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Abstract
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1 Introduction, definitions and first results

The interest for non-autonomous discrete systems (n.a.d.s.) or simply (na) has been increasing in last years
because they are adequate to model some phenomena in applied sciences, such as biology [32,53], physics [38],
economy [55], etc., and to solve problems generated in mathematics (see [41]).

By other hand, more realistic models in the setting of dynamical systems are those where the trajectories of
all points in the phase state are affected by small random perturbations. Most of such situations can be studied
following the methodology of non-autonomous systems. In the autonomous case, we have a phase space and a
unique continuous map where the trajectories of points are obtained iterating such map. For non-autonomous
systems, the trajectories are produced using iteration methods by changing the map in each step.

Keeping the above ideas in mind, we are introducing precisely the general setting of (na). Let (Xi)
∞
i=0 =

X0,∞ be a sequence of Hausdorff topological spaces and ( fi)
∞
i=0 = f0,∞ a sequence of continuous maps, where

fi : Xi→ Xi+1 for i ∈ N? = N
⋃
{0}. For any pair of positive integers (i,n), we set

f n
i = fi+(n−1) ◦ fi+(n−2) ◦ · · · ◦ fi+1 ◦ fi.
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We also state f 0
i = Identity|Xi and f−n

i = ( f n
i )
−1 (taken in the sense of inverse images when the maps are not

invertible).
The pair (X0,∞, f0,∞) is a (na) in which the sequence ( f n

1 (x))
∞
n=0 = (xn)

∞
n=0, where x0 = x is the trajectory of

the point x ∈ X0. The set of points of that trajectory is the orbit of x ∈ X1. In some problems, we will denote by
(X [n]

1,∞, f [n]1,∞) the n−th iterate of the system, that is, X [n]
i = X(i−1)n+1 and f [n]i = f [n](i−1)+1.

In order to have more concrete results, in particular in applications to real models in sciences, we will be
restricted to the case when all spaces Xi are compact or compact and metric (in the last case, we will denote by
(dn)

∞
n=1 the corresponding sequence of metrics). It is evident that when all spaces coincide with X and all maps

with f , then we simply have the autonomous discrete dynamical system denoted by the pair (X , f ).
In the literature on (na) there are a lot of results in the case when all spaces Xi are real compact intervals and

the continuous maps fi are of a particular type, for example, piecewise linear maps (see for example [44]).
Of interest is also the case when the spaces and maps, components of the non-autonomous system, fulfill

some periodic conditions.

Definition 1. A (na) is p−periodic if Xn+p = Xn and fn+p(x) = fn(x) for x ∈ Xn, n ≥ 0, and p ≥ 1 being a
positive integer. If p = 1, then we have the autonomous case.

Such non-autonomous systems have deserved special interest to many researchers in the theory of dynamical
systems trying to extend to them the topics of Topological Dynamics considered in the autonomous case. For
some of them, see [50] and the references therein.

In most cases, it is supposed we have only a topological space X = Xi for all n∈N? but a sequence of distinct
maps. The resulting system will be denoted by (X , f0,∞). At most all applications deal with this case. Moreover,
in order to obtain more concrete results, we will take X as a compact metric space.
The rest of the paper will be devoted to the consideration of the well known topics on Topological Dynamics for
autonomous systems but now applied to the non-autonomous setting.

The introduction of non-autonomous systems in mathematics has been motivated by the computation of the
topological entropy for skew product or triangular discrete dynamical systems in the unit square [0,1]2 = I2 = Q,
that is, discrete dynamical systems (Q,F), where F(x,y) = ( f (x),g(x,y)) = ( f (x),gx(y)) and F : Q→ Q is a
continuous self-map (written F ∈C(Q)). The notion of (na) was formulated in [41] as an extension of that of
autonomous system and it was studied the topological entropy. The introduction was made considering the above
notion of trajectory or orbit of points of the spaces. The extension of the notion of topological entropy can be
made using covers in the way of [1] or using the Bowen’s formula (see [23]).

max{h( f ),h f (F)} ≤ h(F)≤ h( f )+h f (F),

where h(F),h( f ) denote respectively the topological entropy of F and f , h f = sup{h(F |Ix)}, and Ix = {x}×
I. But to compute h f (F) is necessary to obtain the trajectory of every point (x,y) ∈ Ix, and this implies the
knowledge of the sequence (gx(y),g f (x)(y), . . . ,g f n(x)(y), . . .), that is, in every step of the iteration, the map to be
taken is different and must follow the sequence of maps (Identity on I,gx,g f (x), . . . ,g f n(x), . . .).

S. Kolyada and L’. Snoha introduced in [41] the notion of topological entropy for (na) adapting the original
definition of [1], denoted by h( f0,∞), using covers, and when X is metrizable that one in [23], using spanning
and separating sets. For compact metric spaces both notions are the same. If X is a compact topological space,
then it is proved that h( f n

0,∞) ≤ n · h( f0,∞) for every n ≥ 1, where f n
0,∞ = ( f ∞

in+1)
∞
i=0. When f0,∞ is periodic of

period p, ( fn+p = fn for every n) then h( f p
0,∞) = p ·h( f0,∞). If X is a compact metric space and f0,∞ is a sequence

of equicontinuous self-maps, then h( f n
0,∞) = n ·h( f0,∞) for every n≥ 1. In [41] it was also introduced the notion

of asymptotically topological entropy, h?( f0,∞), as limn→∞ h( fn,∞) where fn,∞ is the tail from n of the sequence
f0,∞. It is proved that such a limit always exists. Many results on usual topological entropy of autonomous
systems are held by the asymptotically topological entropy, proving that in different settings the two notions are
analogous. In [41], it was also proved that for compact metric spaces, if the sequence f0,∞ converges uniformly
to f or it is an equicontinuous family, then h?( f )≤ h( f ).
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One relevant consequence of the entropy in the non-autonomous case is the proof that in autonomous cases,
the topological entropy is commutative for the composition of two continuous maps in compact metric spaces,
that is, h( f ◦g) = h(g◦ f ) for f ,g ∈C(X). Additionally, in [41] some other results were proved.

2 Topological entropy

We introduce the notion of topological entropy in the setting of non-autonomous systems of the form
(X , f0,∞), where (X ,d) is a compact metric space. We follow the Bowen’s line of introduction of the notion
and the notation above considered and also [15].
For x,y ∈ X and n≥ 0,

ρn(x,y) = maxi=0,...,n−1d( f i
0(x), f i

0(y)).

The set E ⊂ X is said to be (n,ε, f0,∞)−separate if ρn(x,y) > ε for every distinct x,y ∈ E. Now denote by
sn( f0,∞) the maximal cardinality of (n,ε, f0,∞)−separate sets. Then the topological entropy of (X , f0,∞) is

h( f0,∞) = limε→0 lim sup
n→∞

1
n

log(sn( f0,∞,ε)).

This definition is just an extension of the topological entropy for autonomous systems in compact metric spaces.

2.1 Topological entropy and limits

We state the question of what is the behaviour of the entropy of a (na) given by the pair (X , f0,∞) if the
sequence ( fn)

∞
n=1 converges to a continuous map f ∈C(X). We will consider uniform or piecewise convergences.

They are expected different behaviours in these cases.
In the next result, proved in [41], we consider the case where the convergence is uniform.

Theorem 1. Let X be a compact metric space and ( fi)
∞
i=0 be a sequence of continuous maps converging uni-

formly to a continuous map f ∈C(X). Then h( f0,∞)≤ h( f ).

In the following examples we see that if the convergence of the sequence is piecewise to f but not uniform,
the above statement is not true in general and it is possible to contruct some examples. In the case that h( f ) = ∞,
the previous formula is true. In [15], we proved the following result.

Proposition 2. For every continuous interval map f , there is a non-autonomous system (I, f0,∞) such that
( fn)

∞
n=1 converges pointwise to a continuous map f and h( f0,∞) = ∞.

Proof. Choose in [0,1] an infinite sequence of closed intervals [an,bn], for example, take an =
1
2n and bn = an+

1
4n .

From this, an− bn+1 =
1

2n+1 − 1
4n+1 > 0 for all n ∈ N, which means that the above election is possible. Then in

each interval [an,bn] we choose n−subintervals [ck,dk] from k = 1, . . . ,n with dk = ak +
1

4n+k−1 and ck
n = dk+1

n .
Then inside every subinterval Ik

n = [ck
n,d

k
n], we choose another subinterval [αk

n ,β
k
n ] taking αk

n = ck
n +

1
10(d

k
n− ck

n)
and β k

n = ck
n +

9
10(d

k
n− ck

n).
Given f ∈C(I), for every n∈N we define fn(x) = f (x) for all x /∈

⋃n
k=1(I

k
n), fn(ck

n) = f (ck
n), fn(dk

n) = f (dk
n),

fn(α
k
n) = 1, fn(β

k
n ) = 0, and in the rest of In we define fn connecting the dots.

In fact, what has been done is to introduce in every subinterval Ik
n a linear perturbation in such a way that fn

results continuous and fn(In) = I for every n, that is, fn is surjective.
First, it is evident that in I, limn→∞ fn(x) = f (x) is point-wisely since the perturbation is acting on In only

for the index n but not for the rest of indexed of the limit. Besides, the perturbation is moving to the left when n
increases.

Now consider a fixed m and any n > m. It is evident that fm(Im) ⊂
⋃n

k=1 Ik creating an infinite number of
horseshoes. As a consequence, by applying Theorem 3 of [2], we have h( f1,∞)≥ logm. But since m is arbitrarily
large, then we conclude that h( f1,∞) = ∞.
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Remark 1. Using the above result and construction, choosing the continuous map f with zero, positive or infinite
topology, we have examples of three types with h( f0,∞) = ∞.

Open Question 1. Let ( fn)
∞
n=1 be pointwise convergent to f .

1. Construct an example of a non-autonomous system for which h( f0,∞)> 0 and h( f ) = 0.

2. Construct an example of a non-autonomous system such that h( f0,∞) = 0 and h( f ) = 0.

2.2 Topological entropy and Li-Yorke chaos

Using the definition of trajectories for non-autonomous systems, next we state the defintion of Li-Yorke
chaos for (na) in the same sense as in the autonomous case.

Definition 2. Let (X , f0,∞) and x,y ∈ X . The pair (x,y) is Li-Yorke chaotic if

1. liminfn→∞ d( f n
1 , f n

1 ) = 0, and

2. limsupn→∞ d( f n
1 , f n

1 )> 0.

Definition 3. A set S ⊂ X is a scrambled set if it is uncountable and every pair of distinct points x,y ∈ S is
Li-Yorke chaotic.

Definition 4. f ∈C(X ,X) is Li-Yorke chaotic if it possesses an uncountable scrambled set.

For autonomous systems in compact metric spaces, it is proved in [18] that positive topological entropy
implies the existence of Li-Yorke chaos. In the following result from [15], it is proved that in general it is not
true in (na). This was proved by constructing an interval example composed only by two different maps such
that h( f0,∞)> 0 and the sequence ( fi)

∞
i=1 converges to a map f which is not Li-Yorke chaotic.

Open Question 2. Using the methodology and approaches of [37, 52], try to extend the results of these papers
to general metric spaces.

Theorem 3. There exists a (na) on the interval, (I, f0,∞), such that the sequence ( fi)
∞
i=0 converges pointwisely

to a non-continuous map f and satisfying that

1. h( f0,∞)> 0.

2. f is not Li-Yorke chaotic.

Proof. According to [15], take the interval [0,1] and divide it into three subintervals of length 1
3 . Denote

the central subinterval by J and consider the two piecewise linear maps f1 and f2 (see [15]). Consider now
the sequence of maps composed by f1 and f2 where the map f1 appears infinitely many times. With such a
distribution, the points 0,1 are fixed and the rest of points of [0,1] are asymptotic to 0. As a consequence, the
pointwise limit of the initial sequence is a non-continuous map.

The behavior of g in the sequence f0,∞ is described as follows. Take m0 = 1, mn = 2n2
, and put fn = g

for n = mn and fi = h for any other index. The autonomous system ([0,1],h) has a 2−strong horseshoe in
the subinterval J. Then there is ε such that for every n, there exists an (n,ε,h)−separate set E ⊂ J holding
card(E) = 2n.

For every n there is an interval Kn such that f mn
1 (Kn) = J. We state K = g−n−1(J), let ln = mn+1 −

mn− 1, and Fn be an (ln,ε,h)−separate set of h having maximal cardinality. Then Kn = g−n−1(Fn) ⊂ K is
(mn+1,ε, f0,∞)−separate. That is, for mn ≤ j < mn+1, we have f j

1 (Kn) = g j−mn
mn = h j−mn(Fn). Then

h( f0,∞)≥ lim sup
n→∞

1
mn+1−1

logcardFn ≥ lim
n→∞

ln
mn+1

log2

≥ lim
n→∞

mn+1−mn−1
mm+1

log2≥
(

1− lim
n→∞

2(n
2+1)−(n+1)2

)
log2≥ log2.
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Open Question 3. 1. Prove that for a (na) system of the form of the form (I, f0,∞) composed by onto maps
converging uniformly to f , it holds that h( f ) = h( f0,∞).

2. In other spaces different from the interval I, construct examples of onto continuous maps fn converging
uniformly to f and such that

(a) h( f ) = ∞ and h( f0,∞) = ∞.

(b) h( f ) = ∞ and h( f0,∞)> 0.

(c) h( f ) = ∞ and h( f0,∞) = 0.

Similar results to above have been obtained in [52] for (Im, f0,∞) where the sequence of maps converges
uniformly to a map in Im and all trajectories are subjected to small random perturbations. In fact, it is proved
that if f is the limit map of the sequence of maps and P ∈ Im is recurrent in the autonomous dynamical system
(Im, f ), then P is also recurrent in the non-autonomous case (see definitions of recurrence in [34]) affected by
small random perturbatons. It is also proved that under some sufficient conditions, a non-autonomous system
(I, f0,∞) subjected to small perturbations can be non-chaotically converted in the Li-Yorke sense.

2.3 Minimal sets

We say that an autonomous system (X , f ) is minimal if there is no proper subset M ⊂ X which is non-empty,
closed, and f−invariant ( f (M) ⊆ M). Then we also say that the map f is minimal. It is immediate that f is
minimal, if and only if, the forward orbit of every point x ∈ X is dense on X (see [34]).

We say that (X , f1,∞) is minimal if every trajectory is dense in X . Some properties of minimal autonomous
systems, such as f being feebly open (the map transforms open sets into sets with non-empty interiors) or
almost one-to-one (a typical point has just one pre-image) are not held in the setting of non-autonomous systems
(see [43]). For example, the former properties cannot be obtained neither for the maps fn nor fn ◦ fn−1 ◦ · · · ◦
f1 ◦ f0. But this is not the unique property: in fact, there is a wider variety of dynamical behaviours in the
non-autonomous systems than in the autonomous cases.

In [42] it is proved that it is equivalent for (X , f0,∞) not being minimal to the fact that there is a non-empty
open set B⊆ X such that the system has arbitrarily long finite trajectories disjoint with B. This has as a corollary
a sufficient condition for metric spaces without isolated points to be non-minimal. That condition holds whether
there is a nonempty open set B⊆ X and n0 ∈ N satisfying the two following:

1. f n0−1
1 is onto.

2. The non-autonomous system has arbitrarily long finite trajectories disjoint with B.

The same happens with the conditions f n0−1
1 as well as the maps fn for n ≥ n0 which are onto and for every

n≥ n0, fn(B)⊆ fn(X\B). Under the former conditions for (X , f1,∞), suppose that the sequence ( fn)
∞
n=1 converges

uniformly to f . If f is not onto, then the system is not minimal, and even more, no trajectory is dense.
In [42], there is a discussion using examples in X = [0,1] to check the validity of the former conditions

and to prove that even if fn → f and for every n ∈ N, fn is onto, then f is only monotonic (not necessarily
strict). Theorem 3.2 in [42] proves the existence of (I, f0,∞) such that fn converges uniformly to the Identity on
I, for every n, fn is onto and can be chosen piecewise linear with non-zero slopes, and such that (I, fn,∞) is a
minimal system. The arguments stated in the referred results are used to construct and improve some examples
introduced in [13] in the setting of skew product maps on Q with the property that almost all orbits in Q have
the second projection dense in I and whose omega-limit sets are {0}× I.

2.4 Topological entropy of non-autonomous systems on the square and on R2

We have remarked previously that the computation of topological entropy in triangular systems on the square
given by F(x,y) = ( f (x),gx(y)) are related to the consideration of trajectories of points y ∈ [0,1], given by
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(gx(y),g f (x)(y), . . . ,g f n(x)(y), . . .). As a consequence, some results on entropy of autonomous triangular systems
can be obtained from non-autonomous systems as defined above. In [44], it is developed a theory of the topo-
logical entropy for non-autonomous piecewise monotonic systems on the interval. It is made with additonal
conditions in the system, namely, for systems (I1,∞, f0,∞) being bounded and long-lapped or Markov (see [44]
for such notions). In the next result, we denote by c1,n the number of pieces of monotonocity of the map f1,n.

Theorem 4. Let (I, f0,∞) be finite piecewise monotonic or Markov. Then the non-autonomous system satisfies

h( f0,∞) = lim sup
n→∞

1
n

logc1,n.

As an application of that result, in [44] it is constructed a large class of triangular maps on the square of
type 2∞ (such maps have periodic trajectories of all periods, all being powers of two) of class C∞, extending a
previous result appeared in [12].

Open Question 4.

1. Prove or disprove if those triangular maps may be obtained in the class of real analytic or polynomial
maps.

2. In case of a negative answer, construct adequate counterexamples.

With respect to minimality, in [42] it is proved the existence of minimal non-autonomous systems on the
interval, (I, f0,∞), such that the sequence ( fn)

∞
n=0 converges uniformly to the identity map and all maps fn are

onto. Even more, all fn can be choosen piecewise linear in I with non-zero slopes, having at most three pieces
of linearity, and for every n, the (na), (I, fn,∞) being minimal.

Such results are used to prove a result on autonomous triangular systems on the square (see [13, 42]).

Theorem 5. There is a triangular map F defined on the square I2 satisfying that

1. All points of the form (0,y) are fixed.

2. limn→∞ f n(x) = 0 for every x.

3. Every point in I2 not being of the form (0,y) has a trajectory whose second projection is dense in I.

4. h(F) = 0.

A relevant fact in the proof of this theorem [42] consists of using an Extension Lemma (see [35] or [40])
which allows to carry out adequate constructions and to obtain properties in subsets of I2 which can be extended
to the total square keeping the properties.

Open Question 5.

1. Try to obtain an example of the previous theorem in the class C∞.

2. Is there a triangular (na) on the square such that ( fn)
∞
n=0 converges pointwise to f and h( f0,∞) = 0 but

h( f )> 0?

One of the most known general two-dimensional map defined in R2 is the Hénon map which is given by

Ha,b(x,y) = (a+by− x2,x),

where a and b are real parameters. When b 6= 0, then the map has an inverse given by

H−1
a,b (x,y) =

(
y,

x−a+ y2

b

)
.
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If b = 0, then we have essentially the map Ha(x,y) = (a− x2,x) which behaves similarly to a one dimensional
map. Therefore, we will deal with the case with parameter b 6= 0. It can be proved that there exists a Cantor
invariant set K ⊂ R2 (H(K) = K) where the map is topologically conjugate to a shift map defined on a finite
number of symbols. Therefore, in K the map is Devaney chaotic (a proof can be seen in [54]). That proof applies
sufficient conditions called Conley and Moser conditions (see [47]).

In [16], it is considered a non-autonomous version of the Hénon map when b =−1. For this value, the map
is area preserving. The other parameter is allowed to vary for each n by

fn(x,y) = (a(n)− y− x2,x)

f−1
n = (y,a(n)− x− y2).

The sequence a(n) will be taken as a trigonometric perturbation of the number 19
2 , that is

a(n) =
19
2
+ ε cos(n), ε =

1
10

.

The choosing of the two values are to be able to apply a new version of the Conley-Moser condition (see [16]).
The domains Dn are introduced as

Dn = D = [−R,R]× [−R,R]

R =
√

1+a(0).

A similar approach has been recently applied in [46] to the Lozi map on R2.

Open Question 6.

1. Solve the same problem of Hénon (na) for b /∈ {−1,0}, that is when the system is not conservative.

2. Consider a perturbation for a(n) of the form

a(n) = a0 + ε cs(n,m),

where cs denotes the Jacobi cosam elliptic maps. Alternately, it can be done also using the Jacobi senam
elliptic map. See all previous results and statements in [8].

3. Solve the previous questions for Lozi system.

3 Difference and systems of difference non-autonomous equations

3.1 Examples in difference equations

For a wide range of types of difference equations, autonomous or non-autonomous, deterministic or stochas-
tic, discrete or continuous, it has been proved that the asymptotic distribution of trajectories hold very often the
so called Benford’s law, which we introduce in this subsection. Frequently numerical data got from dynamical
systems follows such law.

Firstly, we are dealing with dynamical properties associated to Benford sequences. It is known (see [21])
that frequently, trajectories from discrete dynamical systems satisfy the Benford’s law of logarith mantissa
distributions. This law is the probability distribution of the mantissa function or simply mantissa with respect to
a base b ∈ N\{1}. This is given by

P(mantissa b ≤ t) = logb t, t ∈ [1,b).

http://www.up4sciences.org
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The mantissa function, denoted by < · >, is a function from R+ to [1,b) given by < x >b= b[logb x]. With this,
we state the following

Definition 5. A sequence (xn)
∞
n=0 of real numbers is b−Benford if

lim
n→∞

card
{

j < n :< |x j|>b≤ t
}

n
= logb t, t ∈ [1,b),

and it is strictly Benford if it is b−Benford for every b ∈ N\{1}.
It is well-known (see for example, those of [21] and other references therein) the following result which

compares the Benford property of a sequence and the same for the sequence of the log of the absolute value of
their terms.

Proposition 6. A sequence of real numbers (xn)
∞
n=0 is B−Benford, if and only if, the sequence (log |xn|)∞

n=0 is
uniformly distributed modulus 1.

Using the above result and others from uniformly distribution, in many examples can be proved the property
of trajectories of dynamical systems starting in an initial point x0 or simply general sequences of real numbers.

Example 7.

1. The sequence (n!) is Benford.

2. The trajectories constructed from the Fibonacci equation Fn+2 = Fn +Fn+1 for n≥ 0 are Bedford, except
for the starting point (0,0).

3. For almost Lebesgue initial point x0 ∈ R, the corresponding trajectoy is Benford.

4. The sequence (2n)∞
n=0 is Benford if logb 2 is irrational, that is, if and only if, b 6= 2 j for some j ∈ N.

5. Not all sequences are Benford. For example, (nα) for α ∈R+ and the sequence of prime numbers are not
Benford for any b.

In the case of (na) there are a few results in the literature. We will refer here to those from [19] concerning
non-autonomous linear systems

xn = An xn−1, n ∈ N,
where for every n, An is a real mṁ−-matrix, and where the problem is to study under what conditions the
mantissa distribution generated for the trajectories with initial conditions x0 ∈ Rd satisfy the Benford law. The
results we obtain are related to the b-resonance condition introduced in [19].

Definition 6. 1. A set Λ⊂ C is b−resonant if there exists a finite non-empty subset Λ0 = {λ1, . . . ,λq} ⊂ Λ

with |λ1|= · · ·= |λq| such that either card(Λ0∩R) = 2 or the numbers 1, logb |λ1| as well as the elements
of { 1

2π
argλ1, . . . ,

1
2π

argλq}\
{

0, 1
2π

}
are Q−dependent.

2. The matrix A (real or complex) has b−resonant spectrum if the set σ+(A) is b−resonant.

With this in mind, in [19] it is proved the following result.

Theorem 8. Let (An)
∞
n=1 be p−periodic for some p ≥ 1 and assume that the matrices A1, . . . ,Aq do not have

b−resonant spectrums. Then for every c,x0 ∈ Rd , the sequence c,Orb(x0) is either finite or b−Benford.

Open Question 7. 1. Given the one dimensional dynamical system (I, f ), study the points in I whose tra-
jectories satisfy the Benford’s law. This means try to state the properties of these trajectories to have such
property.

2. Consider the sequences composed by distances of pair of points and relate the above results with existence
or not of distributional chaos (for definitions, see [14]).

3. Consider nonlinear non-autonomous systems and study their behaviour concerning the same property.
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3.2 On forbidden sets

In recent literature, there are an increasing number of papers where the forbidden sets of difference equa-
tions are computed. We review and complete different attempts to describe the forbidden set and propose new
perspectives for further research and a list of open problems in this field.

The study of difference equations (DE) is an interesting and useful branch of discrete dynamical systems
due to their variety of behaviours and their ability to model phenomena of applied sciences (see [24, 26, 36, 45]
and references therein). The standard framework for this study is to consider iteration functions and sets of
initial conditions in such a way that the values of the iterates belong to the domain of definition of the iteration
function and therefore, the solutions are always well-defined. For example, in rational difference equations
(RDE), a common hypothesis is to consider positive coefficients and initial conditions, see [36, 45].
Such restrictions are also motivated by the use of (DE) as applied models, where negative initial conditions
and/or parameters are usually meaningless [48].

But there is a recent interest to extend the known results to a new framework where initial conditions can
be taken to be arbitrary real numbers and no restrictions are imposed to iteration functions. In this setting the
forbidden set of a (DE) appears, namely, the set of initial conditions for which after a finite number of iterates
we reach a value outside the domain of definition of the iteration function. Indeed, the central problem of the
theory of (DE) is reformulated in the following terms:

Given a (DE), determine the good G and forbidden F sets of initial conditions. For points in the good
set, describe the dynamical properties of the solutions generated by them: boundedness, stability, periodicity,
asymptotic behavior, etc.

Here, we are interested in the first part of the former problem: how to determine the forbidden set of a given
(DE) of order k. In the previous literature to describe such sets, when it is achieved, it is usually interpreted
as to be able to write a general term of a sequence of hypersurfaces in Rk. But in those cases are precisely the
corresponding to (DE) when it is also possible to give a general term for the solutions. Unfortunately, there are
a little number of (DEs) with explicitly defined solutions. Hence, we claim that new qualitative perspectives
must be assumed to deal with the problem above. Therefore, the goals in this subsection are the following: to
organize several techniques used in the literature for the explicit determination of the forbidden set, revealing
their resemblance in some cases, and giving some hints about how they can be generalized. Thus, we get a large
list of (DEs) with known forbidden set that can be used as a frame to deal with the more ambitious problem to
describe the forbidden set of a general (DE). We review and introduce some methods to work also in that case.
Finally, we propose some future directions of research.

The difference equation of Riccati plays a key role in this theory since as far as we know, almost all the
literature where the forbidden set is described using a general term includes some kind of semiconjugacy involv-
ing such an equation. The (DE) obtained via a change of variables or topological semiconjugacy is a relevant
tool. In the following, we will discuss how algebraic invariants can be used to transform a given equation into a
Riccati or linear one depending upon a parameter, and therefore, determining its forbidden set.

After that, we will deal with an example of description, found in [25], where the elements of the forbidden
set are given recurrently but explicitly.

It can be introduced a symbolic description of complex and real points of F, where we study some additional
ways to deal with the forbidden set without an explicit formula.

Now we are concentrating in some problems stated in the recent literature concerning the above problems,
in particular, in the non-autonomous Riccati difference equation of first order given by

xn+1 =
anxn +bn

cnxn +dn
, n = 0,1, . . . , (?)

where the sequences (an)
∞
n=0, (bn)

∞
n=0, (cn)

∞
n=0, and (dn)

∞
n=0 are q−periodic and x0 ∈ R.

In [5], it is given a geometric description of the forbidden sets in terms of the coefficients of the equation in
the general case and also in the following particular cases:
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1. bn = 0 and dn = 1 for all n = 0,1, . . . in both cases, when all the parameters are positive real numbers and
they are general real numbers without restriction (see also [51]).

2. an = 1 for n = 0,1, . . . and the sequence (cn)
∞
n=0 is not periodic.

Open Question 8.

1. In (?), describe the forbidden set in the cases when the sequences of coefficients are bounded and none of
them is periodic.

2. The same in the cases when the maps fn =
anx+bn
cnx+dn

are uniformly convergent to a map f , or alternatively,
converge pointwise to f .

3. Solve the same problems that above through by another general nonlinear rational difference equations.

4. Face the same problems in the setting of systems of difference equations.

4 Lyapunov exponents in non-autonomous systems

During years, a powerful tool to understand the behaviour and predictability in nonlinear discrete dynamical
systems and time series obtained from them have been Lyapunov exponents. They have been used to decide
when orbits are stable or instable in the Lyapunov sense. First, it is necessary to remark that while stability in
the Lyapunov sense is a notion of topological character, Lyapunov exponents have a numerical nature and are
calculated using the derivative of maps in the points of orbits.

It is an extended practice, particularly in experimental dynamics, to associate having trajectories with posi-
tive Lyapunov exponents with their instability and negative Lyapunov exponents with their stability. However,
such interpretation has no firm mathematical foundation if some restrictions on the maps describing the dynam-
ical systems are not introduced. In connection with such statement, in [31], they have been constructed two
examples of autonomous dynamical systems defined by interval maps, one having a trajectory with positive
Lyapunov exponent but stable and other having a trajectory with negative Lyapunov exponent but instable. But
such maps are highly non-differentiable and therefore, we wonder if it is possible to obtain the same results via
differentiable maps. In [11], they have been obtained such examples in the semi-open interval [0,1). We wonder
if the above example can be constructed in the setting of non-autonomous systems.

In [8], it is introduced and applied for them an immediate extension of the definition of the Lyapunov
exponents in the autonomous case (if the limit exists), when X = I. This definition is as follows.

Definition 7.

λ (x) = lim
n→∞

1
n

log |( fn−1 ◦ · · · ◦ f1 ◦ f0)
′(x)|= lim

n→∞

1
n

n−1

∑
j=0

log | f ′j(x j)|,

and similarly for the strong Lyapunov exponent.

Stability and instability of trajectories are stated as the condition of being or not sensitive to initial conditions,
namely,

Definition 8. The forward orbit (xn)
∞
n=0 is sensitive to initial conditions or Lyapunov instable if there exists

ε > 0 such that for any δ > 0, there exists y with d(x0,y)< δ and N ≥ 0 such that d
(

f N(y), f N(x0)
)
≥ ε .

Definition 9. The forward orbit (xn)
∞
n=0 is not sensitive to initial conditions or it is Lyapunov stable if for any

ε > 0 there is δ > 0 such that whenever d(x0,y)< δ , then d( f n(y), f n(x0))< ε for all n≥ 0.
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One relevant situation is when f0,∞ is composed by a periodic sequence of maps of minimal period m, namely
fn+m = fn for every n ≥ 0. Then the non-autonomous system is called periodic of minimal period m or simply
periodic of period m (see [3, 27]).

To non-autonomous systems it is immediately extended the notion of instable trajectory or orbit in the
Lyapunov sense.

Using the two maps f ,g introduced in Section 4 of [11], we compute the Lyapunov exponent for the periodic
case in the non-autonomous situation. Consider a periodic non-autonomous case of minimal period m composed
by periodic blocks of repetitions of the former maps in any ordering. Let the map f be applied 0 < p < m times
and q = m− p times the map g. The case of alternating maps (see [3, 27]) holds when p = q = 1 and the block
is { f ,g, f ,g, . . .}.

Proposition 9. For the periodic non-autonomous system in I given by repetition of the block composed by p
times f and m− p = q times g following any ordering, the trajectory of 0 has a strong Lyapunov exponent of
value

Λ(0) =
p−q

m
log2

and the orbit is instable.

Proof. Given any block of p times the map f and p−q times g in any ordering and p 6= q, we use the former def-
initions to obtain the value of the Lyapunov exponent of the orbit of 0. The partial sums Sn of the corresponding
series are given by

Sn =
k(p−q)+ i− j

k m+ i+ j
log2

where 0 < i≤ p, 0 < j ≤ q, and n = k m+ i+ j.
When n→ ∞, that series is convergent and it is immediate that its value is p−q

m log2, which is also its Λ(0).
Instability of the orbit is due to instability of the trajectory of g(0).

Open Question 9. 1. We claim that the orbit of initial condition x0 = 0 would be instable if q > 0 and inde-
pendently of this value. Moreover, we think that it is the case for non-periodic non-autonomous systems
when the map g appears an infinite number of times, such as in the sequence f0,∞ = { f ,g, f , f ,g, f , f , f ,g, . . .}.

2. Another way to choose the maps f and g is using the Thue-Morse sequence given by {0,1,1,0,1,0,0,1,0, . . .}
(see [6] for more details). We choose the elements of the sequence. When we find one 0 we choose f and
with 1, we choose g.

3. Solve the problem with Thue-Morse sequence.

4. Solve the problem for non-autonomous Hénon transformation (defined above).

5. Do the same in non-autonomous systems generated by perturbations of trigonometric and Jacobi types
(see [8]).
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