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Abstract
In this paper we prove that the global attractor generated by strong solutions of a reaction-diffusion equation without
uniqueness of the Cauchy problem is bounded in suitable Lr-spaces. In order to obtain this result we prove first that the
concepts of weak and mild solutions are equivalent under an appropriate assumption.
Also, when the nonlinear term of the equation satisfies a supercritical growth condition the existence of a weak attractor is
established.
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1 Introduction

This paper is mainly devoted to studying the regularity properties of global attractors for multivalued semi-
flows generated by strong solutions of reaction-diffusion equations.

The existence and properties of global attractors for dynamical systems generated by reaction-diffusion
equations have been studied by many authors over the last thirty years. For equations generating a single-valued
semigroup such results are well known since the 80s (see e.g. [5], [6], [7], [8], [24], [34]). Moreover, deep
results concerning the structure of the attractors were proved for scalar equations (see [12], [13], [29], [30], [31]).
Furthermore, for rather general parabolic equations boundedness of attractors in Sobolev spaces of higher orders
were obtained as well (see e.g. [3], [4]).

When uniqueness of the Cauchy problem is not satisfied we have to work with multivalued semiflows rather
than semigroups. In this direction, existence and topological properties of global and trajectory attractors have
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been studied by several authors over the last years (see [2], [9], [10], [11], [14], [16], [20], [22], [23], [25], [26],
[36]). However, concerning the structure of the attractor little is known so far in comparison with the single-
valued case. Nevertheless, recently the global attractor has been characterised using the unstable manifold of the
set of stationary points, generalizing in this way well-known results from the single-valued case (see [17], [18],
[19]). In particular, such structure was proved to be true for the global attractor generated by strong solutions of
reaction diffusion equations in which the nonlinear term satisfies a critical growth condition.

It is important to point out that there are two different approaches to the study of these equations. One
method relies on the construction of weak solutions through Galerkin approximations, whereas the other one
makes use of the properties of sectorial operators in order to obtain mild solutions, which are defined by the
variation of constants formula. It seems that this has given rise to two separate groups of papers, whose paths
have rarely crossed. However, we find it interesting to use the powerful technique of sectorial operators in order
to improve the regularity of weak solutions and global attractors in the multivalued case. Indeed, in this paper
we prove that under a suitable assumption mild and weak solutions are equivalent, and using this result we are
able to improve the regularity of the global attractor generated by strong solutions which was obtained in [17].

This paper is split into three different parts.
In the first section, we prove that the concepts of weak and mild solutions are equivalent provided that an

appropriate condition holds.
In the second section, we use the above equivalence in order to show that the global attractor generated

by strong solutions of the reaction-diffusion equation is bounded in suitable Lr-spaces in the case where the
nonlinear term satisfies a critical growth condition.

Finally, in the third section, considering a supercritical growth condition we define a multivalued semiflow
by taking all strong solutions satisfying an energy inequality and then prove that a weak global attractor exists,
that is, we construct an attractor which attracts bounded sets of the phase space with respect to the weak topology.

2 Equivalence of different definitions of solutions

Let Ω ⊂ Rn, n ≥ 1, be an open bounded subset with sufficiently smooth boundary ∂Ω. We consider the
following problem 

∂u
∂ t
−∆u+ f (t,u) = h(t,x), x ∈Ω, t > τ,

u|∂Ω = 0,
u(τ,x) = u0(x), x ∈Ω.

(1)

The functions f ,h are assumed to satisfy the following conditions:

f ∈ C(R×R), (2)

h ∈ L2
loc(R;L2(Ω)), (3)

| f (t,u)| ≤C1(1+ |u|p−1), (4)

f (t,u)u≥ α|u|p−C2, (5)

for all (t,u) ∈ R×R, where C1,C2 are positive constants, p≥ 2 and α > 0 if p > 2 but α ∈ R if p = 2.
Denote F(u) =

´ u
0 f (s)ds. If p > 2 from (4)-(5) we obtain that liminf

|u|→∞

f (u)
u = +∞ and that there exists

D1,D2,δ > 0 such that
|F(u)| ≤ D1(1+ |u|p), F(u)≥ δ |u|p−D2, ∀u ∈ R. (6)

If p = 2, then (6) remains valid but with δ ∈ R.
In the sequel we shall denote by H the space L2(Ω) endowed with the norm ‖·‖ and the scalar product (·, ·),

and by V the space H1
0 (Ω) with the norm ‖·‖V and the scalar product ((·,·)), whereas V ′ = H−1 (Ω) is the dual
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space of V with the norm ‖·‖V ′ . The pairing between the space V and V ′ will be denoted by 〈·,·〉. Also, putting
1
p +

1
q = 1, the pairing between the spaces Lp (Ω) and Lq (Ω) will be given by 〈·,·〉q,p .

Definition 1. The function u ∈ Lp
loc(τ,+∞;Lp(Ω))∩L2

loc(τ,+∞;V ) is called a weak solution to problem (1) on
(τ,+∞) if for all T > τ, v ∈V ∩Lp(Ω) one has

d
dt

(u(t) ,v)+((u(t) ,v))+ 〈 f (t,u(t)),v〉q,p = (h(t) ,v) . (7)

in the sense of scalar distributions on (τ,T ).

For a weak solution let g(t) =− f (t,u(t))+h(t)+∆u(t). From u ∈ Lp
loc(τ,+∞;Lp(Ω))∩L2

loc(τ,+∞;V ) and
condition (4) it is clear that g ∈ Lq

loc(τ,+∞;Lq(Ω))+L2
loc(τ,+∞;V ′). Thus, we can rewrite (7) as

d
dt

(u(t) ,v) = 〈g(t),v〉V ′+Lq , for all v ∈V ∩Lp(Ω),

where 〈·, ·〉V ′+Lq denotes pairing between V ′+Lq (Ω) and V ∩Lp(Ω).
It is well-known [10, p.284] that for any uτ ∈ H there exists at least one weak solution u(·). If, moreover,

f (t,·) ∈C1(R) and
∂ f
∂u

(t,u)≥−C for any (t,u), then the solution is unique.
In order to consider an equivalent equality to (7) we recall the following well-known result.

Lemma 1. [33, p.250] Let X be Banach space with dual X ′, u,g ∈ L1(a,b;X). Then the following statements
are equivalent:

1. u(t) = ξ +
t́

a
g(s)ds, ξ ∈ X for a.a. t ∈ (a,b);

2.
b́

a
u(t)ϕ ′(t)dt =−

b́

a
g(t)ϕ(t)dt, ∀ ϕ ∈C∞

0 (a,b);

3. d
dt 〈u,η〉X ′,X = 〈g,η〉X ′,X , ∀ η ∈ X ′, in the sense of scalar distributions on (a,b),

where 〈·,·〉X ′,X denotes pairing between X and X ′.

If properties 1)-3) hold, then, moreover, u(·) is a.e. equivalent to a continuous function from [a,b] in X.

Applying this lemma with X = V ′+Lq (Ω) we obtain that (7) is equivalent to the equality
du
dt

= g in the

sense of X-valued distributions on every interval [τ,T ]. Hence,

du
dt
∈ Lq

loc(τ,+∞;Lq(Ω))+L2
loc(τ,+∞;V ′) (8)

and (7) is in fact equivalent to the equality

ˆ T

τ

〈
du
dt

,ξ (t)
〉

V ′+Lq
dt +
ˆ T

τ

((u(t) ,ξ (t)))dt +
ˆ T

τ

〈 f (t,u(t)),ξ (t)〉q,p dt (9)

=

ˆ T

τ

(h(t),ξ (t))dt,

for any ξ ∈ Lp(τ,T ;Lp(Ω))∩ L2(τ,T ;V ).
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Property (8) implies that u ∈ C([τ,+∞),H) and that the function t 7→ ‖u(t)‖2 is absolutely continuous on

[τ,T ] and
d
dt
‖u(t)‖2 = 2

〈
du
dt

,u
〉

V ′+Lq
for a.a. t ∈ (τ,T ) [10, p.285]. Hence, the initial condition u(τ) = uτ

makes sense.
Also, since the space C∞

0 ((τ,T )×Ω) is dense in Lp(τ,T ;Lp(Ω))∩ L2(τ,T ;V ), equality (9) is equivalent to

−
ˆ T

τ

ˆ
Ω

u(t,x)
∂φ

∂ t
dxdt−

ˆ T

τ

ˆ
Ω

u(t,x)
∂ 2φ

∂x2 dxdt +
ˆ T

τ

ˆ
Ω

f (u(t,x))φ (t,x)dxdt

=

ˆ T

τ

ˆ
Ω

h(t,x)φ (t,x)dxdt,

for any φ ∈C∞
0 ((τ,T )×Ω), that is, u(·) is a weak solution if and only if it is a solution in the sense of distribu-

tions.

Let us consider now another concept of solution. Namely, we will define a mild solution to (1).
It is known that the operator A = ∆ : D(A) = H2 (Ω)∩H1

0 (Ω)→H is the generator of a strongly continuous
semigroup of contractions T : R+×H → H. Moreover, it follows from well-known results [27] that for any
x ∈ D(A) the function u(t) = T (t)x is the unique classical solution to the problem{ du

dt
= Au(t), t > 0,

u(0) = x.
(10)

Further, we shall study the inhomogeneous problem{ du
dt

= Au(t)+g(t) , t > τ,

u(τ) = x,
(11)

where g : R→ H.

Definition 2. Let x ∈ H and g ∈ L1(τ,T ;H). Then the function u ∈ C([τ,T ],H) is called a mild solution to
problem (11) on [τ,T ] if

u(t) = T (t− τ)x+
ˆ t

τ

T (t− s)g(s)ds, τ ≤ t ≤ T. (12)

If g ∈ L1
loc([τ,+∞)), then u ∈ C([τ,+∞),H) is called a mild solution if (12) is satisfied on every interval

[τ,T ].
It is called a classical solution on [τ,T ] if u(·) is continuously differentiable on (τ,T ), u(t) ∈ D(A) for any

t ∈ (τ,T ), u(τ) = x and the equality in (11) is satisfied for every t ∈ (τ,T ).

It follows readily from this definition that problem (11) possesses a unique mild solution for every x ∈ H.
Also, if g is continuously differentiable on [τ,T ] and x ∈ D(A), then the mild solution is in fact the unique
classical solution [27, p.107].

Coming back to our problem (1), let us introduce the concept of mild solution for it.

Definition 3. The function u ∈ Lp
loc(τ,+∞;Lp(Ω))∩ L2

loc(τ,+∞;V )∩C([τ,+∞),H) is called a mild solution
to problem (1) on (τ,+∞) if for all T > τ the function g(·) = h(·)− f (·,u(·)) belongs to L1(τ,T ;H) and the
equality (12) holds true.

Our aim now is to show that under an additional assumption the concepts of weak and mild solutions coin-
cide.
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Lemma 2. Assume that u(·) is a weak solution to problem (1) with initial datum uτ ∈ H which satisfies

f (·,u(·)) ∈ L2(τ,T ;H). (13)

Then it is a mild solution as well.

Proof. Let us define the function g(t) = − f (t,u(t))+h(t), which belongs to L2(τ,T ;H) for every τ < T due
to (13). We need to prove that the equality (12) holds. For an arbitrary fixed interval [τ,T ] we take sequences
un

0 ∈H2(Ω)∩H1
0 (Ω), gn (·) ∈C1([τ,T ],H), T < T , such that un

0→ u0 in H, gn→ g in L2(τ,T ;H). Let un be the
unique classical solution to the problem{ dun

dt
= Aun(t)+gn (t) , t ∈ (τ,T ),

un (τ) = un
τ .

Since u ∈C1([τ + ε,T ],H) for any 0 < ε < T − τ , the difference un−u satisfies

1
2

d
dt
‖un−u‖2 +‖un(t)−u(t)‖2

V ≤ ‖g
n(t)−g(t)‖‖un(t)−u(t)‖ for a.a. t ∈ (τ + ε,T ) .

Hence, by using Young’s inequality and Gronwall’s lemma it is standard to show that un→ u in C([τ +ε,T ],H).
Further, from the equality

un (t) = T (t− τ− ε)un(τ + ε)+

ˆ t

τ+ε

T (t− s)gn(s)ds, τ + ε ≤ t ≤ T,

and taking into account that

T (t− τ− ε)un(τ + ε)→ T (t− τ− ε)u(τ + ε),
ˆ t

τ+ε

T (t− s)gn(s)ds→
ˆ t

τ+ε

T (t− s)g(s)ds,

where the last convergence follows from Lebesgue’s theorem, we have

u(t) = T (t− τ− ε)u(τ + ε)+

ˆ t

τ+ε

T (t− s)g(s)ds, τ + ε ≤ t ≤ T.

Passing to the limit as ε → 0 and using that T (t− τ− ε)u(τ + ε)→ T (t− τ)u(τ) we finally obtain that

u(t) = T (t− τ)u(τ)+
ˆ t

τ

T (t− s)g(s)ds, τ ≤ t ≤ T,

so we conclude that u(·) is a mild solution.

We prove now the converse statement.

Lemma 3. Assume that u(·) is a mild solution to problem (1) with initial data uτ ∈H which satisfies (13). Then
it is a weak solution.

Proof. Since the function g(·) = h(·)− f (·,u(·)) belongs to L2(τ,T ;H), using standard results [34, p.68] we
obtain that the problem 

∂v
∂ t
−∆v = g(t,x), x ∈Ω, t > τ,

v|∂Ω = 0,
v(τ,x) = uτ(x), x ∈Ω,

possesses a unique weak solution v(·). However, arguing in the same way as in Lemma 2 we deduce that v(·) is
a mild solution to problem (11) with x = uτ . Therefore, by uniqueness of the mild solution we have u(·) = v(·),
so our statement follows.
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3 Regularity of the strong global attractor

Let us consider problem (1) in the autonomous case, that is,
∂u
∂ t
−∆u+ f (u) = h(x), x ∈Ω, t > τ,

u|∂Ω = 0,
u(0,x) = u0(x), x ∈Ω,

(14)

and we assume that conditions (2)-(5) are satisfied. In particular, this means that h ∈ H.
In [17] the existence of a global attractor for the multivalued semiflow generated by the strong solutions to

(14) was proved assuming a critical growth condition on the nonlinear function f . In this section, our aim is to
prove that this attractor is bounded in suitable Lr-spaces.

Definition 4. A weak solution u(·) to problem (1) is called a strong solution if, additionally, it satisfies

u ∈ L∞
loc (0,+∞;V ∩Lp(Ω)) , (15)

du
dt
∈ L2

loc (0,+∞;H) . (16)

As u ∈ L∞(0,T ;V ∩ Lp(Ω))∩C([0,T ];H), we deduce that u ∈ C([0,T ];H1
0w(Ω)∩ Lp

w(Ω)) for any T > 0,
where H1

0w(Ω), Lp
w(Ω) are respectively the spaces H1

0 (Ω) , Lp(Ω) with the weak topology [33, Lemma 1.4,
p.263].

Throughout this section we will assume that

p≤ 2N−2
N−2

(17)

if N ≥ 3, that is, f satisfies a critical growth condition. No assumption is imposed if N ≤ 2.
From (4), (17) and the imbeddings H1(Ω) ⊂ L

2N
N−2 (Ω) , if N ≥ 3, H1(Ω) ⊂ Lq (Ω), for any q ≥ 1 if N ≤ 2,

we get ˆ T

τ

ˆ
Ω

| f (u)|2 dxdt ≤ K1

ˆ T

τ

(
1+‖u(t)‖2p−2

L2p−2(Ω)

)
dt ≤ K2

ˆ T

τ

(
1+‖u(t)‖2p−2

V

)
dt. (18)

Then the equality ∆u =
du
dt

+ f (u)−h and (15)-(16) imply that

u ∈ L2 (τ,T ;D(A)) (19)

for any strong solution u(·).
Since p≤ 2N−2

N−2 ≤
2N

N−2 , it is also obvious that V ⊂ Lp(Ω).
By standard results [28, Corollary 7.3] we obtain then that u ∈C([0,+∞),V ) and

d
dt
‖u‖2

V = 2
(
−∆u,

du
dt

)
for a.a. t > 0. (20)

It is known [17] that for any u0 ∈ V there exists at least one strong solution u(·) such that u(0) = u0.
Moreover, every strong solution satisfies the energy inequality

E (u(t))+2
ˆ t

s
‖ur‖2 dr = E (u(s)) , for all t ≥ s≥ 0, (21)

where E (u(t)) = ‖u(t)‖2
V +2(F (u(t)) ,1)−2(h,u(t)) .
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Let
K+

s = {u(·) : u is a strong solution of (14)}.

We define now the multivalued map G : R+×V → P(V ), where P(V ) is the set of all non-empty subsets of V ,
by

G(t,u0) = {u(t) : u ∈ K+
s and u(0) = u0}.

We recall now some results proved in [17] about the existence and structure of a global attractor for G. It
is worth pointing out that, although in that paper such theorems were proved in the particular three-dimensional
case (i.e. N = 3), the proofs in the general N-dimensional setting are identical.

First, we note that G is a strict multivalued semiflow, that is, G(0,x) = x and G(t + s,x) = G(t,G(s,x)) for
any t,s ∈ R+, x ∈V .

Moreover, G possesses a global compact invariant attractor A , that is, A is compact in V , it is invariant (i.e.
A =G(t,A ) for any t ≥ 0) and attracts every bounded set in V , that is,

dist(G(t,B),A )→ 0 as t→+∞,

for any B set bounded in V , where dist refers to the Hausdorff semidistance between sets given by dist(A,B) =
supx∈A inf y∈B ‖x− y‖V .

The map γ : R→ V is called a complete trajectory of K+
s if γ (·+h) |[0,+∞)∈ K+

s for any h ∈ R, and this is
equivalent to γ being continuous and satisfying

γ (t + s) ∈ Gs (t,γ (s)) for all s ∈ R and t ≥ 0. (22)

The set of all complete trajectories of K+
s will be denoted by Fs. Let Ks be the set of all complete trajectories

which are bounded in V .
The attractor A is characterised by the union of all points lying in a bounded complete trajectory, that is,

A = {γ (0) : γ (·) ∈Ks}= ∪t∈R{γ (t) : γ (·) ∈Ks}. (23)

A point z ∈ X is a fixed point of K+
s if ϕ (t) ≡ z ∈ K+

s , whereas it is called a fixed point of G if z ∈ G(t,z)
for all t ≥ 0. In our case these two concepts are equivalent, so we will simply call them fixed points. Moreover,
z is a fixed point if and only if z ∈V ∩H2(Ω) and

−∆z+ f (z) = h in H. (24)

The set of all fixed points will be denoted by R.
Finally, in [17] it is proved that the strong global attractor coincides with the unstable manifold of the set of

stationary points, and also with the stable one when we consider only bounded complete solutions. This means
that

Θs = M+
s (R) = M−s (R), (25)

where
M−s (R) = {z : ∃γ(·) ∈Ks, γ(0) = z, dist(γ(t),R)→ 0, t→+∞} ,
M+

s (R) = {z : ∃γ(·) ∈ Fs, γ(0) = z, dist(γ(t),R)→ 0, t→−∞} .

Concerning boundedness of the attractor in stronger Lr-spaces than L
2N

N−2 (Ω) (which follows from the em-
bedding V ⊂ L

2N
N−2 (Ω)) in [17] and [18] an estimate in the space L∞(Ω) is shown to be true if h ∈ L∞(Ω).

Now, using the equivalence between weak and mild solutions from the first section we are able to obtain
suitable estimates in Lr-spaces under much weaker assumptions on the function h.

Theorem 4. The global attractor A is bounded in Lr (Ω), where r ∈ [1,+∞] if N ≤ 3, r ∈ [1,+∞) if N = 4 and
1≤ r < 2N

N−4 if N ≥ 5.
If N ≥ 4 and h ∈ Lq(Ω), for some q > N

2 , then A is bounded in L∞ (Ω).
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Proof. The semigroup T (t) generated by the solutions of problem (10) satisfies the following well-known
estimate [32, p.2988]:

‖T (t)x‖Lr(Ω) ≤M
eδ t

t
N
2 (

1
q−

1
r )
‖x‖Lq(Ω) , (26)

for every 1≤ q≤ r ≤ ∞ and certain M > 0, δ ∈ R.
Take an arbitrary y ∈ A . In view of (23), there exists a complete trajectory ψ such that ψ (0) = y and

ψ (t) ∈ A for all t ∈ R. Inequality (18), combined with (15) and Lemma 2, implies that u(·) = ψ (·+h) is a
mild solution to problem (14) for any h ∈ R. We choose h =−1 and then by the variation of constants formula
we have

y = u(1) = T (1)u(0)+
ˆ 1

0
T (1− s)(h− f (u(s))ds.

Hence, applying (26) with q = 2 it follows that

‖y‖Lr(Ω) ≤Meδ ‖u(0)‖+
ˆ 1

0
M

eδ s

(1− s)
N
2 (

1
2−

1
r )

(‖h‖+‖ f (u(s)‖)ds

for any r ≥ 2. Take an arbitrary value r satisfying r ∈ [2,+∞] if N ≤ 3, r ∈ [2,+∞) if N = 4 and 2 ≤ r < 2N
N−4

if N ≥ 5. The inequality ‖ f (u(s)‖2 ≤ R1(1+‖u(t)‖2p−2
V ), together with the boundedness of the attractor in the

space V , gives the existence of a constant R2 such that

‖y‖Lr(Ω) ≤ R2

(
1+
ˆ 1

0

1

(1− s)
N
2 (

1
2−

1
r )

ds

)
= R2

(
1+

1
N
2

(1
r −

1
2

)
+1

)
,

where we have used that due to the conditions imposed on the parameter r, it follows that N
2

(1
r −

1
2

)
+1 > 0.

Thus the first statement of the theorem is proved.
In order to prove the second one, we first will prove that if the global attractor is bounded in Ls(Ω), where s

satisfies
s
N−2

N
>

N
2
, (27)

then it is bounded in fact in L∞(Ω). By (4) and (17) we get
ˆ

Ω

| f (u(s,x)|s
N−2

N dx≤ R3(1+
ˆ

Ω

|u(s,x)|s
N−2

N (p−1) dx)

≤ R3(1+
ˆ

Ω

|u(s,x)|s dx)≤ R4. (28)

Therefore, applying again formula (26) with r = ∞ and q = min{q,s N−2
N } and arguing as before for any y ∈A

we have

‖y‖L∞(Ω) ≤Meδ ‖u(0)‖Lq(Ω)+

ˆ 1

0
M

eδ s

(1− s)
N
2

1
q

(
‖h‖Lq(Ω)+‖ f (u(s)‖Lq(Ω)

)
ds

≤ R5

(
1+
ˆ 1

0

1

(1− s)
N
2

1
q

ds

)
= R5

(
1+

1
− N

2q +1

)
,

where we have used that − N
2q +1 > 0. Thus, the result follows.

Observe that if N = 4, then the attractor is bounded in Ls(Ω) for an arbitrary s ∈ [2,∞). Hence, we can pick
s such that (27) holds. On the other hand, since we have proved that the attractor is bounded in Ls(Ω) for any
s < 2N

N−4 , then (27) is also satisfied if N = 5,6.
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Further, for N ≥ 7 we will apply the above procedure iteratively so as to achieve (27).
Assume that the attractor is bounded in Ls(Ω) for some s ≥ 2N

N−2 such that s N−2
N < N

2 . Using (28) and

applying again (26) with q = s N−2
N and s < s(N−2)N

N2−2s(N−2) for any y ∈A we obtain

‖y‖Ls(Ω) ≤ R6

1+
ˆ 1

0

1

(1− s)
N
2

(
N

r(N−2)−
1
s

) ds

=
R6

N
2

(
1
s −

N
s(N−2)

)
+1

.

Therefore, the attractor is bounded in Ls(Ω) as well. For an arbitrary ε > 0 we choose s such that the difference
s− s satisfies

s− s≥ s(N−2)N
N2−2s(N−2)

− s− ε.

Since s≥ 2N
N−2 , we get

s− s≥ s
(
(N−2)N
N2−4N

−1
)
− ε = s

2
N−4

− ε ≥ 4N
(N−2)(N−4)

− ε.

There exist ε > 0 and k ∈ N such that

2N
N−2

+(k−1)
(

4N
(N−2)(N−4)

− ε

)
<

N2

2(N−2)
<

2N
N−2

+ k
(

4N
(N−2)(N−4)

− ε

)
and thus proceeding iteratively we obtain in k steps that the global attractor is bounded in Ls(Ω), where s satisfies
(27).

4 Weak attractor for strong solutions in the supercritical case

In this section, our aim is to prove the existence of a weak global attractor for the multivalued semiflow
generated by strong solutions to problem (14) satisfying a suitable energy inequality without imposing the as-
sumption (17). In this case, we do not know whether strong solutions belong to the space of continuous functions
with values in V , and therefore we are still not able to prove the existence of a strong attractor. Instead, we have
to consider a weaker attractor in which the attracting property is satisfied with respect to the weak topology of
the space V ∩Lp(Ω).

Lemma 5. Let uτ ∈ V ∩ Lp(Ω). Then there exists at least one strong solution u of (1) such that u(τ) = uτ .
Moreover, the energy inequality

E(u(t))+
ˆ t

s

∥∥∥∥du
dr

∥∥∥∥2

dr ≤ E(u(s)) (29)

holds for all t ≥ s, a.a. s > 0 and s = 0, where E(u(t)) = ‖u(t)‖2
V +(F(u(t)),1)−2(h,u(t)) .

Proof. As usual, we take the Galerkin approximations using the basis of eigenfunctions {w j (x), j ∈ N} of −∆

with Dirichlet boundary conditions. Let Xm = span{w1, ...,wm} and let Pm be the orthogonal projector from H
onto Xm. Then um (t,x) = ∑

m
j=i a j,m (t)w j (x) will be a solution of the system of ordinary differential equations

dum

dt
= Pm∆um−Pm f (um)+Pmh, um (0) = Pmu0. (30)

It is proved in [10, p.281] that passing to a subsequence um converges to a weak solution u of (1) weakly star in

L∞ (0,T ;H), weakly in Lp (0,T ;Lp (Ω)) and weakly in L2 (0,T ;V ) for all T > 0. Also, u(τ) = uτ and
dum

dt
→ du

dt
weakly in Lq (0,T ;H−s (Ω)) for some s > 0.
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Multiplying (30) by
dum

dt
we get

d
dt

(
‖um‖2

V +2(F(um),1)−2(h,um)
)
+2‖dum

dt
‖2 = 0, (31)

so (6) implies

‖um(t)‖2
V +2

tˆ

0

‖ d
ds

um(s)‖2ds+2δ ‖u(t)‖p
Lp(Ω)

≤ ‖um (0)‖2
V +R1‖um (0)‖p

Lp(Ω)+2‖h‖‖um(t)‖+2‖h‖‖um(0)‖+R2.

If p > 2, δ > 0 implies that

‖um (t)‖2
V +

tˆ

0

‖ d
ds

um(s)‖2ds+‖u(t)‖p
Lp(Ω) ≤ R3

(
‖um (0)‖2

V +‖um (0)‖p
Lp(Ω)

)
+R4,

where R j > 0. When p = 2 we obtain that

‖um (t)‖2
V +

tˆ

0

‖ d
ds

um(s)‖2ds≤ R3‖um (0)‖2
V +R4.

By the choise of the special basis we have that um (0)→ u0 in H1
0 (Ω)∩Lp (Ω).

Hence, um→ u weakly star in L∞(0,T ;V ∩Lp(Ω)) and
dum

dt
→ du

dt
weakly in L2

(
0,T ;L2 (Ω)

)
. Thus from

the Ascoli-Arzelà theorem {um} is pre-compact in C([0,T ];H) and then um → u in C([0,T ];H). Moreover, it
follows that um(t)→ u(t) in H1

0w(Ω)∩Lp
w(Ω)) for any t ∈ [0,T ].

Finally, we must check the validity of the energy inequality (29). It is clear from (31) that um satisfy

E(um(t))+
ˆ t

s

∥∥∥∥dum

dr

∥∥∥∥2

dr ≤ E(um(s))

for all t ≥ s≥ 0.
Let us define the function

L(u) = f (u)u−α|u|p.

Multiplying the equation in (14) by tum(t) and integrating over (0,T )×Ω we obtain
ˆ T

0

ˆ
Ω

t
dum

dt
umdxdt +

ˆ T

0
t ‖um(t)‖2

V dt

+

ˆ T

0

ˆ
Ω

t f (um (t,x))um (t,x)dxdt−
ˆ T

0

ˆ
Ω

th(x)um (t,x)dxdt = 0,

so

T
2
‖um (T )‖2 +

ˆ T

0
t ‖um(t)‖2

V dt

+

ˆ T

0

ˆ
Ω

tL(um(t,x))dxdt +α

ˆ T

0
t ‖um (t)‖p

Lp(Ω) dt (32)

=
1
2

ˆ T

0
‖um (t)‖2 dt +

ˆ T

0

ˆ
Ω

th(x)um (t,x)dxdt.
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In the same way, for the limit function u we obtain

T
2
‖u(T )‖2 +

ˆ T

0
t ‖u(t)‖2

V dt

+

ˆ T

0

ˆ
Ω

tL(u(t,x))dxdt +α

ˆ T

0
t ‖u(t)‖p

Lp(Ω) dt (33)

=
1
2

ˆ T

0
‖u(t)‖2 dt +

ˆ T

0

ˆ
Ω

th(x)u(t,x)dxdt.

From the previous convergences it is clear that

ˆ T

0
‖um (t)‖2 dt→

ˆ T

0
‖u(t)‖2 dt,

ˆ T

0

ˆ
Ω

th(x)um (t,x)dxdt→
ˆ T

0

ˆ
Ω

th(x)u(t,x)dxdt,

which implies that the left-hand side of (32) converges to the left-hand side of (33).
On the other hand, we have

ˆ T

0

ˆ
Ω

tL(u(t,x))dxdt ≤ liminf
ˆ T

0

ˆ
Ω

tL(um(t,x))dxdt,

which follows from the inequality
L(um(t,x))≥−C2,

the convergence um (t,x)→ u(t,x) , for a.a. (t,x) , and Lebesgue-Fatou’s lemma [35].
Bearing also in mind that

‖um (T )‖2→‖u(T )‖2 ,ˆ T

0
t ‖u(t)‖2

V dt ≤ liminf
ˆ T

0
t ‖um(t)‖2

V dt,
ˆ T

0
t ‖u(t)‖p

Lp(Ω) dts≤ liminf
ˆ T

0
t ‖um (t)‖p

Lp(Ω) dt,

we obtain readily that each term in the the left-hand side of (32) converges to the corresponding term in the
left-hand side of (33).

Therefore, ˆ T

0
t ‖um (t)‖p

Lp(Ω) dt→
ˆ T

0
t ‖u(t)‖p

Lp(Ω) dt,

ˆ T

0
t ‖um(t)‖2

V dt→
ˆ T

0
t ‖um(t)‖2

V dt,

and then for any 0 < r < T we get

um→ u strongly in L2(r,T ;V )∩Lp(r,T ;Lp(Ω)),

so
um(t)→ u(t) in V ∩Lp(Ω) for a.a. t ∈ (0,T ) .
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Applying then the dominated convergence theorem we deduce that F(um(t))→ F(u(t)) in L1(Ω) for a.a. t ∈
(0,T ). On top of that, in view of um→ u in C([0,T ],H), for any t ∈ [0,T ] it follows that F(um(t,x))→ F(u(t,x))
for a.a. x ∈Ω. Hence, by the inequality

F(um(t,x))≥−D2 if p > 2,

F(um(t,x))≥ δ |um(t,x)|2−D2 if p = 2,

and Lebesgue-Fatou’s lemma [35], we have
ˆ

Ω

F(u(t,x))dx≤ liminf
ˆ

Ω

F(um(t,x))dx.

We know also from um(t)→ u(t) weakly in V that

‖u(t)‖V ≤ liminf ‖um(t)‖V for all t ∈ [0,T ].

Thus,
E(u(t))≤ liminf E(um(t)) for all t ∈ [0,T ].

Passing to the limit in (21) we obtain (29).

For any u0 ∈ V ∩Lp(Ω) let R(u0) be the set of strong solutions to problem (14) which satisfy the energy
inequality (29) for all t ≥ s and a.a. s > 0. This set is non-empty for every initial datum u0 ∈V ∩Lp(Ω) due to
Lemma 5. Denoting X =V ∩Lp(Ω) we define now the multivalued mapping G : R+×X → P(X) by

G(t,u0) = {y : y = u(t) ∈R(u0)}.

It is straightforward to check that G(0,x) = x and G(t + s,x)⊂ G(t,G(s,x)) for any x ∈ X and t,s ∈ R+, that is,
G is a multivalued semiflow.

In the sequel, Xw = H1
0w (Ω)∩Lp

w(Ω).

Definition 5. The set A is called a weak global attractor for the multivalued semiflow G if the following
properties hold:

1. A is bounded in X and compact in Xw.

2. A is weakly attracting, that is, for any bounded set B in X and any neighborhood O of A in Xw there
exists T (O) such that

G(t,B)⊂ O for all t ≥ T.

3. A is negatively semi-invariant, that is,

A ⊂G(t,A ) for any t ≥ 0.

It follows from this definition that if K is a weakly closed set which is weakly attracting, then for any
neighborhood O of K in Xw there exists T (O) such that

A ⊂G(t,A )⊂O for all t ≥ T.

Hence, A ⊂K as Xw is a Hausdorff topological space. This means that A is the minimal weakly closed set
which is weakly attracting.

We recall that the set B0 is said to be absorbing if for any bounded set B in X there exists T (B) such that

G(t,B)⊂ B0 for any t ≥ T.
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Lemma 6. The multivalued semiflow G possesses a bounded absorbing set B0 = {v∈ X : ‖v‖2
V +‖v‖p

Lp(Ω) ≤ R},
where R is a positive constant.

Remark 1. The set B0 is weakly closed.

Proof. The function E(u(t)) satisfies (29) and multiplying the equation in (14) by u we have

1
2

d
dt
‖u‖2 +‖u‖2

V +α ‖u‖p
Lp(Ω) ≤C2 +

1
2λ1
‖h‖2 +

λ1

2
‖u‖2 .

Therefore,
‖u(t)‖2 ≤ e−λ1t ‖u(0)‖2 +K1, for all t ≥ 0,

where K1 =
2C2
λ1

+ 1
λ 2

1
‖h‖2, and

ˆ t+r

t

(
‖u‖2

V +‖u‖p
Lp(Ω)

)
dt ≤ K2(‖u(t)‖2 + r)

≤ K3(e−λ1t ‖u(0)‖2 +1+ r),

for some positive constants K2,K3 and any r > 0, t ≥ 0.
Integrating in (29) over (t, t + r) we get

E(t + r)≤ K3(e−λ1t ‖u(0)‖2 +1+ r)
r

, for all r > 0, t ≥ 0.

Taking into account that

E(u(t)) = ‖u(t)‖2
V +(F(u(t)),1)−2(h,u(t))

≥ ‖u(t)‖2
V +δ ‖u(t)‖p

Lp(Ω)−‖h‖
2−‖u(t)‖2−D2,

it follows easily from the previous estimates the existence of a constant R > 0 such that the bounded set

B0 = {v ∈ X : ‖v‖2
V +‖v‖p

Lp(Ω) ≤ R}

is absorbing for G.

The theory of global attractors in topological spaces for multivalued semiflows and processes has been
developed for example in [1,15,21]. However, since the abstract conditions imposed in those papers are not met
in our particular situation, we will prove the existence of the weak attractor from scratch.

Theorem 7. The multivalued semiflow G possesses a weak global attractor A .

Proof. Take an arbitrary bounded set B. We recall that the ω-limit set of B is given by

ω(B) = ∩s≥0clXw ∪t≥s G(t,B).

Since the space Xw satisfies the first axiom of countability, an equivalent definition for ω (B) is the following

ω(B) =
{

y ∈ X : there exist sequences yn ∈ G(tn,xn), tn→+∞, xn ∈ X
such that yn→ y in Xw

}
.

Therefore, as X is a reflexive Banach space and by Lemma 6 the set ∪t≥T (B)G(t,B) is bounded for some T (B),
any sequence yn ∈ G(tn,B) with tn→ +∞ has a weakly convergent subsequence. Thus, ω(B) is non-empty. It
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is obvious that ω(B) belongs to the absorbing set B0, so it is bounded in X , and that it is weakly closed, so it is
compact in Xw.

Further, let us check that ω(B) weakly attracts B. Assuming the opposite, there exists a neighborhood O of
ω(B) and a sequence yn ∈ G(tn,B), where tn→+∞, such that yn 6∈ O . But this leads to a contradiction as from
{yn} we can extract a converging subsequence whose limit belongs to ω(B).

It remains to prove that ω(B) is negatively semi-invariant.
First of all, let us consider a sequence of strong solutions un (·) ∈R(un

0) such that un (t) ∈ B0 for any t ≥ 0.
In view of well-known results (see [20, Lemma 15] and [16, Theorem 3.11]), there exists a weak solution u(·)
to problem (14) and a subsequence unk (·) such that unk → u strongly in C([0,T ],H), for all T > 0 (among other
convergences). But un(t) are uniformly bounded in X , so

unk → u weakly star in L∞(0,T ;V ∩Lp(Ω)) for all T > 0,

unk(t)→ u(t) in Xw for any t ≥ 0.

Also, inequalities (29), (6) and E(un(s)) ≤C, for any s ≥ 0 and n, imply that
dun

dt
are bounded in L2(0,T ;H)

and then
dunk

dt
→ du

dt
weakly in L2(0,T ;H).

Therefore, u(·) is in fact a strong solution to problem (14). On top of that, arguing in the same way as in Lemma
5 we obtain that

unk → u strongly in L2(r,T ;V )∩Lp(r,T ;Lp(Ω)), for any 0 < r < T,

and also that (29) is satisfied for all t ≥ s and a.a. s > 0. Thereby, u(·) ∈R(u0).
Consider now an arbitrary element y ∈ ω(B) and t > 0. Then there is a sequence yn ∈ G(tn,xn) with tn→

+∞, xn ∈ B such that yn→ y in Xw. In addition, we take N(B) for which G(s,B) ⊂ B0 if s ≥ tn− t and n ≥ N.
Since G(tn,xn)⊂G(t,G(tn− t,xn)), there are zn ∈G(tn− t,xn), un (·) ∈R(zn) satisfying that un (s) ∈ B0, for any
s ≥ 0, and yn = un(t). Passing to a subsequence zn converges in the space Xw to some z ∈ ω(B). In light of the
previous arguments there exists u(·) ∈R(z) such that u(t) = y. Thus, y ∈ G(t,z) ⊂ G(t,ω(B)), which proves
that ω(B) is negatively semi-invariant.

Finally, let A = ω(B0). Obviously, A is bounded in X , compact in Xw and negatively semi-invariant. The
weakly attracting property follows from the chain of inclusions

G(t,B)⊂ G(t−T (B),G(T (B),B))⊂ G(t−T (B),B0)

and the fact that A weakly attracts B0.
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