
Applied Mathematics and Nonlinear Sciences 1(2) (2016) 311–320

Applied Mathematics and Nonlinear Sciences
http://journals.up4sciences.org

Multiplier method and exact solutions for a density dependent reaction-diffusion
equation

M. Rosa, M. L Gandarias†,

Departamento de Matemáticas, Universidad de Cádiz, 11500 Puerto Real, Cádiz,
Spain.

Submission Info

Communicated by Juan L.G. Guirao
Received 5th March 2016

Accepted 1st July 2016
Available online 1st July 2016

Abstract
Reaction-diffusion equations have enjoyed a considerable amount of scientific interest. The reason for the large amount
of work put into studying these equations is not only their practical relevance, but also interesting phenomena that can
arise from such equations. Fisher equation is commonly used in biology for population dynamics models and in bacterial
growth problems as well as development and growth of solid tumours. The physical aspects of this equation are not fully
understood without getting deeper into the concept of conservation laws. In [4], Anco and Bluman gave a general treatment
of a direct conservation law method for partial differential equations expressed in a standard Cauchy-Kovaleskaya form. In
this work we study the well known density dependent diffusion-reaction equation. We derive conservation laws by using
the direct method of the multipliers.
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1 Introduction

Partial differential equations arise in situations in which an unknown function depends on more than one
variable. Many applications of mathematics in the physical and biological sciences involve partial differential
equations, and there is a great variety of techniques for obtaining information about the behavior of solutions
from a population that may depend continuously on both time and location in space. The Fisher-Kolmogorov
equation was proposed for populations dynamics in 1930. It shows spread of an advantageous gene in a pop-
ulation. The existence of solutions and traveling waves was demonstrated in 1937 [12]. The analysis and
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study of the Fisher equation is used to model heat and reaction-diffusion problems applied to mathematical bi-
ology, physics, astrophysics, chemistry, genetics, bacterial growth problems, development and growth of solid
tumours [5, 16, 20, 23].

As described by Britton [7], generalizations of this equation are needed to more accutarely model complex
diffusion and reaction effects found in many biological systems. The equation analyzed in this paper is a gener-
alized Fisher equation in which g(u) is the diffusion coefficient depending on the variable u, being x and t the
independent variables, and f (u) an arbitrary function

ut = f (u)+(g(u)ux)x . (1)

Equation (1) is also known as the density dependent reaction-diffusion equation which is mentioned by J.D.
Murray in [19] to model the advance of an advantageous gene through a geographic region. Reaction term or
source term, in which concentration is generated or degenerated by local interaction, diffusion term which causes
the substances to spread out in space. Reaction-diffusion equations arise from modelling densities of particles
such as substances and organisms which disperse through space as a result of the irregular movement of every
particle. For some special wave speeds the equation is shown to be of Painlevé type and the general solution for
these wave speeds were found in [1].
Lie symmetry analysis of differential equations provides a powerful and fundamental framework to the exploita-
tion of systematic procedures leading to the integration by quadrature of ordinary differential equations, to the
determination of invariant solutions of initial and boundary value problems and to the derivation of conservation
laws [2].

In some particular cases this equation has been studied by other authors.
In the particular case of g(u) = 1 [9], symmetry reductions and exact solutions were obtained using classical and
nonclassical symmetries. An exact solution of a quasilinear Fisher equation in cylindrical coordinates

ut = u(1−u)+
1
x
[xuux]x , (2)

by using Lie classical reductions, was derived in term of the Bessel functions [6].
A complete classification of the classical symmetries and exact solutions of

ut = f (u)+
1
x
(xg(u)ux)x , (3)

was obtained [22]. All the reductions were derived from the optimal system of subalgebras. Some of the reduced
equations admit Lie symmetries which yield to further reductions. In [8] the form-preserving transformations
were applied to derive the complete Lie symmetry classification of Eq.:

ut = (A(u)ux)x +B(u)ux +C(u) (4)

with B(u) = 0, Eq. (4) becomes the so called density dependent equation. In [10], Eq. (4) have studied from the
point of view of conservation laws.
Owing to the great advance in computation in the last few years, a great progress has being made in the devel-
opment of methods and their applications for finding solitary traveling-wave solutions of nonlinear evolution
equations. Many solutions of nonlinear partial differential equations have been found by one or other of these
methods. In [26], Wang introduced a method which is called the G′

G -expansion method to look for traveling wave
solutions of nonlinear evolution equations. The main ideas of the proposed method are that the traveling wave
solutions of a nonlinear evolution equation can be expressed by a polynomial in G′

G , where G = G(z) satisfies the
linear second order ordinary differential equation

G′′(z)+ωG′(z)+ζ G(z) = 0.
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It is known that conservation laws play a significant role in the solution process of an equation or a system of
differential equations. Although not all of the conservation laws of partial differential equations (PDEs) may
have physical interpretation they are essential in studying the integrability of the PDEs.

For variational problems, the Noether theorem can be used for the derivation of conservation laws. For non
variational problems there are different methods for the construction of conservation laws. In [4], Anco and
Bluman gave a general algorithmic method to find all conservations laws for evolution equations like Eq. (1).
Many recent papers using this method have been published in [3,13,14] In a previous paper [15], for equation (1)
we have determined the subclasses of equations which are nonlinearly self-adjoint. And we have determined,
by using the Lie generators of (1) and the notation and techniques introduced by Ibragimov [17], some non-
trivial conservation laws. After Ibragimov’s results several papers appeared concerned with self-adjointness and
its applications to PDEs [24, 25]. In this work, we derive conservation laws by using the direct method of the
multipliers [4]. Furthermore, due to the fact that equation (1) admits groups of space and time traslations, we
look for travelling wave solutions of the density dependent reaction-diffusion equation (1) with physical interest.
In order to do that we apply the well known G′

G -expansion method.

2 Lie symmetries

We start by applying the classical Lie group method to equation (1). Most of the required theory and
description of the method can be found in Olver [21]. To apply the classical method to equation (1), one looks
for infinitesimal generators of the form

V = ξ (x, t,u)∂x +η(x, t,u)∂t +ψ(x, t,u)∂u,

that leave invariant this equation. By applying these techniques to equation (1), we find that, if f and g are
arbitrary functions, the symmetries that are admitted by (1) are

v1 = ∂x, v2 = ∂t .

The following functional forms of f and g which have extra symmetries are are given in Table 1:

Table 1: Functions and generators.

i fi gi vk
1 um un v1, v2, v3 = (n−m+1)x∂x+2(1−m)t∂ t +2u∂u (m 6= n+1)

2 enu emu v1, v2, v4 = (m−n)x∂x−2nt∂ t +2∂u (n 6= m)

3 c2 un+1− c1 u
n

un v1, v2, v5 = ec1t
∂ t− c1ec1tu

n
∂u (n 6= 0)

4 u−
1
3 u

−4
3 v1, v2, v3, v6 = e

2x√
3 ∂x−

√
3e

2x√
3 u∂u, v7 = e−

2x√
3 ∂x+

√
3e−

2x√
3 u∂u

3 Optimal systems and reductions

In order to construct the one-dimensional optimal system, following Olver in [21], we construct the commutator
tables and the adjoint tables which show the separate adjoint actions of each element in vi, i = 1 . . .n, as it acts
on all other elements. This construction is done easily by summing the Lie series. The corresponding generators
of the optimal system of subalgebras are:

Table 2: Optimal systems.
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i
1 av1 +v2, v3
2 av1 +v2, v4
3 av1 +v2, v5
4 av1 +v2, bv1 +bv3, cv3 +v6, dv1 +v7

In the following, similarity solutions and reductions of the equation (1) to ordinary differential equations (ODEs)
are obtained using the generators of the optimal system.
For f (u) and g(u) arbitrary functions with the generator av1 +v2, the similarity variable and similarity solution
are

z = x−at, u = h(z).

Substituting into (1) we obtain the reduced ODE

ghzz +gh h2
z +ahz + f = 0, (5)

with f = f (h) and g = g(h) arbitrary functions.

Table 3: Similarity solutions.

i j w j z j u j

1 1 v3 t
n−m+1
2m−2 x hx

2
n−m+1

2 2 v4 t
n−m
2m x 2 log(x)

n−m +h

3 3 v5 x he−
c1 t
n

4 4 bv1 +v3
8x−3b log t

8 ht
3
4

4 5 cv3 +v6 − 4ce
− 2x√

3√
3
− log t he−

√
3ce
− 2x√

3−
√

3x

4 6 dv3 +v7
4d e

2x√
3√

3
− log t he

√
3d e

2x√
3 +
√

3x

Table 4: Reduced ODEs:

i j ODEs j

1 1 hn (n−m+1)2 (hz
2 n+hhzz

)
z2 +4hn+1 hz (n+1) (n−m+1) z+2hn+2 (n+m+1)+hm+1 (n−m+1)2 = 0

2 2 hzz (n−m)2 e
hn2+hm2

n−m z
2n+m
n−m +2 +hz

2 n(n−m)2 e
hn2+hm2

n−m z
4n−m
n−m +4hz n (n−m) e

hn2+hm2
n−m z

3n
n−m

+

(
(2n+2m) e

hn2+hm2
n−m +

(
n2−2mn+m2

)
e

2hmn
n−m

)
z

2n+m
n−m = 0.

3 3 hn (hz)
2 n+ c2 hn+2 +hn+1 hzz = 0

4 4 −12hhzz +16 (hz)
2− 9bh

7
3 hz

2 +9h
10
3 −12h2 = 0

4 5 27h
7
3 hz ez +192c2 hhzz−256c2 (hz)

2−96c2 hhz−36c2 h2 = 0
4 6 27h

7
3 hz ez +192d2 hhzz−256d2 (hz)

2−96d2 hhz−36d2 h2 = 0

4 Travelling wave solutions

From generators v1 and v2 we can obtain traveling wave solutions for Eq. (1). By substituting the similarity
variable and the similarity solution

z = x−λ t, u(x, t) = h(z). (6)

into
ut = f (u)+(g(u)ux)x (7)
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we obtain
−hz λ −ghzz −gh (hz)

2 − f = 0. (8)

To apply the G′
G -expansion method to Eq. (8) we suppose that the solutions can be expressed by a polynomial

in G′
G in the form

h =
n

∑
i=0

ai

(
G′

G

)i

, (9)

where G = G(z) satisfies the linear second order ODE

G′′(z)+ωG′(z)+ζ G(z) = 0, (10)

ai, i = 0, . . . ,n, α and β are constants to be determined later, an 6= 0.
The general solutions of Eq. (10) are:

• If ω2−4ζ > 0,

G(z) = c1 cosh
(

zω

2 −
1
2 z
√

ω2−4ζ

)
+ c2 cosh

(
ωz
2 + 1

2

√
ω2−4ζ z

)
−c1 sinh

(
zω

2 −
1
2 z
√

ω2−4ζ

)
− c2 sinh

(
ωz
2 + 1

2

√
ω2−4ζ z

)
.

(11)

• If ω2−4ζ < 0,

G(z) =
[
c2 cos

(
1
2 z
√

4ζ −ω2
)
+c1 sin

(
1
2 z
√

4ζ −ω2
)](

cosh
( zω

2

)
− sinh

( zω

2

))
. (12)

• If ω2 = 4ζ ,

G(z) = (c2 + c1z)
(

cosh
(zω

2

)
− sinh

(zω

2

))
. (13)

In order to determine the positive number n in (9) we concentrate our attention on the leading terms of (8).
These are the terms that lead to the least positive p when substituting a monomial h = a

zp in all the items of
equation, Kudryashov in [18]. The homogeneous balance between the leading terms provides us with the value
of n. To find them we substitute h = a

zp in all the items of this equation.Setting g(h) = hm, we compare g(h)h′′

and g′(h)(h′)2: pm+ p+2 = p(m−1)+(p+1)2⇒ p = 1 m : arbitrary.
By using (9) and (10) we obtain

h = an

(
G′

G

)n

+ · · · (14)

h2 = a2
n

(
G′

G

)2n

+ · · · (15)

h′′ = n(n+1)an

(
G′

G

)n+2

+ · · · (16)

Considering the homogeneous balance between h′′ and h2 in (8), based on (15) and (16), we require that
nm+n+2 = n(m−1)+(n+1)2⇒ n = 1, we can write (9) as

h = a0 +a1

(
G′

G

)
, (17)

a1 6= 0.
From the general solutions of (10), setting without loss of generality a0 = a1 = 1, we obtain that:
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• For
g(h) = hm

and
f (h) =

(
h2−2h+2

) (
λ −2hm+1 +2hm)−2hm−1 (h2−2h+2

)2
m

we get the solution

h1(z) =
c1 cosz− c2 sinz
c1 sinz+ c2 cosz

+1.

The corresponding solution for the generalized Fisher equation where

g(u) = um

and
f (u) =

(
u2−2u+2

) (
λ −2um+1 +2um)−2um−1 (u2−2h+2

)2
m

is

u1 =
c2 sin(t λ − x)+ c1 cos(t λ − x)
c2 cos(t λ − x)− c1 sin(t λ − x)

+1.

• For
g(h) = hm

and
f (h) = (h−2) h

(
λ −hm+1 m+2hm m−2hm+1 +2hm)

we get the solution

h(z) =
c2 sinhz+ c1 coshz
c1 sinhz+ c2 coshz

+1. (18)

The corresponding solution for the generalized Fisher equation where

f (u) = (u−2) u
(
λ −um+1 m+2um m−2um+1 +2um)

is

u2 =
c2 sinh(x−λ t)+ c1 cosh(x−λ t)
c1 sinh(x−λ t)+ c2 cosh(x−λ t)

+1. (19)

• For g(h) = hm and

f (h) = h
(
hλ −2hm+2 m−2hm+2)

we get the solution

h(z) =
(c1 z+ c2) (sinhz− coshz)+ c1 (coshz− sinhz)

(c1 z+ c2) (coshz− sinhz)
+ .

The corresponding solution for the generalized Fisher equation where g(u) = um and

f (u) = u
(
uλ −2um+2 m−2um+2)

is
u3 = h(x−λ t).

We now search for exact solutions in terms of the Jacobi elliptic functions. For

g(h) = hm
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and

f (h) = −
√

1−h
√

h+1
√

1−h2 p +hm+1 (m+1) (p+1)−hm+3 (m+2) p−hm−1 m

we get the solution
h(z) = Sn(z|p).

In the particular case p = 1 we get a kink solution h(z) = tanh(z), then, the corresponding solution for Eq. (1) is

u = tanh(x−λ t)

-2

0

2

4

0

2

4

0.0

0.5

1.0

1.5

2.0

Fig. 1 Kink solution with λ = 1

5 Multiplier conservation laws method

In [4] Anco and Bluman gave a general treatment of a direct conservation law method for partial differential
equations expressed in a standard Cauchy-Kovaleskaya form in particular for evolution equations

ut = G(x,u,ux,uxx, . . . ,unx).

The nontrivial conservation laws are characterized by a multiplier λ with no dependence on ut satisfying

Ê[u] (Λut −ΛG(x,u,ux,uxx, . . . ,unx)) = 0. (20)

Here

Ê[u] :=
∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

x
∂

∂uxx
+ . . .

is the Euler operator. The conservation law will be written

Dt(Φ
t)+Dx(Φ

x) |∆= 0,

where Φt and Φx are called the conserved densities. The conserved current must satisfy

Λ = Ê[u]Φt (21)

and the flux Φx is given by [11]

Φ
x =−D−1

x (ΛG)− ∂Φt

∂ux
G+GDx

(
∂Φt

∂uxx

)
+ . . . . (22)

For Eq. (1), we can state:
Case 1: For fu− k2g = 0 with k constant, we get the following multipliers:

Λ1 = sin(kx), Λ2 = cos(kx). (23)

Case 2: For fu + k2g = 0 with k constant, we get the following multipliers:

Λ3 = ekx, Λ4 = e−kx. (24)

Case 3: For f (u) = au+b with a, b constants and g(u) arbitrary we obtain the following multipliers:

Λ5 = xe−at , Λ6 = e−at . (25)

http://www.up4sciences.org


318 M. Rosa and M.L Gandarias Applied Mathematics and Nonlinear Sciences 1(2016) 311–320

6 Conservation laws

Case 1: For fu− k2g = 0
Associated to the multipliers, from (21) and (22), we obtain the corresponding conserved densities and fluxes:
1.-

Λ1 = sin(kx),

φ
t = sin(kx)u,

φ
x = −sin(kx)g(u)ux + cos(kx)k

ˆ
g(u)du.

2.-

Λ2 = cos(kx),

φ
t = cos(kx)u,

φ
x = −cos(kx)g(u)ux− sin(kx)k

ˆ
g(u)du.

Case 2: For fu + k2g = 0
Associated to the multipliers, from (21) and (22), we obtain the corresponding conserved densities and fluxes:
1.-

Λ3 = ekx,

φ
t = ekxu,

φ
x = −ekx

(
g(u)ux− k

ˆ
g(u)du

)
.

2.-

Λ4 = e−kx,

φ
t = e−kxu,

φ
x = −e−kx

(
g(u)ux + k

ˆ
g(u)du

)
.

Case 3: For f = au + b and g arbitrary. Associated to the multipliers, from (21) and (22), we obtain the
corresponding conserved densities and fluxes:
1.-

Λ5 = e−at ,

φ
t =

e−at (au+b)
a

,

φ
x = −e−atg(u)ux.

2.-

Λ6 = xe−at ,

φ
t =

xe−at (au+b)
a

,

φ
x = e−at

(
−xg(u)ux +

ˆ
g(u)du

)
.
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7 Conclusions

In this paper, we have obtained Lie symmetries of the density dependent reaction-diffusion equation (1)
and we have calculated the optimal system of one-dimensional subalgebras of the invariant equation. By using
the classical Lie group method, we obtained reductions to ODE’s and some exact solutions. In order to obtain
travelling-wave solutions of the generalized Fisher equation (1) we have employed the G′

G -expansion method. We
have obtained some exact solutions among them a kink solution. By the multipliers method we have obtained
some nontrivial conservation laws via integral formulae.
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