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Abstract
The paper presents Elastohydrodynamic lubrication line contact problem with bio-based oil as lubricants for an isothermal
case. The fast convergence method for the solution of Elastohydrodynamic lubrication line contact problem with seed oil
as lubricant is analyzed using Multigrid, Multilevel Multi-Integration with the influence of different load and speed. The
result shows that the use of these oils has the potential to substitute the function of common lubricant so as to reduce
dependence on conventional oil lubricants. The results obtained are comparable and the pressure spikes are smooth as
compared to the earlier findings which are shown in terms of graphs and tables.
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1 Introduction

The Elastohydrodynamic lubrication (EHL) is one of the important topics in Tribology, EHL problems have
been studied by many researchers over the last three decades both theoretically and experimentally. EHL is
commonly found in many machines components such as gear teeth contacts, cams and rolling element bearings
during variations in load etc. There are generally two types of problems in EHL, line contact and point contact.
In line contact EHL problem, the contact region of the elements are assumed to be infinitely long in one direction,
that takes place as an infinitely long strips. In point contact EHL problem, the contact takes place within a finite
elliptical region [1]. When two metals are in contact, the amount of asperities and interaction within the contact
area increases, causing frictions which insist wear of the metal surfaces and generation of excessive heat. These
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friction, wear and excessive heat caused by the interaction between the surfaces are controlled by the inclusion
of lubricant whose function is to reduce friction and wear to prevent oxidation and corrosion, acting as a coolant,
facilitating heat dissipation from the engine.

The Bio-based oils are usually the extracts of various plants, animals, seeds, fruits etc. Bio based product
plays an important role in lubrication [2–5]. Certain physical and chemical property of these oils enables it to
be a suitable lubricant due to their liquidity at room temperature. In spite of these advantages it has several
drawbacks for their use as lubricant. Chemical modification can overcome these drawbacks by adding additives
in these oils. Among these, vegetable oils consists of long chain molecule structure which interacts strongly
with metal surface reducing friction and wear, due to the availability of their small range of viscosities. These
oils have been discussed by many researchers; Quinchia et al. [6] have successfully modified the viscosity of
vegetable oils by using Ethylene-Vinyl Acetate copolymer (EVA) as additive material. There is a strong concern
of awareness in biodegradable low-toxicity lubricants and biodegradability is obtained by using suitable bio-
degradable base fluid, by adding additives that is environmentally friendly [7]. There is a need to source out
lubricants other than the computational ones obtained from biobased oils [8, 9], as an increasing world energy
crisis.

Multigrid, Multilevel Multi-Integration (MLMI) with Full Approximation Scheme (FAS) are been discussed
in [10, 11]. Multigrid technique has received immense attention from many investigators in EHL and is proved
to be very efficient for solving EHL problems. Venner [12] examined FAS for the Reynolds equation, film
thickness equation and the force balance equation by employing multigrid technique for the solution of EHL
problems. Lubrecht et al. [13] presented its application in EHL and employed the reduced pressure in deriving
the Reynolds equation. Brandt and Lubrecht [14] developed a MLMI algorithm for the fast calculation of
elastic deformation. In the present work only the Gauss-Seidel relaxation method is adopted. The advantage of
multigrid methods incorporate naturally and overcome the drawbacks of Newton-Raphson scheme, it enables
to analyze EHL problems for higher loads required in non-conformal conjunctions such as rolling element
bearings, gears etc., employing the Gauss-Seidel relaxation with small under-relaxation factors which illustrates
that the Gauss-Seidal relaxation is a stable relaxation scheme with good smoothing properties. EHL problems
have also been solved by many other different methods as in [15,16], etc. Although many mathematical models
of ordinary differential equations and partial differential equations [17, 18], etc., have been solved for its exact
solution.

In this paper, we employ FAS for the solution of EHL line contact problem. This paper is organized as
follows. Section 1 describes the introduction. Section 2 describes governing equation of the physical problem.
Discretization of the governing equation is given in Section 3. In Section 4, Multigrid (FAS) method is presented.
In Section 5, solution procedure is given in detail. Section 6 contains the results and discussions. Finally, the
conclusion of the proposed work is given in Section 7.

2 Governing Equations

Let us consider the flow is laminar and the compressibility of the fluid is negligible. The isothermal EHL
line contact problem models the lubricant flow contact between outer ring and cylindrical roller of roller element
bearing under an applied load which consists of three equations: the Reynolds equation, the film thickness
equation and the force balance equation. All these equations are presented in a dimensionless form as [19]:

∂

∂X

(
ε

∂P
∂X

)
− ∂

∂X
(ρH) , (1)

where ε = ρH3

ηK and K = 3
4
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π

W

)2U .
The non-dimensional parameters for magnitude analysis of Reynolds equation are
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The film thickness equation at any point on the contacted surface is [20]:

H(X) = H0 +
X2

2
−D,

where H0 is the central offset film thickness, X2

2 defines the un-deformed contact shape, and

D =− 1
2π

ˆ Xout

Xin

dP
dX ′

(X−X ′)[log(X−X ′)2]dX ′− 1
4

(
R2 8W

π

)
is the elastic deformation of the contacting surfaces. The equation for applied load in dimensionless form can
be expressed as ˆ Xout

Xin

Pdx =
π

2
.

The non-dimensional viscosity-pressure relation is given by [21] and pressure viscosity index as mentioned
in [22]:

η = exp
{
[log(η0)+9.67]

[
−1+

(
1+

pHP
p0

)z]}
α = z[5.1×10−9(logη0 +9.67)],

where η0 is the absolute viscosity, p0 is the ambient pressure and z is a constant characteristic of the liquid
(pressure-viscosity index) given by

z = [7.81(H40−H100]
1.5F40,

where

F40 = (0.885−0.864), H40 = log(log(η40)+1.200), H100 = log(log(η100)+1.200).

The non-dimensional density-pressure relation is given by [1]:

ρ =

(
1+

0.6p
1+1.7p

)
.

The corresponding boundary conditions are

Inlet boundary condition at: X = Xin,P = 0.

Outlet boundary condition at: X = Xout ,P = ∂P
∂X = 0.

3 Discretization of the equations

Eq. (1) is discretized using second order finite differences with the grid size of N = 65 and the domain of
interest initially is [Xin,Xout] = [−4,2.2]. The discretized form of Reynolds equation is

εi− 1
2
Pi−1− (εi− 1

2
+ ε1+ 1

2
)Pi + εi+ 1

2
Pi+1

∆X2 =
ρ iHi−ρ iHi−1

∆X
,

where ∆X2 = Xi−Xi−1. The film thickness equation in discretized form is [16]:

Hi = H0 +
x2

i

2
− 1

π

N

∑
i=1

Di, jPj
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where

Di, j =−
(

i− j+
1
2

)
∆X
[
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2
|∆X

)
−1
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2
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for i = 0,1,2, . . . ,n, j = 0,1,2, . . . ,n and the force balance equation in discrete form is

∆X
∞

∑
i=1

Pi +Pi+1

2
− π

2
= 0.

The boundary condition in the inlet P(Xin) = 0 and the boundary in the outlet can be obtained by setting the
negative pressure equal to zero. The discrete form is

P(Xout) = 0 and
P(Xout)−P(Xout −1)

∆X
= 0.

The convergence criteria for pressure relation is:

∑ |Pk+1
i −Pk

i |
∑Pk+1

i
≤ ε1,

where ε1 is the given error.

Table 1 Physical parameters of roller bearing.

Material (roller and disc) Steel AISI 52100
Elastic modulus (roller and surface) Er = Ed = 210 GPa

Poison’s ratio νr = νd = 0.3
Radius of roller R = 0.0114

Table 2 Physical properties of tested oil at 40°C.

Oil name Dynamic viscosity (Pa.s) at 40°C α (m2/N) G
Sunflower oil 0.029 1.3008E-08 3002
Soyabean oil 0.031 1.3229E-08 3053

Castor oil 0.23 2.3283E-08 5373

4 Multigrid Method

The problem of solving the system of linear equations

Au = f ,

where A is a square matrix and f is a column matrix, arising from discretization of a differential equation on
grid Ωh, where h is the step size. I2h

h interpolation operator, the superscript denotes to the finer grid and the
subscripts denotes to the coarser grid, and Ih

2h restriction operator. We define a multigrid method recursively, for
the two-level V-cycle method, first relax a few steps on the finer grid Ωh to get uh, then compute the residual
rh = f h−Ahuh; restrict the residual to the coarser grid Ω2h, r2h = I2h

h rh; and solve the error equation A2he2h = r2h

on the coarser grid. Finally, set uh = uh + I2h
h e2h and again relax a few steps on the finer grid. Based on this two

level method, the V-cycle multigrid scheme is defined recursively, which are given in [12, 23, 24].
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Algorithm (FAS). The system of nonlinear equations can be written as

Lh(uh) = f h,

where L is a non linear operator, u is the exact solution, f is a right hand side function and h is the mesh size of
the uniform finer grid. Let v be an approximation to the exact solution u. Then

eh = uh− vh (error)

rh = f h−L(vh) (residual).

For simplicity, we shall consider a two grid correction scheme, as follows:

1. Applying few number of nonlinear Gauss-Seidal iteration on fine grid with initial vh.

2. Computation of the restricted residual and restricted current approximation obtained from step 1(finer to
coarser) r2h = I2h

h ( f h−Lh(vh)) and v2h = I2h
h vh.

3. Solve the coarser grid problem L2h(u2h) = L2h(v2h)+ r2h.

4. Compute the error approximation of the coarser grid e2h = u2h− v2h.

5. Interpolation of error approximation and correction (coarser to finer) vh← vh + I2h
h e2h.

6. Applying few number of Gauss-Seidal iteration on finer grid.

For the calculation of deformation surfaces, we employ MLMI. MLMI is a multiscale technique designed to
speed up the evaluation of integrals. Apart from its use in EHL problems, this method has many applications in
integral differentiation equation, integral equation, elasticity and acoustic problems, etc. The general formulation
to solve the following integral is given by

v(x) =
ˆ

Ω

K(x,y)u(y)dy, (2)

where u is a given function and K is the kernel on a domain Ω = (a,b). The discrete form of the Eq. (2) is
descretized on a regular mesh of Nh

x points, ∆xh = (b−a)
Nh

x−1 , where h is the grid level. The single grid routine for

calculating multi summation at each node xh
i = a+(i−1)∆xh for i = 1, . . . ,Nx is

vh
i = vh(xh

i ) =
Nh

x

∑
j=1

Khh
i, j u

h
j ,

where Khh
i, j is the discretized kernel and uh

j is the approximation to uh(xi). The discrete form of Eq. (2) represents
a full matrix-vector multiplication having certain smoothness property, wherein the kernel is dense rather than
a sparse matrix, the method is possible only when the kernel itself has sufficient smoothing properties. The
discretization of the elastic deformation integrals for both EHL line and point contact is discussed by Venner
and Luberchet [11].

5 Solution method

The process of multigrid includes the pressure correction and load balance by adjusting the rigid film thick-
ness, which are carried out on the same grid. At any instant, the iteration procedure consists of the pressure
iteration and the adjustment for H0. The pressure must be relaxed on each grid level. If we denote (LP)i by
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Li(P) and ignoring superscripts which represents the grid level, the algebraic equation for pressure on each level
can be expressed as Li(P) = Fi(i = 1,2, . . . ,n− 1). For an under-relaxation factor, the process for the pressure
iteration can be described as:

P̃i = Pi + ciδi,

where

δi = (∂Li/∂Pi)
−1ri,

ri = Fi[εi−1/2P̃i−1− (εi−1/2 + εi+1/2)Pi + εi+1/2Pi+1]/(∆X)2 +(ρ iH i−ρ i−1H i−1)/(∆X),

∂Li/∂Pi = (εi−1/2 + εi+1/2)/(∆X)2 + 1
π
(ρ iKi, j−ρ i−1Ki−1, j)/∆X ,

and Pi, Pi+1 are initial values of pressure in an iterative process and P̃i−1 is the new value of pressure obtained in
the iteration. The load balance condition can be achieved by modifying the rigid film thickness H0 as follows.

H0 = H̃0 + c2

[
G∆− ∆

π

N−1

∑
j=1

(Pj +Pj+1)

]
,

where c2 is the relaxation factor and G∆ is the nondimensional load on the coarsest grid.
Following procedure is followed for the determination of pressure cavitation point [25]. Let Xc be a point in

(Xin,Xout). If pressure gradient dP
dX |Xc = 0, then Xc is the required pressure cavitation point. Otherwise, shift the

point Xc on next interval to the left or right depending on dP
dX |Xc > 0 or dP

dX |Xc < 0 respectively. Next approximate
another cavitation point X ′c and solve EHL problem. If pressure gradient dP

dX |X ′c is zero, we get converged solution,
otherwise verify the condition

dP
dX
|Xc×

dP
dX
|X ′c < 0. (3)

If the condition Eq. (3) is not satisfied, repeat above process and find two approximate values X ′c and X ′′c for
which Eq. (3) is satisfied. A new cavitation point Xnew is obtained by interpolating between the two points X ′c and
X ′′c , which ensures pressure gradient nearly equal to zero at Xnew and results into the required smooth solution of
EHL problem.

Fig. 1 Effects of load variation for Soyabean oil with U = 1.0×10−11.
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W U
Sunflower oil Castor oil

Hmin Pmax Hmin Pmax
1.0×10−5 1.0×10−11 1.44093E +09 7.1574E−02 1.06166E +09 6.7714E−02
1.5×10−5 1.0×10−11 1.36376E +09 4.4856E−02 1.52957E +09 6.1424E−02
2.0×10−5 1.0×10−11 1.34270E +09 3.2407E−02 1.63780E +09 4.4377E−02
4.0×10−5 1.0×10−11 1.31519E +09 1.4807E−02 1.67202E +09 2.0276E−02

2.045×10−5 0.5×10−11 1.10563E +09 1.9451E−02 1.28860E +09 2.6636E−02
2.045×10−5 1.0×10−11 1.40761E +09 3.1599E−02 1.61174E +09 4.3270E−02
2.045×10−5 2.0×10−11 1.66680E +09 5.1333E−02 1.83806E +09 7.0293E−02
2.045×10−5 4.0×10−11 2.06199E +09 8.3390E−02 2.36530E +09 0.11419154

Table 3 Effect of dimensional load and speed on dimensional pressure and filmthickness.

Fig. 2 Effects of speed variation for Soyabean oil with W = 2.0452×10−5.

Fig. 3 EHL pressure and film thickness profile for all tested oils.U = 1.0×10−11 and W = 2.0452×10−5.
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W U
Soyabean oil Dedi [19]

Hmin Pmax Hmin Pmax
1.0×10−5 1.0×10−11 1.44093E +09 7.1574E−02 1.06166E +09 6.7714E−02
1.5×10−5 1.0×10−11 1.36295E +09 4.5266E−02 1.03413E +09 4.3496E−02
2.0×10−5 1.0×10−11 1.33590E +09 3.2703E−02 0.97428E +09 3.1680E−02
4.0×10−5 1.0×10−11 1.32177E +09 1.4942E−02 0.78821E +09 1.4662E−02

2.045×10−5 0.5×10−11 1.06785E +09 1.9629E−02 0.85334E +09 1.9272E−02
2.045×10−5 1.0×10−11 1.35488E +09 3.1888E−02 0.97086E +09 3.0910E−02
2.045×10−5 2.0×10−11 1.67199E +09 5.1802E−02 1.09415E +09 4.9282E−02
2.045×10−5 4.0×10−11 2.05771E +09 8.4152E−02 1.20721E +09 7.7793E−02

Table 4 Effect of dimensional load and speed on dimensional pressure and filmthickness.

6 Results and Discussion

The EHL line contact problem is studied with bio-based oil as lubricant, for an isothermal case with the
influence of different loads and speed. The problem has been calculated to investigate the substantial variations in
various parameters including its calculated physical properties as shown in Tables 3 and 4. Multigrid, multilevel
techniques with FAS scheme is employed. The cavitation condition in the present analysis ranges from X =−4
to 2.2 with grid size of N = 65. The present computations are confined to the numerical parameters c1 = 0.037
and c2 = 0.037 used for the under-relaxation of the iterations P and H0. The result of the simulation for the
lubrication is as shown in Figs. 1-3 and are carried out for a different value of dimensionless speed (U) and
load parameter (W ) as specified in both Tables 3 and 4. Fig. 1 shows the effects of varying load for Sunflower,
Soyabean, and Castor oils with constant speed (U = 1.0× 10−11), where the load decreases as the value of
pressure spike and film thickness increases and almost similar to hertzian pressure, film thickness. Fig. 2 shows
the effects of varying speed at constant load (W = 2.045× 10−5) as the speed increases the value of pressure
spike and film thickness decreases. Fig. 3 shows the pressure and film thickness profiles of both Sunflower and
Soyabean oils. They are almost the same due to their low temperature behavior as reported by Dow T. A. Dow
et al. [26].

7 Conclusions

In this paper, the EHL line contact problem with seed oils as lubricant is analyzed by using multigrid,
multilevel techniques in order to clarify the best performance of lubricants. The characteristics of EHL under
operating condition shows that, at constant temperature 40°C, sunflower, soyabean and castor oil are able to
replace other lubricants, as they have good pressure and film profile during simulation.

Nomenclature

α Pressure viscosity index (m2/N).

η Viscosity of lubricant.

η0 Viscosity at ambient pressure.

ν Poisson ratio.

η Dimensionless viscosity.

ρ Dimensionless density.
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ρ Density of lubricant.

ρ0 Density at ambient pressure.

b Half width of the Hertzian contact zone (b = 4R
√

W/2π,(m)).

E ′ Effective elastic modulus of roller and disc
(

E ′ = 1
2

(
1−v2

r
Er

+ 1−v2
r

Ed

))
.

G Non-dimensional material parameter.

H Dimensionless film thickness (m).

h Film thickness (m).

p Pressure (Pa).

p0 Ambient pressure.

pH Maximum Hertzian pressure (pH = E ′b/4R).

R Equivalent radius of the contact (m).

U Dimensionless speed parameter (U = η0us
E ′R ).

us Average entrainment speed.

W Dimensionless load parameter (W = w
E ′R ).

w Applied load per unit length (N/m).

x0 Inlet co-ordinate.

xe Outlet co-ordinate.

z Pressure viscosity parameter.
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