes necessary to consider again lower/upper limits in Eq. (9).

Interestingly, the problem consisting of the existence of the limit in Eq. (9) can be avoided whether the
families An(F) are properly replaced by the following coverings of F by elements of a certain level of ΓΓΓ,
instead:

An,3(F) = ∪{Am(F) : m≥ n}. (11)

It is noteworthy that whether the families An,3(F) are considered to calculate the fractal dimension of F , then
the arguments carried out above still remain valid.

5.2 Defining fractal dimension III

Next, we provide the key definition of fractal dimension for a fractal structure we shall explore along this section.

Definition 13. (c.f. [27, Definition 4.2]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of
X , and assume that δ (F,Γn)→ 0. Moreover, consider

H s
n,3(F) = inf{H s

m(F) : m≥ n}, (12)

where
H s

n (F) = ∑{diam(A)s : A ∈An(F)},

and
H s

3 (F) = lim
n→∞

H s
n,3(F).

The fractal dimension III of F is defined as the following critical point:

dim3
ΓΓΓ
(F) = sup{s≥ 0 : H s

3 (F) = ∞}= inf{s≥ 0 : H s
3 (F) = 0}.

It is worth pointing out that the sequence {H s
n,3(F)}n∈N provided in Eq. (12) can be also described through-

out any of the equivalent expressions provided in the next remark.

Remark 10. (c.f. [27, Remark 4.3]) The following expressions are equivalent to calculate H s
n,3(F) for all subset

F of X and all natural number n:

1. inf{H s
m(F) : m≥ n}.

2. inf{∑A∈Am(F) diam(A)s : m≥ n}.

3. inf{∑A∈B diam(A)s : B ∈An,3(F)}, where An,3(F) was given previously in Eq. (11).
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From Definition 13 of fractal dimension, it follows that the quantity H s
3 (F) can be described similarly to

H s
H(F) in terms of dim3

ΓΓΓ
(F), instead (c.f. Eq. (4)):

H s
3 (F) =

{
∞ if s < dim3

ΓΓΓ
(F)

0 if s > dim3
ΓΓΓ
(F),

(13)

provided that δ (F,Γn)→ 0.
Additionally, the next remark becomes quite useful for fractal dimension III calculation purposes, since it

highlights that it is no longer necessary to consider lower/upper limits to define H s
3 (F).

Remark 11. (c.f. [27, Remark 4.4]) Since H s
n,3(F) is the general term of a monotonic sequence in n ∈ N, then

the fractal dimension III of any subset F of X always exists.

5.3 Linking fractal dimension III to some fractal dimensions

Along this subsection, we contribute several results to theoretically connect fractal dimension III with the
classical definitions of fractal dimension, namely, both Hausdorff and box dimensions, as well as with fractal
dimension II, previously explored in Section 4 for fractal structures.

Theorem 20. (c.f. [27, Theorem 4.5]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and F be a subset of
X. In addition, assume that δ (F,Γn)→ 0. The three following hold.

1. dim3
ΓΓΓ
(F)≤ dim2

ΓΓΓ
(F)≤ dim2

ΓΓΓ(F).

2. If diam(A) = δ (F,Γn) for all A ∈An(F), then dimB(F)≤ dim3
ΓΓΓ
(F).

3. dimH(F)≤ dim3
ΓΓΓ
(F).

The next corollary stands immediately from Theorem 20.

Corollary 21. (c.f. [27, Corollary 4.6]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and F be a subset
of X. In addition, assume that δ (F,Γn)→ 0. The two following hold.

1. dimH(F)≤ dim3
ΓΓΓ
(F)≤ dim2

ΓΓΓ
(F)≤ dim2

ΓΓΓ(F).

2. If diam(A) = δ (F,Γn) for all A ∈An(F), then dimH(F)≤ dimB(F)≤ dim3
ΓΓΓ
(F)≤ dim2

ΓΓΓ
(F)≤ dim2

ΓΓΓ(F).

5.4 How to calculate the effective fractal dimension III

For a given subset F ⊆ X , the calculation of each term in the sequence H s
n (F) (c.f. Eq. (8)) seems to be

easier to be calculated than the corresponding in H s
n,3(F) (as described in Eq. (12)). In addition, as Remark 11

points out, fractal dimension III always exists provided that the set function H s
n,3 is considered to deal with its

effective calculation. Following the above, the next theoretical result we provide allows the calculation of fractal
dimension III from easier Eqs. (8) and (9).

Theorem 22. (c.f. [27, Theorem 4.7]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and F be a subset of
X. In addition, assume that there exists H s(F) and δ (F,Γn)→ 0. The fractal dimension III of F is the unique
critical point described as follows:

dim3
ΓΓΓ
(F) = sup{s≥ 0 : H s(F) = ∞}= inf{s≥ 0 : H s(F) = 0}.
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5.5 Measure properties of H s
n,3

As well as the Hausdorff dimension definition is based on the s−dimensional Hausdorff measure H s
H , next

we shall explore some measure properties regarding the set functions H s
n,3,H

s
3 , and H s that allow the calcula-

tion of the fractal dimension III for any subset F ⊆ X .
To deal with, let P(X) denote the class of all subsets of a given space X . Recall that an outer measure is a

set function µ : P(X)−→ [0,∞] satisfying the three following conditions (c.f., e.g., [38, Section 5.2]):

1. It assigns the value 0 to the empty set, namely, µ( /0) = 0.

2. It is monotonic increasing, i.e., if E,F ∈P(X) : E ⊆ F , then µ(E)≤ µ(F).

3. It is countably subadditive, namely, it satisfies that

µ (∪n∈NAn)≤
∞

∑
n=1

µ(An)

for all sequence {An}n∈N ⊆P(X).

Notice that H s
n is an outer measure for all natural number n. Moreover, the following result concerning the set

function H s
n,3 can be stated.

Proposition 23. Let H s
n,3 : P(X)−→ [0,∞] be the set function defined by

H s
n,3(F) = inf{H s

m(F) : m≥ n}

(c.f. Eq. (12) or one of its equivalent expressions provided in Remark 10). Then H s
n,3(F) is an outer measure

for all n ∈ N.

It is worth mentioning that though the two set functions H s
n and H s

n,3 are outer measures for all natural
number n, their limits as n→ ∞ are not, in general, as the following counterexample points out.

Counterexample 24. (c.f. [27, Remark 4.8]) Neither H s nor H s
3 are outer measures.

5.6 Linking fractal dimension III to fractal dimensions I and II

Another issue naturally arising consists of determining some reasonable conditions on the elements in each
level of a fractal structure to guarantee the equality among fractal dimension III and fractal dimensions I and
II. In this way, the following result we provide allows the calculation of fractal dimension III from the fractal
dimension I formula provided that fractal structures having and appropriate size (of 1/2n−order) are selected to
deal with the calculations.

Theorem 25. (c.f. [27, Theorem 4.10]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and F be a subset
of X. Additionally, assume that δ (F,Γn)→ 0 and O(δ (F,Γn)) = O(1/2n). If there exists the fractal dimension
I of F, then

dim1
ΓΓΓ(F) = dim3

ΓΓΓ
(F).

Regarding the existence of the fractal dimension I of F in previous Theorem 25, it is noteworthy that whether
fractal dimension I does not exist, then Theorem 25 still throws the expected equality between (lower) fractal
dimensions I and fractal dimension III. Next, we shall highlight that theoretical fact.

Remark 12. (c.f. [27, Remark 4.11]) Under the hypothesis of Theorem 25, suppose that fractal dimension I does
not exist for a given subset F ⊆ X . Then we still have

dim1
ΓΓΓ(F) = dim3

ΓΓΓ
(F).
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Next step is to find out appropriate conditions regarding the size of the elements in each level of a fractal
structure to reach the equality between fractal dimensions II and III.

Theorem 26. (c.f. [27, Theorem 4.12]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and F be a subset
of X. Additionally, assume that δ (F,Γn)→ 0 and there exists a natural number n0 such that diam(A) = δ (F,Γn)
for all A ∈An(F) and all n≥ n0. If there exists the fractal dimension II of F, then

dim2
ΓΓΓ(F) = dim3

ΓΓΓ
(F).

Under the same hypothesis, a weaker result than Theorem 26 can be stated in the case that fractal dimension
II does not exist. This is similar to Remark 12 allowing dim1

ΓΓΓ
(F) = dim3

ΓΓΓ
(F).

Remark 13. (c.f. [27, Remark 4.13]) Under the hypothesis of Theorem 26, assume that fractal dimension II does
not exist for a given subset F ⊆ X . Then we have

dim2
ΓΓΓ(F) = dim3

ΓΓΓ
(F).

From both Remarks 12 and 13, we can state that fractal dimension III generalizes both fractal dimensions I
and II for fractal structures having 1/2n−order elements in each level n.

Corollary 27. (c.f. [27, Corollary 4.14]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and F be a subset
of X. Additionally, assume that diam(A) = δ (F,Γn) for all A ∈An(F) and O(δ (F,Γn)) = O(1/2n). Then

dim1
ΓΓΓ(F) = dim2

ΓΓΓ(F) = dim3
ΓΓΓ
(F).

It is worth mentioning that Corollary 27 allows the calculation of the fractal dimension III of any subset with
respect to a fractal structure ΓΓΓ under the conditions provided therein via an easier box dimension type formula.

Moreover, the following result establishes that all these fractal dimensions are equal in the context of Eu-
clidean GF-spaces equipped with their natural fractal structures. In other words, fractal dimension III generalizes
all the box dimension type models for fractal dimension including the classical one.

Theorem 28. (c.f. [27, Theorem 4.15]) Let ΓΓΓ be the natural fractal structure on Rd and F ⊆ Rd . Then the
(lower/upper) box dimension of F equals the (lower/upper) fractal dimensions I, II, and III of F, namely:

dimB(F) = dim1
ΓΓΓ(F) = dim2

ΓΓΓ(F) = dim3
ΓΓΓ
(F).

Previous Theorem 28 makes fractal dimension III to be understood as a hybrid approach to fractal dimension.
In fact, though the analytical construction of fractal dimension III is based on a suitable discretization regarding
the Hausdorff dimension, such a result states that fractal dimension III equals box dimension in the context of
Euclidean subsets equipped with their natural fractal structures.

It is also worth pointing out that Theorem 28 also allows the calculation of fractal dimension III for Euclidean
subsets throughout easier box dimension type expressions such as those provided in Sections 3 and 4.

5.7 Theoretical properties of fractal dimension III

Next, we collect several theoretical properties for fractal dimension III similarly to Proposition 5 for fractal
dimension I and Proposition 10 for fractal dimension II.

Proposition 29. (c.f. [27, Proposition 4.16]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and assume
that δ (F,Γn)→ 0. The following statements hold.

1. Fractal dimension III is monotonic.

2. Fractal dimension III is finitely stable.
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3. There exist a countable subset F of X and a fractal structure ΓΓΓ on X such that dim3
ΓΓΓ
(F) 6= 0.

4. Fractal dimension III is not countably stable.

5. There exists a locally finite starbase fractal structure ΓΓΓ defined on a certain subset F ⊆ X such that
dim3

ΓΓΓ
(F) 6= dim3

ΓΓΓ
(F).

5.8 An additional connection with box dimension

Recall that in Theorem 13, some properties regarding the elements in each level of a fractal structure were
provided to reach the equality between fractal dimension II and box dimension. It is worth pointing out that box
dimension may be also defined for metrizable spaces. The next result we provide has been carried out in the
spirit of Theorem 13 and generalizes Theorem 28.

Theorem 30. (c.f. [27, Theorem 4.17]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset
of X, assume that δ (F,Γn)→ 0, and suppose that ΓΓΓ is under the κ−condition. If diam(A) = δ (F,Γn) for all
A ∈An(F), and there exists dimB(F), then

dimB(F) = dim3
ΓΓΓ
(F).

5.9 Fractal dimension III for IFS-attractors

As it was stated previously in Subsection 4.6, the issue concerning the calculation of the fractal dimension
for IFS-attractors via algebraic expressions involving only a finite number of known quantities arises naturally
for each new definition of fractal dimension. It is worth pointing out that this kind of theoretical results are
inspired on classical Moran’s Theorem (c.f. Theorem 16) and usually assume that the similarities that give rise
to the IFS-attractor are under the OSC hypothesis (c.f. Definition 12). In fact, recall that this constitutes the
main constraint required to an IFS to reach the equality between the Hausdorff and the box dimensions of its
strict self-similar set (c.f. Theorem 16).

The OSC is a strong hypothesis requested to the self-similar copies of the whole IFS-attractor (sometimes
called pre-fractals) to guarantee that they do not overlap “too much”. In this way, Theorem 17 stands under the
OSC for fractal dimension II. Interestingly, the fractal dimension III model allows the calculation of the fractal
dimension of strict self-similar sets via a Moran’s type equation (c.f. Eq. (7)) even if the similarities of the IFS
do not lie under the OSC. This allows to generalize Moran’s Theorem in the context of fractal structures. To
prove such a theoretical result, both the natural fractal structure which any IFS-attractor can be always endowed
with (c.f. Definition 2 or Remark 2) and Equivalent definition (2) in Remark 10 for H s

n,3 do play a relevant role
herein.

Theorem 31. (c.f. [27, Theorem 4.20]) Let X be a complete metric space, F = { f1, . . . , fk} be an IFS whose
IFS-attractor is K , ci be the similarity ratio associated with each similarity fi on X, and ΓΓΓ be the natural fractal
structure on K as a self-similar set. Then

dim3
ΓΓΓ
(K ) = s :

k

∑
i=1

cs
i = 1.

Additionally, for this value of s, it holds that H s
3 (K ) ∈ (0,∞).

Next, we verify that Theorem 31 cannot be improved in the sense that the similarities fi ∈F , that give rise
to the IFS-attractor K , cannot be weakened to merely contractions. To deal with, we provide an appropriate
counterexample.

Counterexample 32. (c.f. [27, Remark 4.21]) There exists a Euclidean IFS F = { f1, . . . , fk} whose (non-strict)
IFS-attractor K , endowed with its natural fractal structure as a self-similar set, satisfies that

dim3
ΓΓΓ
(K ) 6= s :

k

∑
i=1

cs
i = 1.
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Proof. Let I = {1, . . . ,8} be a finite index set and (R2,F = { fi : i ∈ I}) be a Euclidean IFS whose attractor is
K = [0,1]× [0,1]. Define the self-maps fi : R2 −→ R2 as follows:

fi(x,y) =
{
(−y

2 , x
4)+(1

2 ,
i−1

4 ) if i = 1, . . . ,4
(−y

2 , x
4)+(1, i−5

4 ) if i = 5, . . . ,8.

In addition, let ΓΓΓ be the natural fractal structure on K as a self-similar set. First of all, notice that K is not a
strict self-similar set. Further, observe that the contractions fi are compositions of affine maps, including rota-
tions, dilations (in the plane and with respect to one coordinate), and translations. Moreover, all the contractions
fi have a common ratio, equal to 1/2. It is also clear that s = 3 is the solution of the equation ∑

k
i=1 cs

i = 1.
On the other hand, we affirm that dim3

ΓΓΓ
(K ) = 2. To deal with, we shall calculate the fractal dimension III

of K in the sense of Theorem 30. Consider all the even levels in ΓΓΓ. Thus, for all natural number n, each level
2n consists of squares with sides equal to 1/8n. Also, we have diam(A) = δ (K ,Γ2n) =

√
2/8n for all A ∈ Γ2n.

Letting n→∞, it holds that δ (K ,Γ2n)→ 0. Next, we verify that ΓΓΓ is under the κ−condition. We shall proceed
by calculating the maximum number of elements in Γ2n that are intersected by a subset B : diam(B) ≤

√
2/8n.

Observe that the ratio between the diameter of each square in level 2n and its side is equal to
√

2 < 2, then it
holds that the number of elements in A2n(B) is at most 3 in each direction for all subset B : diam(B)< δ (K,Γ2n).
Accordingly, κ1 = 9 provides a suitable constant for all the levels of even order in ΓΓΓ. Similarly, notice that all
the levels of odd order in ΓΓΓ consist of rectangles with dimensions 1

2 ·
1
8n × 1

4 ·
1
8n for all n ∈ N. It is worth noting

that all the elements in each odd level 2n+ 1 have the same diameter, equal to 1
4 ·
√

5
8n . Hence, the sequence of

diameters δ (K ,Γ2n+1)→ 0. Finally, to check the κ−condition, observe that the following ratios between each
diameter and the corresponding sides of each rectangle stand:

1
4 ·
√

5
8n

1
2 ·

1
8n

=

√
5

2
< 2,

1
4 ·
√

5
8n

1
4 ·

1
8n

=
√

5 < 3.

Therefore, each subset A : diam(A) ≤ δ (K ,Γ2n+1) meets at most to κ2 = 12 elements in each level of odd
order. Hence, the κ-condition is satisfied since κ = max{κ1,κ2} = 12 is a valid constant for any level of ΓΓΓ.
Accordingly,

dimB(K ) = dim3
ΓΓΓ
(K ) = 2.

As a consequence of Moran’s Theorem and Theorem 31, we have that the fractal dimension III of any IFS-
attractor (endowed with its natural fractal structure) equals both its Hausdorff and box dimensions provided that
the corresponding IFS is under the OSC.

Corollary 33. (c.f. [27, Corollary 4.22]) Let F be a Euclidean IFS under the OSC whose IFS-attractor is K ,
ci be the similarity ratio associated with each similarity fi ∈F , and ΓΓΓ be the natural fractal structure on K as
a self-similar set. Then

dimH(K ) = dimB(K ) = dim3
ΓΓΓ
(K ).

Nevertheless, as the following counterexample highlights, the OSC hypothesis cannot be removed in previ-
ous Corollary 33.

Counterexample 34. (c.f. [27, Remark 4.23]) There exists an IFS F = { f1, . . . , fk} whose IFS-attractor K ,
endowed with its natural fractal structure as a self-similar set, satisfies that

dimH(K ) 6= dim3
ΓΓΓ
(K ).

Proof. Let I = {1,2,3} be a finite index set and (R,{ fi : i ∈ I}) be an IFS whose attractor K = [0,1] satisfies
the Hutchinson’s equation K =

⋃
i∈I fi(K ). Define also the contractions fi : R−→ R as follows:

fi(x) =


x
2 if i = 1
x+1

2 if i = 2
2x+1

4 if i = 3.
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Additionally, let ΓΓΓ be the natural fractal structure on K as a self-similar set. Notice that K ⊆ R is a strict self-
similar set since all the contractions are similarities having a common similarity ratio, equal to 1/2. Moeover,
we have

∑
i∈I

cdim3
ΓΓΓ
(K )

i = 1,

due to Theorem 31. Hence, dim3
ΓΓΓ
(K ) = log3

log2 . On the other hand, both Theorems 15 and 25 lead to

dim1
ΓΓΓ(K ) = dim2

ΓΓΓ(K ) = dim3
ΓΓΓ
(K ) =

log3
log2

,

since all the elements in level n of ΓΓΓ are of 1/2n−order. Finally, assume that F is under the OSC. Thus,

dim3
ΓΓΓ
(K ) would equal dimH(K ) = 1,

by Corollary 33, a contradiction.
Following Remark 34, we conclude that fractal dimension III does not coincide, in general, with Hausdorff

dimension. Similarly, next we state that fractal dimension III may be also different from both fractal dimensions
I and II.

Remark 14. (c.f. [27, Remark 4.24]) There exists an IFS F = { f1, . . . , fk} whose IFS-attractor K , endowed
with its natural fractal structure as a self-similar set, satisfies that

dim1
ΓΓΓ(K ) = dim2

ΓΓΓ(K ) 6= dim3
ΓΓΓ
(K ).

Proof. Let I = {1,2,3} be a finite index set and (R,{ fi : i ∈ I}) be an IFS whose attractor K = [0,1] satisfies
the Hutchinson’s equation K =

⋃
i∈I fi(K ). Define also the self-maps fi : R−→ R by

fi(x) =


x
2 if i = 1
x+2

4 if i = 2
x+3

4 if i = 3.

Further, let ΓΓΓ be the natural fractal structure on K as a self-similar set. It is clear that K is a strict self-similar
set since all the self-maps fi are similarities. Moreover, the OSC is fulfilled. In fact, V = (0,1)⊂R is a feasible
open set. Hence, Corollary 33 leads to

dimH(K ) = dimB(K ) = dim3
ΓΓΓ
(K ) = 1.

On the other hand, notice that each covering Γn of ΓΓΓ contains 3n subintervals of [0,1]. Since δ (K ,Γn) = 1/2n,

dim1
ΓΓΓ(K ) = dim2

ΓΓΓ(K ) =
log3
log2

,

by applying both Definition 8 and Theorem 15.

6 Hausdorff dimension type models for fractal structures

In this section, we study how to generalize the Hausdorff dimension throughout three new models of fractal
dimension for a fractal structure: two of them will consist of an appropriate discretization regarding the Haus-
dorff dimension (fractal dimensions IV and V), whereas the remaining one will constitute a new continuous
approach from a fractal structure viewpoint (fractal dimension VI). Several theoretical results to connect the
three new definitions among them and also with fractal dimensions I, II, and III (introduced in previous sec-
tions) as well as with the classical definitions of fractal dimension will be provided. Moreover, we shall explore
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how the analytic construction regarding fractal dimension VI is based on a measure as it is the case of Haus-
dorff dimension. The main result in this section consists of a generalization of classical Hausdorff dimension
in the context of Euclidean subspaces (endowed with their natural fractal structures) throughout both fractal
dimensions V and VI. Finally, we shall contribute a result for IFS-attractors allowig to calculate these fractal
dimensions via an easy equation only involving the similarity factors associated with the corresponding IFS.

6.1 Improving the accuracy of fractal dimension III

Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of X , and assume that δ (F,Γn)→ 0.
It is worth mentioning that the topology induced by the fractal structure ΓΓΓ usually coincides with the topology
induced by the metric ρ on X . Thus, we shall always refer to the topology induced by ΓΓΓ, since both topologies
do not have to be the same, in general (c.f. [28, Remark 3.1]).

On the other hand, recall that the calculation of H s
n,3(F) basically consists of minimizing the sum of the

s−powers of the diameters of all the elements in an appropriate δ (F,Γn)−cover of F , say {Ai}i∈I , where all the
elements Ai belong to a same level of ΓΓΓ deeper than or equal to level n. Such a condition can be mathematically
described in the following terms: there exists m≥ n such that Ai ∈ Γm for all i ∈ I. A further consideration is to
allow that given a level n of ΓΓΓ, each element Ai may lie in a level deeper than or equal to n, though not always
being the same, necessarily. Formally, for all i ∈ I, there exists m(i) ≥ n such that Ai ∈ Γm(i). Accordingly, let
us define the following collection of δ (F,Γn)−coverings of F :

Bn(F) = {{Ai}i∈I : Ai ∈ ∪l≥nΓl,F ⊆ ∪i∈IAi} . (14)

Thus, let s≥ 0 and consider, additionally,

D s
n(F) = inf

{
∑
i∈I

diam(Ai)
s : {Ai}i∈I ∈Bn(F)

}
. (15)

If D s(F) = limn→∞ D s
n(F), then it holds that the set function D s behaves similarly to the s−dimensional Haus-

dorff measure. To justify that, let t ≥ 0 : t > s. Hence, ∑diam(Ai)
t ≤ δ (F,Γn)

t−s · ∑diam(Ai)
s, where in

the previous sums, Ai ∈ {Ai}i∈I ∈Bn(F). Therefore, D t
n(F) ≤ δ (F,Γn)

t−s ·D s
n(F). Letting n→ ∞, we have

D t(F)≤D s(F) · limn→∞ δ (F,Γn)
t−s. Accordingly, if D s(F)< ∞, then D s(F) = 0 since t > s and δ (F,Γn)→ 0,

by hypothesis. This implies that the equality sup{s : D s(F) = ∞}= inf{s : D s(F) = 0} throws a critical (unique)
value, which could be understood as a new fractal dimension for fractal structures consisting of a discretization
regarding the classical Hausdorff dimension.

Similarly to Counterexample 19, the following result points out that the condition δ (F,Γn)→ 0 becomes
necessary for upcoming fractal dimension calculation purposes.

Counterexample 35. (c.f. [40, Counterexample 5.2]) There exist a fractal structure ΓΓΓ on a metric space (X ,ρ)
and a subset F of X with δ (F,Γn)9 0, satisfying that

inf{s≥ 0 : D s(F) = 0} 6= sup{s≥ 0 : D s(F) = ∞}.

Proof. Indeed, let F = (0,1] ⊂ R and ΓΓΓ = {Γn : n ∈ N} be a fractal structure on [0,1] whose levels are defined
as follows:

Γn = {[0,1]}∪
{[

k
2n ,

k+1
2n

]
: k = 1, . . . ,2n−1

}
. (16)

Since δ (F,Γn) = 1 for all n ∈ N, then δ (F,Γn)9 0. Additionally, the following identity stands:

D s(F) =

{
1 if s≤ 1
0 if s > 1.

In fact,
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1. If s≤ 1, then D s(F) = 1, since one of the two following cases may occur.

(a) Assume that the covering of F we choose for fractal dimension calculation purposes contains the
interval [0,1]. Thus,

i. If that covering is {[0,1]}, then D s
n(F) = (diam([0,1]))s ≤ 1, and hence, D s(F)≤ 1.

ii. Assume that the covering of F we choose, {Ai}i∈I , contains [0,1] as well as some elements of
the natural fractal structure on [0,1]. Then ∑i∈I(diam(Ai))

s ≥ 1. Accordingly, D s(F)≤ 1.

(b) On the other hand, assume that the covering of F we select, {Ai}i∈I , does not contain the closed
unit interval [0,1]. Accordingly, such a covering will consist of some elements of the natural fractal
structure on [0,1]. Since the fractal dimension of F with respect to that natural fractal structure is
equal to 1, then ∑i∈I(diam(Ai))

s ≥ 1. Hence, D s(F) = 1.

2. On the other hand, if s > 1, then D s(F) = 0. Indeed, if ΣΣΣ = {Σn : n ∈ N} denotes the natural fractal
structure (induced) on [0,1], then it becomes clear that D s(F) = H s(F) = 0, due to [28, Theorem 3.10].
Let ε > 0 be fixed but arbitrarily chosen. Thus, there exists a covering {Ai}i∈I ∈Bn(F) such that for all
i ∈ I, it holds that Ai ∈ Σk : k ≥ n and it is satisfied that ∑i∈I diam(Ai)

s < ε . Therefore, one of the two
following cases may occur.

• Ai ∈ Γk : k ≥ n, or

• Ai =
[
0, 1

2k

]
/∈ Γk : k ≥ n. In this case, though, observe that[

0,
1
2k

]
=
⋃

α≥1

[
1

2k+α
,

1
2k+α−1

]
.

Accordingly, a new covering B of F can be constructed from all the elements in {Ai}i∈I but replacing
the elements of the form

[
0, 1

2k

]
by{[

1
2k+α

,
1

2k+α−1

]
: α ≥ 1

}
,

instead. In fact, for each element of the form
[
0, 1

2k

]
, we can write

+∞

∑
α=1

1
(2k+α)s =

1
2ks ·

+∞

∑
α=1

1
(2s)α

=
1

2ks ·
1

2s−1

<
1

2ks =

(
diam

([
0,

1
2k

]))s

.

Thus, ∑B∈B diam(B)s ≤ ∑i∈I diam(Ai)
s < ε , which leads to D s

k(F) < ε . Hence, D s(F) = 0 for all
s > 1.

Similarly to both Eqs. (14) and (15), the following expressions lead to a discrete fractal dimension for finite
coverings, which will become especially appropriate to deal with empirical applications of fractal dimension
[41]. Let us define

Ln(F) = {{Ai}i∈I : Ai ∈ ∪l≥nΓl for all i ∈ I,F ⊆ ∪i∈IAi,cd(I)< ∞} ,

as well as

K s
n (F) = inf

{
∑
i∈I

diam(Ai)
s : {Ai}i∈I ∈Ln(F)

}
. (17)
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Thus, the asymptotic behavior of Eq. (17) plays a similar role to Hausdorff measure. Let K s(F)= limn→∞ K s
n (F).

The following remark is analogous to Counterexample 35.

Counterexample 36. (c.f. [40, Counterexample 5.2]) There exist a fractal structure ΓΓΓ on a metric space (X ,ρ)
and a subset F of X with δ (F,Γn)9 0, satisfying that

inf{s≥ 0 : K s(F) = 0} 6= sup{s≥ 0 : K s(F) = ∞}.

Proof. Let F = (0,1] ⊂ R and ΓΓΓ be a fractal structure whose levels are defined as in Eq. (16). Thus, any finite
covering of F by elements of ΓΓΓ must contain the closed unit interval [0,1]. This implies that K s(F) = 1 for all
s > 0, and hence, {s : K s(F) = ∞}= {s : K s(F) = 0}= /0.

Another fractal dimension model described in terms of fractal structures can be sketched in the following
terms. Let (X ,ρ) be a metric space, F be a subset of X , and δ > 0. Moreover, let us define the next family of
coverings of F :

Gδ (F) = {{Ai}i∈I : Ai ∈ ∪l∈N Γl for all i ∈ I,diam(Ai)≤ δ ,F ⊆ ∪i∈IAi} ,

as well as the expression that follows:

J s
δ
(F) = inf

{
∑
i∈I

diam(Ai)
s : {Ai}i∈I ∈ Gδ (F)

}
.

The asymptotic behavior of J s
δ
(F) will be studied via the following expression:

J s(F) = lim
δ→0

J s
δ
(F).

Let t ≥ 0. Thus,
∑
i∈I

diam(Ai)
t ≤ δ

t−s ·∑
i∈I

diam(Ai)
s, (18)

where the sums are considered on Gδ (F). Taking infima in Eq. (18), we have

J t
δ
(F)≤ δ

t−s ·J s
δ
(F).

Hence,
J t(F)≤J s(F) · lim

δ→0
δ

t−s.

Therefore, if J s(F)< ∞ and δ → 0 provided that t > s, then it holds that J s(F) = 0. Accordingly, the critical
point where J s(F) “jumps” from ∞ to zero throws a Hausdorff type dimension for F , namely,

sup{s : J s(F) = ∞}= inf{s : J s(F) = 0}.

The previous models are formalized along the upcoming section.

6.2 Hausdorff type dimensions for fractal structures

The fractal dimension definitions that we shall explore along this section are provided next.

Definition 14. (c.f. [28, Definition 3.2]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of
X , and assume that δ (F,Γn)→ 0. Moreover, consider the following expression:

H s
n,k(F) = inf

{
∑
i∈I

diam(Ai)
s : {Ai}i∈I ∈An,k(F)

}
,
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where

An,k(F) =

{
{{Ai}i∈I : Ai ∈ ∪l≥n Γl,F ⊆ ∪i∈IAi,cd(I)< ∞} if k = 4
{{Ai}i∈I : Ai ∈ ∪l≥n Γl,F ⊆ ∪i∈IAi} if k = 5,

and define
H s

k (F) = lim
n→∞

H s
n,k(F)

for k = 4,5. The fractal dimensions IV and V of F are defined, respectively, as the following critical points:

dimk
ΓΓΓ
(F) = inf{s : H s

k (F) = 0}= sup{s : H s
k (F) = ∞}, for k = 4,5.

In Definition 14 as well as in the next one, we shall assume that inf /0 = ∞. For instance, if An,4(F) = /0,
then dim4

ΓΓΓ
(F) = ∞.

Definition 15. (c.f. [28, Definition 3.3]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of
X , δ > 0, and assume that δ (F,Γn)→ 0. Moreover, consider the following expression:

H s
δ ,6(F) = inf

{
∑
i∈I

diam(Ai)
s : {Ai}i∈I ∈Aδ ,6(F)

}
,

where
Aδ ,6(F) = {{Ai}i∈I : Ai ∈ ∪l∈NΓl for all i ∈ I,diam(Ai)≤ δ ,F ⊆ ∪i∈IAi} ,

and define
H s

6 (F) = lim
δ→0

H s
δ ,6(F).

The fractal dimension VI of F is given by the following critical point:

dim6
ΓΓΓ
(F) = inf{s : H s

6 (F) = 0}= sup{s : H s
6 (F) = ∞}.

Equivalently, from both Definitions 14 and 15, it holds that

H s
k (F) =

{
∞ if s < dimk

ΓΓΓ
(F)

0 if s > dimk
ΓΓΓ
(F),

(19)

for k = 4,5,6, provided that δ (F,Γn)→ 0. From Eq. (19), it holds that fractal dimensions IV-VI do behave
similarly to both Hausdorff measure and dimension (c.f. Eq. (4)) and fractal dimension III and its corresponding
set function (c.f. Eq. (13)).

The next remark becomes especially useful, since it is not required to consider lower/upper limits (unlike
it happens with box dimension) for H s

k (F) (k = 4,5,6) calculation purposes, which is also the case of both
H s

3 (F) and H s
H(F) (c.f. [2, Subsection 2.2]).

Remark 15. 1. Since H s
n,k(F) : k = 4,5 is the general term of a monotonic non-decreasing sequence in n∈N,

then the fractal dimensions IV and V of any subset F of X always exist.

2. Since H s
δ ,6(F) is non-increasing for s≥ 0, then H s

6 (F) also is by definition, so the fractal dimension VI
of any subset F of X always exists.

Recall that Hausdorff dimension constitutes the key reference for new definitions of fractal dimension to be
mirrored in. In fact, Hausdorff dimension satisfies some desirable properties as a dimension function which can
be found out in both Theorem 3 and Remark 4. Similarly to Propositions 5 (for fractal dimension I), Proposition
10 (for fractal dimension II), and Proposition 29 (for fractal dimension III), next we shall explore the behavior
of fractal dimensions IV-VI as dimension functions throughout a pair of theoretical results. The first of them
collects some analytical properties which stand for fractal dimension IV.
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Proposition 37. (c.f. [28, Proposition 3.4]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and assume
that diam(Γn)→ 0. The following statements hold.

1. Fractal dimension IV is monotonic.

2. There exist a countable subset F of X and a fractal structure ΓΓΓ on X such that dim4
ΓΓΓ
(F) 6= 0.

3. Fractal dimension IV is not countably stable.

4. Fractal dimension IV is finitely stable.

5. dim4
ΓΓΓ
(F) = dim4

ΓΓΓ
(F) for all subset F of X.

An analogous result to Proposition 37 stands for both fractal dimensions V and VI.

Proposition 38. (c.f. [28, Proposition 3.4]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and assume
that diam(Γn)→ 0. The following statements hold.

1. Both fractal dimension V and fractal dimension VI are monotonic.

2. Both fractal dimension V and fractal dimension VI are countably stable.

3. dim5
ΓΓΓ
(F) = dim6

ΓΓΓ
(F) = 0 for all countable subset F of X.

4. There exists a locally finite starbase fractal structure ΓΓΓ defined on a certain subspace F ⊆ X such that
dimk

ΓΓΓ
(F) 6= dimk

ΓΓΓ
(F) for k = 5,6.

Table 1 summarizes the behavior of all the fractal dimensions explored along this paper throughout the theo-
retical properties that each of them satisfy as dimension functions. It is worth mentioning that fractal dimensions
V and VI behave more similarly to Hausdorff dimension than the other models, whereas fractal dimension I is
the most similar definition to box dimension in this sense.

Theoretical properties dimB dim1
ΓΓΓ

dim2
ΓΓΓ

dim3
ΓΓΓ

dim4
ΓΓΓ

dim5
ΓΓΓ

dim6
ΓΓΓ

dimH

Monotonicity 1 1 1 1 1 1 1 1
Finite stability 1 1 0 1 1 1 1 1

Countable stability 0 0 0 0 0 1 1 1
Countable sets 0 0 0 0 0 1 1 1

Closure dimension 0 1 1 1 0 1 1 1

Table 1 The table above summarizes all the theoretical properties satisfied by each definition of fractal dimension
explored throughout this paper. We set 1 to denote that the corresponding property is satisfied by each fractal dimension
and 0 otherwise (c.f. [42]).

6.3 Linking fractal dimensions V and VI

In Section 6.2, we verified that fractal dimensions V and VI are quite close to classical Hausdorff dimension,
at least from the viewpoint of the theoretical properties (as dimension functions) they satisfy. Following the
above, the main goal in this section consists of going beyond so we can explore some conditions on a fractal
structure to be able to connect fractal dimensions V and VI.

The first result we prove contains a first link between these fractal dimensions. It is worth mentioning that
the only condition required therein concerns the sequence of diameters δ (F,Γn). In fact, we shall assume that it
ibecomes smaller as deeper levels in the fractal structure are reached.
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Lemma 39. (c.f. [43, Lemma 5.3.6]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of X,
and assume that δ (F,Γn)→ 0. Then

dim6
ΓΓΓ
(F)≤ dim5

ΓΓΓ
(F).

Next, we provide a sufficient condition on the elements in each level of a fractal structure to guarantee the
equality between fractal dimensions V and VI.

Definition 16. (c.f. [28, Definition 3.6]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ). We shall understand
that ΓΓΓ is a diameter-positive fractal structure provided that the following condition stands:

inf{diam(A) : A ∈ Γ
+
n }> 0,

where
Γ
+
n = {A ∈ Γn : diam(A)> 0}.

It is worth noting that wide families of fractal structures are diameter-positive. For instance, any finite fractal
structure is diameter-positive. More specifically, next we provide several examples of wide families of fractal
structures that are diameter-positive.

Remark 16. The following families of fractal structures are diameter-positive.

1. Any finite fractal structure.

2. The natural fractal structure for any Euclidean subset (c.f. Definition 4).

3. The natural fractal structure which any IFS-attractor can be always endowed with (c.f. Definition 2).

Under the diameter-positive condition for a fractal structure, it holds that fractal dimensions V and VI coincide.

Theorem 40. (c.f. [28, Theorem 3.7]) Let ΓΓΓ be a diameter-positive fractal structure on a metric space (X ,ρ), F
be a subset of X, and assume that δ (F,Γn)→ 0. Then

dim5
ΓΓΓ
(F) = dim6

ΓΓΓ
(F).

6.4 Additional connections among fractal dimensions III, IV & V

Along this subsection, we shall connect fractal dimension V (and hence, fractal dimension VI, due to Lemma
39) with fractal dimension III, previously explored in Section 5. First of all, we state that the fractal dimension
V is always ≤ than fractal dimension III.

Theorem 41. (c.f. [43, Theorem 5.3.9]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of
X, and assume that δ (F,Γn)→ 0. Then

dim6
ΓΓΓ
(F)≤ dim5

ΓΓΓ
(F)≤ dim3

ΓΓΓ
(F).

The result provided below gathers several connections among Hausdorff dimension (c.f. Subsection 2.5) and
fractal dimensions for fractal structures: II (c.f. Definition 8), III (see Definition 13), IV and V (both of them
described in Definition 14), and VI (c.f. Definition 15).

Corollary 42. (c.f. [28, Proposition 3.5]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ), F be a subset of
X, and assume that δ (F,Γn)→ 0. The two following hold.

1. dimH(F)≤ dim6
ΓΓΓ
(F)≤ dim5

ΓΓΓ
(F)≤ dim4

ΓΓΓ
(F).

2. dimH(F)≤ dim6
ΓΓΓ
(F)≤ dim5

ΓΓΓ
(F)≤ dim3

ΓΓΓ
(F)≤ dim2

ΓΓΓ
(F)≤ dim2

ΓΓΓ(F).
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Interestingly, an additional link between fractal dimensions III and IV can be stated in the context of finite fractal
structures.

Theorem 43. (c.f. [43, Lemma 5.3.11]) Let ΓΓΓ be a finite fractal structure on a metric space (X ,ρ), F be a subset
of X, and assume that δ (F,Γn)→ 0. Then

dim4
ΓΓΓ(F)≤ dim3

ΓΓΓ
(F).

We shall conclude this subsection by the next result which involves all the fractal dimensions from II to VI.

Corollary 44. (c.f. [43, Corollary 5.3.12]) Let ΓΓΓ be a finite fractal structure on a metric space (X ,ρ), F be a
subset of X, and assume that δ (F,Γn)→ 0. The following chain of inequalities holds:

dimH(F)≤ dim6
ΓΓΓ
(F)≤ dim5

ΓΓΓ
(F)≤ dim4

ΓΓΓ(F)≤ dim3
ΓΓΓ
(F)≤ dim2

ΓΓΓ(F)≤ dim2
ΓΓΓ(F).

6.5 Measure properties of H s
6

Our next goal is to show that the analytical construction regarding fractal dimension VI is also based on a
measure. Indeed, unlike the set functions H s and H s

3 that give rise to fractal dimension III, it holds that the set
function H s

6 (which leads to fractal dimension VI) is an outer measure. To deal with, first, let us recall some
concepts and results from probability and measure theories that will be useful for our purposes (c.f. [38, Sections
5.2 and 5.4]).

Let (X ,ρ) be a metric space. A pair of subsets A,B of X are said to have positive separation provided that
ρ(A,B)> 0, namely, if there exists r > 0 such that ρ(x,y)≥ r for all x ∈ A and all y ∈ B. Next, we recall a first
approach to tackle with the construction of outer measures called as Method I. Let A be a family of subsets of
X which covers it. Moreover, let c : A −→ [0,∞] be a set function. The following result is the so-called Method
I (of construction of outer measures).

Theorem 45. (Method I Theorem, c.f. [38, Theorem 5.2.2]) There exists a unique outer measure µ on X satis-
fying the two following conditions:

1. µ(A)≤ c(A) for all A ∈A .

2. If ν is any other outer measure on X such that ν(A)≤ c(A) for all A∈A , then ν(B)≤ µ(B) for all B⊆ X.

An outer measure µ : P(X) −→ [0,∞] is said to be a metric outer measure if µ(A∪B) = µ(A)+µ(B) for
any pair A,B of subsets with positive separation. The restriction of a metric outer measure to the class of its
measurable sets is called a metric measure.

Since the Method I provided in Theorem 45 may fail to provide a measure for which the open sets are
measurable, the so-called Method II will be applied to deal with this problem (c.f. [38, Subsection 5.4]).

Let A be a family of subsets of a metric space X and assume that for all x ∈ X and all ε > 0, there exists
A∈A such that x∈A : diam(A)≤ ε . Let c : A −→ [0,∞] be a set function. An outer measure will be constructed
as follows. First of all, define Aε = {A ∈A : diam(A)≤ ε}. In addition, let µε be the outer measure provided
by Method I throughout the set function c and the collection Aε . For a given subset F of X , notice that the
quantity µε(F) increases as the scale ε decreases. Accordingly, an outer measure is defined by

µ(F) = lim
ε→0

µε(F) = sup
ε>0

µε(F).

We shall refer µ to the restriction of µ to the class of its measurable sets. In fact, that construction of an outer
measure µ from a set function c (and hence, a measure µ from µ) is called as Method II of construction of
(outer) measures.
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Theorem 46. (c.f. [28, Theorem 3.8]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and assume that
diam(Γn)→ 0. Then the set function H s

6 : P(X)−→ [0,∞] given by H s
6 (F) = limδ→0 H s

δ ,6(F) for all subset
F of X is a metric outer measure.

As an immediate consequence of Theorem 46, we have that H s
6 is actually a measure, as the following

result points out. In this way, it is worth noting that the only (natural) constraint therein concerns the sequence
of diameters in each level of the fractal structure.

Corollary 47. (c.f. [28, Corollary 3.9]) Let ΓΓΓ be a fractal structure on a metric space (X ,ρ) and assume that
diam(Γn)→ 0. The restriction of the set function H s

6 : P(X)−→ [0,∞] to the class of all the Borel sets of X is
a measure.

6.6 Generalizing Hausdorff dimension

The main goal in this subsection is to explore some connections of fractal dimensions IV, V, and VI with
classical Hausdorff dimension. With this aim, next, we provide one of the main results in this paper, where we
shall guarantee that fractal dimension V generalizes Hausdorff dimension in the context of Euclidean subsets
endowed with their natural fractal structures.

Theorem 48. (c.f. [28, Theorem 3.10]) Let ΓΓΓ be the natural fractal structure on Rd and F ⊆ Rd . Then the
fractal dimension V of F equals the Hausdorff dimension of F, namely:

dimH(F) = dim5
ΓΓΓ
(F).

As a consequence of Theorem 48, we can state that fractal dimension VI also equals the Hausdorff dimension
of Euclidean subsets endowed with their natural fractal structures.

Corollary 49. (c.f. [28, Corollary 3.11]) Let ΓΓΓ be the natural fractal structure on Rd and F ⊆ Rd . Then both
the fractal dimensions V and VI of F equal the Hausdorff dimension of F, namely,

dimH(F) = dim6
ΓΓΓ
(F) = dim5

ΓΓΓ
(F).

Interestingly, fractal dimension IV also generalizes Hausdorff dimension in the context of compact Euclidean
subsets as the following results highlights.

Theorem 50. (c.f. [28, Theorem 3.12]) Let ΓΓΓ be the natural fractal structure on Rd and F be a compact subset
of Rd . Then the fractal dimensions IV, V, and VI of F equal the Hausdorff dimension of F, namely,

dimH(F) = dim6
ΓΓΓ
(F) = dim5

ΓΓΓ
(F) = dim4

ΓΓΓ(F).

In summary, fractal dimension V generalizes Hausdorff dimension for Euclidean subsets endowed with their
natural fractal structures (c.f. Theorem 48). In addition, fractal dimension IV throws an upper bound to Haus-
dorff dimension in the same context as a consequence of Corollary 42 (1). The equality between Hausdorff
dimension and fractal dimension IV has been reached for compact Euclidean subsets (c.f. Theorem 50). Going
beyond, it becomes possible to weaken the hypothesis regarding the compactness of F to prove a further connec-
tion between fractal dimension IV and Hausdorff dimension. We shall deal with this issue along the forthcoming
result.

Theorem 51. (c.f. [28, Theorem 3.13]) Let ΓΓΓ be the natural fractal structure on Rd and F be a bounded subset
of Rd . Then the fractal dimension IV of F equals the Hausdorff dimension of the closure of F, namely,

dim4
ΓΓΓ(F) = dimH(F).
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Interestingly, all the fractal dimension models we have explored along this paper can be theoretically con-
nected among them in the context of Euclidean subsets endowed with their natural fractal structures.

Corollary 52. (c.f. [28, Corollary 3.14]) Let ΓΓΓ be the natural fractal structure on Rd and F be a subset of Rd .
Moreover, assume that there exists one of the following dimensions: dimB(F), dim1

ΓΓΓ
(F), or dim2

ΓΓΓ
(F). The two

following hold.

1.
dimH(F) = dim6

ΓΓΓ
(F) = dim5

ΓΓΓ
(F)≤ dim3

ΓΓΓ
(F) = dim2

ΓΓΓ(F) = dim1
ΓΓΓ(F) = dimB(F).

2. If F is compact, then

dimH(F) = dim6
ΓΓΓ
(F) = dim5

ΓΓΓ
(F) = dim4

ΓΓΓ(F)≤ dim3
ΓΓΓ
(F) = dim2

ΓΓΓ(F) = dim1
ΓΓΓ(F) = dimB(F).

In particular, the fractal dimension IV model introduced in Definition 14 results especially appropriate from
a theoretical viewpoint, since it becomes a middle dimension between classical fractal dimension definitions,
namely, both box dimension and Hausdorff dimension, as we shall highlight along the next remark.

Counterexample 53. (c.f. [28, Remark 3.15])

1. There exist a fractal structure ΓΓΓ on X and a subset F of X such that dim4
ΓΓΓ
(F)< dimB(F).

2. There exist a fractal structure ΓΓΓ on X and a subset F of X such that dimH(F)< dim4
ΓΓΓ
(F).

To conclude this section, we would like to point out that fractal dimension IV can also be applied for
computational purposes. In other words, it becomes possible to computationally approach the fractal dimension
IV of a compact subset, which, by Theorem 51 equals its Hausdorff dimension. Therefore, this fractal dimension
will lead us to computationally deal with the calculation of the Hausdorff dimension of compact Euclidean
subsets.

Next, we provide a preliminary example about how to computationally calculate the Hausdorff dimension
of the middle third Cantor set.

Example 54. (c.f. [28, Example 1]) Let ΓΓΓ be the natural fractal structure on [0,1]. Along this example, we shall
consider only three levels of ΓΓΓ to approach the fractal dimension IV of the middle third Cantor set C . Firstly, let
us denote

A0 =

[
0,

1
2

]
, A1 =

[
1
2
,1
]
, Ai j =

[
2i+ j

4
,
2i+ j+1

4

]
: i, j ∈ {0,1},

and so on. Thus, we have Γ1 = {A0,A1}, Γ2 = {A00,A01,A10,A11}, . . . , etc. On the other hand, we have carried
out a suitable discretization of C taking the 2048 extremes of the intervals that appear in step 10 of its standard
construction.
In this example, we shall apply the following algorithm for fractal dimension IV calculation purposes: given
s ≥ 0, let H s

4 (C ) = ∞ if the infimum (a minimum in this case) of all the coverings by elements in each level
Γi : i = 1,2,3 to calculate H s

1,4(C ) stands throughout a covering involving some element of Γ1. Otherwise,
we set H s

4 (C ) = 0. For s = 0.69, we have found out that the minimum is reached by the covering {A0,A1},
whereas for s = 0.7, the minimum holds through the covering {A00,A010,A101,A11}. Hence, an approach of
dim4

ΓΓΓ
(C ) using only three levels of ΓΓΓ lies between 0.69 and 0.7. If we use five levels of ΓΓΓ, then for s = 0.63, the

minimum is obtained by the covering {A0,A1} and for s = 0.64, the minimum is reached through the covering
{A000,A00111,A010,A101,A11000,A111}. Accordingly, the estimation of dim4

ΓΓΓ
(C ) (using only five levels of ΓΓΓ) lies

between 0.63 and 0.64. It should be mentioned here that the real value of dim4
ΓΓΓ
(C ) is log2

log3 ' 0.631.

Example 54 has been provided to illustrate how to apply fractal dimension IV to deal with the effective
calculation of the Hausdorff dimension of a compact Euclidean subset. It is worth mentioning that in [41], it
was provided the first-known overall algorithm to calculate the Hausdorff dimension.
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