
Applied Mathematics and Nonlinear Sciences 1(1) (2016) 99–122

Applied Mathematics and Nonlinear Sciences
http://journals.up4sciences.org

Degree-based indices computation for special chemical molecular structures using
edge dividing method

Wei Gao†, Mohammad Reza Farahani.

1. School of Information Science and Technology, Yunnan Normal University, Kunming 650500,
China
2. Department of Applied Mathematics, Iran University of Science and Technology, Tehran 16844,
Iran

Submission Info

Communicated by Juan L.G. Guirao
Received 11th November 2015
Accepted 29th December 2015

Available online 1st January 2016

Abstract
In computational chemistry, the molecular structures are modelled as graphs which are called the molecular graphs. In
these graphs, each vertex represents an atom and each edge denotes covalent bound between atoms. It is shown that the
topological indices defined on the molecular graphs can reflect the chemical characteristics of chemical compounds and
drugs. In this paper, we report several degree based indices of some widely used chemical molecular structures by means
of edge dividing technology.

Keywords and phrases: Molecular graph; degree-based index; edge dividing approach
2010 Mathematics Subject Classification: 05C15, 05C07, 05C35

1 Introduction

Topological indices, as numerical parameters of molecular structures, play a vital role in chemistry, and
medicine science. It has been proved that topological indices reflect biochemical properties (such as the melting
point, boiling point, toxicity and QSPR/QSAR study) of their corresponding compounds and drugs(see Wiener
[1] and Katritzky et al., [2] for more details). Several articles contributed to determining the topological indices
of special molecular graphs (See Yan et al. [3] and [4], Gao and Shi [5] and [6], Gao and Wang [7], [8] and [9],
Xi and Gao [10], Gao et al. [11], Gao et al., [12] and [13], Gao and Farahani [14], Farahani and Gao [15],
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and Farahani [16], [17], [18], [19], [20], [21], [22], [23], [24] and [25] for more details). The notations and
terminologies that were used but were undefined in this paper can be found in [26].

All the molecular graphs considered in our paper are simple graphs. Let G be a (molecular) graph with
vertex and edge sets being denoted by V (G) and E(G), respectively. Bollobas and Erdos [27] defined the
general Randic index which was stated as

Rk(G) = ∑
e=uv

(d(u)d(v))k, (1)

where k is a real number and d(u) denotes the degree of vertex u in G. Li and Liu [28] proposed the first
three minimum general Randic indices of tree structure, and they also determined the corresponding extremal
trees. Liu and Gutman [29] characterized several estimating on general Randic index. Throughout our paper,
we always assume that k is a real number.

By setting k = 1 and k =−1 respectively in formula (1), then it becomes the second Zagreb index (M2(G))
and the modified second Zagreb index (M∗2(G)):

M2(G) = ∑
e=uv

d(u)d(v),

M∗2(G) = ∑
e=uv

1
d(u)d(v)

.

The sum connectivity index (χ(G)) of molecular graph G can be formulated as:

χ(G) = ∑
e=uv

(d(u)+d(v))−
1
2 .

Zhou and Trinajstic [30] introduced the general sum connectivity index as

χk(G) = ∑
e=uv

(d(u)+d(v))k.

Note that a new version of Zagreb indices named Hyper-Zagreb index was introduced by Shirdel et al. [31] as

HM(G) = ∑
e=uv

(d(u)+d(v))2.

However, Hyper-Zagreb index is only a special case of general sum connectivity when k = 2.
As a famous degree-based index, the harmonic index of molecular graph is denoted as:

H(G) = ∑
e=uv

2
d(u)+d(v)

.

Favaron et al. [32] manifested the relation between the eigenvalues and harmonic index of molecular graphs.
Zhong [33] reported the minimum and maximum values of the harmonic index for connected molecular graphs
and trees, and the corresponding extremal molecular graphs are also described. Wu et al. [34] derived the
minimum value of the harmonic index with the minimum degree at least two. Liu [35] yielded the relationship
between the diameter and the harmonic index of molecular graphs.

Very recently, Yan et al. [4] introduced the general harmonic index for extending harmonic index in more
chemical engineering applications which can be stated as

Hk(G) = ∑
e=uv

(
2

d(u)+d(v)
)k.
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Vukicevic and Furtula [36] raised the Geometric-arithmetic index (in short, GA index) denoted by

GA(G) = ∑
e=uv

2
√

d(u)d(v)
d(u)+d(v)

.

Furthermore, Eliasi and Iranmanesh [42] defined its general version which was stated as follows:

OGAk(G) = ∑
e=uv

(
2
√

d(u)d(v)
d(u)+d(v)

)k.

The atom-bond connectivity index (in short, ABC index) was introduced by by Estrada et al. [37] as

ABC(G) = ∑
e=uv

√
d(u)+d(v)−2

d(u)d(v)
.

Das et al. [38] identified the extremal molecular graph with regard to this index. Furtula et al. [39] studied
the chemical trees with extremal ABC index. Vassilev and Huntington [40] obtained the chemical trees with
extremal ABC index in view of considering how the removal of a certain edge takes place. Chen et al. [41]
characterized the atom-bond connectivity index of the zig-zag chain polyomino molecular structures. Addi-
tional, they obtained the tight upper bound on the atom-bond connectivity index of catacon densed polyomino
molecular graphs.

Azari and Iranmanesh [43] proposed the generalized Zagreb index of molecular graph G which can be
formulated by

Mt1,t2(G) = ∑
e=uv

(d(u)t1d(v)t2 +d(u)t2d(v)t1),

where t1 and t2 are arbitrary non-negative integers.
Several polynomials related to degree based indices are also introduced. For instance, the first and the second

Zagreb polynomials are expressed by
M1(G,x) = ∑

e=uv
xd(u)+d(v)

and
M2(G,x) = ∑

e=uv
xd(u)d(v),

respectively.
Moreover, the third Zagreb index and third Zagreb polynomial are defined as

M3(G) = ∑
e=uv
|d(u)−d(v)|,

and
M3(G,x) = ∑

e=uv
x|d(u)−d(v)|.

The multiplicative version of first and second Zagreb indices were introduced by Gutman [44], and Ghorbani
and Azimi [45] as:

PM1(G) = ∏
e=uv∈E(G)

(d(u)+d(v)),

PM2(G) = ∏
e=uv∈E(G)

(d(u)d(v)).

Several conclusions on PM1(G) and PM2(G) can be refered to Eliasi et al., [46], Xu et al., [47], and Farahani
[48].
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Furthermore, Ranjini et al., [49] re-defined the Zagreb indices, i.e., the redefined first, second and third Za-
greb indices of a graph G were manifested as

ReZG1(G) = ∑
e=uv∈E(G)

d(u)+d(v)
d(u)d(v)

,

ReZG2(G) = ∑
e=uv∈E(G)

d(u)d(v)
d(u)+d(v)

and
ReZG3(G) = ∑

e=uv∈E(G)

(d(u)d(v))(d(u)+d(v)),

respectively.
Although several advances have been made in distance-based indices (such as Wiener index, PI index and

degree distance) of molecular graph, the study of degree-based indices for special chemical structures has been
largely limited. Because of these, tremendous academic and industrial interest has been attracted to research the
vertex-weighted Wiener number of this molecular structure from a mathematical point of view.

The purpose of this paper is to study the degree-based indices (including general Randic index, Zagreb
indices, sum connectivity index, harmonic indices, GA related indices, ABC index, some polynomials, multi-
plicative Zagreb indices and redefined Zagreb indices) of some wildly used chemical structures. The technology
used to get these conclusions is followed by edge dividing trick.

2 A Small Example

As a kind of two-dimensional material, Graphene is a planar sheet of carbon atoms that are densely packed in
a honeycomb crystal lattice, and it is the main element of certain carbon allotropes including carbon nanotubes,
charcoal, fullerenes and graphite, see Figure 1.

Fig. 1 2-Dimensional graph of graphene sheet

In the following example, we determine several topological indices for some graphene sheets which will be
used to serve as basic building blocks in the graphene graphs. Let G(m,n) be a graphene sheet with n rows and
m columns.

Let δ and ∆ be the minimum and maximum degree of (molecular) graph G, respectively. In the whole
following context, for any (molecular) graph G, its vertex set V (G) and edge set E(G) are divided into several
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partitions:
• for any i, 2δ (G)≤ i≤ 2∆(G), let Ei = {e = uv ∈ E(G)|d(u)+d(v) = i};
• for any j, δ 2 ≤ j ≤ ∆2, let E∗j = {e = uv ∈ E(G)|d(u)d(v) = j};
• for any k, δ ≤ k ≤ ∆, let Vk = {v ∈V (G)|d(v) = k}.

It is easy to see that

|E(G(m,n))|=
{
dn

2e(5m+1)+ bn
2c(m+3), n≡ 1(mod2)

dn
2e(5m+1)+ bn

2c(m+3)+2m−1, n≡ 0(mod2).

Furthermore, we have
|E4|= |E∗4 |= n+4,

|E5|= |E∗6 |= 4m+2n−4,

and
|E6|= |E∗9 |= |E(G(m,n))|−4m−3n.

Therefore, according to the definition of degree-based indices, we deduce

Rk(G(m,n)) =
{
(n+4)4k +(4m+2n−4)6k +(dn

2e(5m+1)+ bn
2c(m+3)−4m−3n)9k, n≡ 1(mod2)

(n+4)4k +(4m+2n−4)6k +(dn
2e(5m+1)+ bn

2c(m+3)−2m−3n−1)9k, n≡ 0(mod2).

M2(G(m,n)) =
{

9(dn
2e(5m+1)+ bn

2c(m+3))−12m−11n−8, n≡ 1(mod2)
6m−11n−17+9(dn

2e(5m+1)+ bn
2c(m+3)), n≡ 0(mod2).

M∗2(G(m,n)) =
{ n

4 +
1
3 +

2m
9 + 1

9(d
n
2e(5m+1)+ bn

2c(m+3)), n≡ 1(mod2)
n
4 +

2
9 +

4m
9 + 1

9(d
n
2e(5m+1)+ bn

2c(m+3)), n≡ 0(mod2).

χ(G(m,n)) =

 n+4
2 + 4m+2n−4√

5
+
d n

2 e(5m+1)+b n
2 c(m+3)−4m−3n√

6
, n≡ 1(mod2)

n+4
2 + 4m+2n−4√

5
+
d n

2 e(5m+1)+b n
2 c(m+3)−2m−3n−1√

6
, n≡ 0(mod2).

χk(G(m,n)) =
{
(n+4)4k +(4m+2n−4)5k +(dn

2e(5m+1)+ bn
2c(m+3)−4m−3n)6k, n≡ 1(mod2)

(n+4)4k +(4m+2n−4)5k +(dn
2e(5m+1)+ bn

2c(m+3)−2m−3n−1)6k, n≡ 0(mod2).

HM(G(m,n)) =
{

36(dn
2e(5m+1)+ bn

2c(m+3))−42n−44m−36, n≡ 1(mod2)
36(dn

2e(5m+1)+ bn
2c(m+3))−42n+28m−72, n≡ 0(mod2).

H(G(m,n)) =
{ 8m+9n+12

30 + 1
3(d

n
2e(5m+1)+ bn

2c(m+3)), n≡ 1(mod2)
38m−9n+2

30 + 1
3(d

n
2e(5m+1)+ bn

2c(m+3)), n≡ 0(mod2).

Hk(G(m,n)) =
{ 1

2k (n+4)+(2
5)

k(4m+2n−4)+ 1
3k (dn

2e(5m+1)+ bn
2c(m+3)−4m−3n), n≡ 1(mod2)

1
2k (n+4)+(2

5)
k(4m+2n−4)+ 1

3k (dn
2e(5m+1)+ bn

2c(m+3)−2m−3n−1), n≡ 0(mod2).

GA(G(m,n)) =

{
(4m+2n−4)2

√
6

5 +(dn
2e(5m+1)+ bn

2c(m+3)−4m−2n+4), n≡ 1(mod2)
(4m+2n−4)2

√
6

5 +(dn
2e(5m+1)+ bn

2c(m+3)−2m−2n+3), n≡ 0(mod2).

GAk(G(m,n)) =

{
(4m+2n−4)(2

√
6

5 )k +(dn
2e(5m+1)+ bn

2c(m+3)−4m−2n+4), n≡ 1(mod2)
(4m+2n−4)(2

√
6

5 )k +(dn
2e(5m+1)+ bn

2c(m+3)−2m−2n+3), n≡ 0(mod2).
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M1(G(m,n),x)=
{
(n+4)x4 +(4m+2n−4)x5 +(dn

2e(5m+1)+ bn
2c(m+3)−4m−3n)x6, n≡ 1(mod2)

(n+4)x4 +(4m+2n−4)x5 +(dn
2e(5m+1)+ bn

2c(m+3)−2m−3n−1)x6, n≡ 0(mod2).

M2(G(m,n),x)=
{
(n+4)x4 +(4m+2n−4)x6 +(dn

2e(5m+1)+ bn
2c(m+3)−4m−3n)x9, n≡ 1(mod2)

(n+4)x4 +(4m+2n−4)x6 +(dn
2e(5m+1)+ bn

2c(m+3)−2m−3n−1)x9, n≡ 0(mod2).

M3(G(m,n)) = 4m+2n−4.

M3(G(m,n),x) =
{
(4m+2n−4)x+(dn

2e(5m+1)+ bn
2c(m+3)−4m−2n+4), n≡ 1(mod2)

(4m+2n−4)x+(dn
2e(5m+1)+ bn

2c(m+3)−2m−2n+3), n≡ 0(mod2).

Mt1,t2(G(m,n)) =


(n+4)2t1+t2+1 +(4m+2n−4)(2t13t2 +2t23t1)
+(dn

2e(5m+1)+ bn
2c(m+3)−4m−3n)3t1+t2+1, n≡ 1(mod2)

(n+4)2t1+t2+1 +(4m+2n−4)(2t13t2 +2t23t1)
+(dn

2e(5m+1)+ bn
2c(m+3)−2m−3n−1)3t1+t2+1, n≡ 0(mod2).

PM1(G(m,n)) =
{

4n+454m+2n−46d
n
2 e(5m+1)+b n

2 c(m+3)−4m−3n, n≡ 1(mod2)
4n+454m+2n−46d

n
2 e(5m+1)+b n

2 c(m+3)−2m−3n−1, n≡ 0(mod2).

PM2(G(m,n)) =
{

4n+464m+2n−49d
n
2 e(5m+1)+b n

2 c(m+3)−4m−3n, n≡ 1(mod2)
4n+464m+2n−49d

n
2 e(5m+1)+b n

2 c(m+3)−2m−3n−1, n≡ 0(mod2).

ReZG1(G(m,n)) =
{ 2

3(d
n
2e(5m+1)+ bn

2c(m+3)+m+n+1), n≡ 1(mod2)
n 5

3 +2m+ 2
3(d

n
2e(5m+1)+ bn

2c(m+3)), n≡ 0(mod2).

ReZG2(G(m,n)) =
{ 3

2(d
n
2e(5m+1)+ bn

2c(m+3))− 6m
5 −

11n
10 −

4
5 , n≡ 1(mod2)

m 9
5 −

11
10 n− 23

10 +
3
2(d

n
2e(5m+1)+ bn

2c(m+3)), n≡ 0(mod2).

ReZG3(G(m,n)) =
{
−86n−96m−56+54(dn

2e(5m+1)+ bn
2c(m+3)), n≡ 1(mod2)

12m−86m−110+54(dn
2e(5m+1)+ bn

2c(m+3)), n≡ 0(mod2).

3 Degree Based Indices of Three Families of Dendrimer Nanostars

We now discuss three famous infinite classes NS1[n], NS2[n] and NS3[n] of dendrimer nanostars. The aim of
this section is to compute the degree-based indices of these dendrimer nanostars.

Consider the molecular graph of NS1[n], where n is the number of steps of growth in this type of dendrimer
nanostars. By computation, we get |E∗6 |= 18 ·2n−12, |E4|= |E∗4 |= 9 ·2n +3, |{(u,v)|d(u) = 3,d(v) = 1}|= 1
and |E7|= |E∗12|= 3. Hence, by the definition of degree based indices, we infer

Rk(NS1[n]) = 3k +3 ·12k +(18 ·2n−12)6k +(9 ·2n +3)4k,

M2(NS1[n]) = 144 ·2n−21.

M∗2(NS1[n]) =
21
4
·2n− 2

3
,

χ(NS1[n]) = 2+
3√
7
+

18 ·2n−12√
5

+
9
2
·2n,
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χk(NS1[n]) = 3 ·7k +(18 ·2n−12)5k +(9 ·2n +4)4k,

HM(NS1[n]) = 594 ·2n−89,

H(NS1[n]) =
117
10
·2n− 68

35
,

Hk(NS1[n]) = 3 · (2
7
)k +(18 ·2n−12)(

2
5
)k +(9 ·2n +4)(

1
2
)k,

GA(NS1[n]) =
31
√

3
14

+(18 ·2n−12)
2
√

6
5

+(9 ·2n +3),

GAk(NS1[n]) = (

√
3

2
)k +3(

4
√

3
7

)k +(18 ·2n−12)(
2
√

6
5

)k +(9 ·2n +3),

M1(NS1[n],x) = 3x7 +(18 ·2n−12)x5 +(9 ·2n +4)x4,

M2(NS1[n],x) = x3 +3x12 +(18 ·2n−12)x6 +(9 ·2n +3)x4,

M3(NS1[n]) = 18 ·2n−7,

M3(NS1[n],x) = x2 +(18 ·2n−9)x+(9 ·2n +3),

Mt1,t2(NS1[n]) = (3t1 +3t2)+3(3t14t2 +3t24t1)+(18 ·2n−12)(2t13t2 +2t23t1)+(9 ·2n +3)2t1+t2+1,

PM1(NS1[n]) = 73 ·518·2n−12 ·49·2n+4,

PM2(NS1[n]) = 3 ·123 ·618·2n−12 ·49·2n+3,

ReZG1(NS1[n]) = 24 ·2n− 47
12

,

ReZG2(NS1[n]) =
153
5
·2n− 771

140
,

ReZG3(NS1[n]) = 684 ·2n−48.

We now consider the second class NS2[n], where n is the number of steps of growth in this type of dendrimer
nanostar. In view of structure analysis and computation, we get |E5|= |E∗6 |= 24 ·2n−8, |E4|= |E∗4 |= 12 ·2n+2
and |E6|= |E∗9 |= 1. Hence, by the definition of degree based indices, we infer

Rk(NS2[n]) = 9k +(24 ·2n−8)6k +(12 ·2n +2)4k,

M2(NS2[n]) = 192 ·2n−31.

M∗2(NS2[n]) = 5 ·2n− 13
18

,

χ(NS2[n]) = 168 ·2n−26,

χk(NS2[n]) = 6k +(24 ·2n−8)5k +(12 ·2n +2)4k,

HM(NS2[n]) = 792 ·2n−132,

H(NS2[n]) =
78
5
·2n− 28

15
,

Hk(NS2[n]) = (
1
3
)k +(24 ·2n−8)(

2
5
)k +(12 ·2n +2)(

1
2
)k,

GA(NS2[n]) = (24 ·2n−8)
2
√

6
5

+(12 ·2n +3),
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GAk(NS2[n]) = (24 ·2n−8)(
2
√

6
5

)k +(12 ·2n +3),

M1(NS2[n],x) = x6 +(24 ·2n−8)x5 +(12 ·2n +2)x4,

M2(NS2[n],x) = x9 +(24 ·2n−8)x6 +(12 ·2n +2)x4,

M3(NS2[n]) = 24 ·2n−8,

M3(NS2[n],x) = (24 ·2n−8)x+(12 ·2n +3),

Mt1,t2(NS2[n]) = 3t1+t2+1 +(24 ·2n−8)(2t13t2 +2t23t1)+(12 ·2n +2)2t1+t2+1,

PM1(NS2[n]) = 6 ·524·2n−8 ·412·2n+2,

PM2(NS2[n]) = 9 ·624·2n−8 ·412·2n+2,

ReZG1(NS2[n]) = 32 ·2n−4,

ReZG2(NS2[n]) =
204
5
·2n− 61

10
,

ReZG3(NS2[n]) = 912 ·2n−154.

Next, we consider the second class NS3[n], where n is the number of steps of growth in this type of dendrimer
nanostar. By means of similar way, we get |E5|= |E∗6 |= 28 ·2n−6, |E6|= |E∗9 |= 6 ·2n, |E∗4 |= 22 ·2n−7 and
|{(u,v)|d(u) = 3,d(v) = 1}|= 2n+1. Hence, by the definition of degree based indices, we infer

Rk(NS3[n]) = 9k(6 ·2n)+3k(2n+1)+(28 ·2n−6)6k +(22 ·2n−7)4k,

M2(NS3[n]) = 316 ·2n−64.

M∗2(NS3[n]) =
23
2
·2n− 11

4
,

χ(NS3[n]) = 272 ·2n−58,

χk(NS3[n]) = 6k(6 ·2n)+(28 ·2n−6)5k +(24 ·2n−7)4k,

HM(NS3[n]) = 1300 ·2n−262,

H(NS3[n]) =
126
5
·2n− 59

10
,

Hk(NS3[n]) = (
1
3
)k(6 ·2n)+(28 ·2n−6)(

2
5
)k +(24 ·2n−7)(

1
2
)k,

GA(NS3[n]) =
√

3 ·2n +(28 ·2n−6)
2
√

6
5

+(28 ·2n−7),

GAk(NS3[n]) = (

√
3

2
)k(2n+1)+(28 ·2n−6)(

2
√

6
5

)k +(28 ·2n−7),

M1(NS3[n],x) = x6(6 ·2n)+(28 ·2n−6)x5 +(24 ·2n−7)x4,

M2(NS3[n],x) = x9(6 ·2n)+ x3(2n+1)+(28 ·2n−6)x6 +(22 ·2n−7)x4,

M3(NS3[n]) = 32 ·2n−6,

M3(NS3[n],x) = 2n+1 · x2 +(28 ·2n−6)x+(28 ·2n−7),

Mt1,t3(NS2[n]) = 3t1+t2+1(6 ·2n)+(3t1 +3t2)(2n+1)+(28 ·2n−6)(2t13t2 +2t23t1)+(22 ·2n−7)2t1+t2+1,

PM1(NS3[n]) = 66·2n ·528·2n−6 ·424·2n−7,

PM2(NS3[n]) = 96·2n ·32n+1 ·628·2n−6 ·422·2n−7,

ReZG1(NS3[n]) = 52 ·2n−12,

ReZG2(NS3[n]) =
661
2
·2n− 71

5
,

ReZG3(NS3[n]) = 1540 ·2n)−292.
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4 Degree Based Indices of Polyomino Chains of k-Cycles and Triangular Benzenoid

From a mathematical point of view, k-polyomino system is a finite 2-connected plane graph in which each
interior face (i.e. cell) is surrounded by a C4. That is to say, it is an edge-connected union of cells, see Klarner
[50] and Ghorbani and Ghazi [51]. As an instance, the polyomino chains of 8-cycles can be seen in Figure 2.

Fig. 2 The zig-zag chain of 8-cycles

This graph has n2 + 4n+ 1 vertices and 3(n2+3n)
2 edges. Furthermore, we obtain |E4| = |E∗4 | = 12n+ 4,

|E6|= |E∗9 |= 8n−3, and |E5|= |E∗6 |= 8n. Hence, in view of definition of degree based indices, we have

Rk(G) = 9k(8n−3)+8n ·6k +(12n+4)4k,

M∗2(G) =
47
9

n+
2
3
,

χ(G) = 136n−2,

χk(G) = 6k(8n−3)+8n ·5k +(12n+4)4k,

HM(G) = 680n−44,

H(G) =
178
15

n+1,

Hk(G) = (
1
3
)k(8n−3)+8n · (2

5
)k +(12n+4)(

1
2
)k,

GAk(G) = (20n+1)+8n(
2
√

6
5

)k,

M1(G,x) = (8n−3)x6 +8nx5 +(12n+4)x4,

M2(G,x) = (8n−3)x9 +8nx6 +(12n+4)x4,

M3(G) = (20n+1)+8nx,

M3(G,x) = 8n,

Mt1,t3(G) = 3t1+t2+1(8n−3)+8n(2t13t2 +3t12t2)+(12n+4)2t1+t2+1,

PM1(G) = 68n−3 ·58n ·412n+4,

PM2(G) = 98n−3 ·68n ·412n+4,
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ReZG1(G) = 24n+2,

ReZG2(G) =
168
5

n− 1
2
,

ReZG3(G) = 864n−98.

Next, we compute four topological indices of triangular benzenoid graph T (n) with n2 +4n +1 vertices and
3(n2+3n)

2 edges which is depicted in Figure 3.

Fig. 3 Graph of triangular benzenoid T (n)

For triangular benzenoid T (n), we deduce |E4|= |E∗4 |= 6, |E6|= |E∗9 |= 6(n−1), and |E5|= |E∗6 |=
3n(n−1)

2 .
Hence, in view of definition of degree based indices, we derive

Rk(T (n)) = 9k(6n−1)+
3n(n−1)

2
·6k +6 ·4k,

M∗2(T (n)) =
1
4

n2 +
5
12

n+
25
18

,

χ(T (n)) =
15
2

n2− 57
2

n+18,

χk(T (n)) = 6k(6n−1)+
3n(n−1)

2
·5k +6 ·4k,

HM(T (n)) =
75
2

n2− 357
2

n+60,

H(T (n)) =
3
5

n2− 7
5

n+
8
3
,

Hk(T (n)) = (
1
3
)k(6n−1)+

3n(n−1)
2

· (2
5
)k +6 · (1

2
)k,

GAk(T (n)) =
3n2−3n+12

2
+6(n−1)(

2
√

6
5

)k,
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M1(T (n),x) = (6n−1)x6 +
3n(n−1)

2
x5 +6x4,

M2(T (n),x) = (6n−1)x9 +
3n(n−1)

2
x6 +6x4,

M3(T (n)) = (6n+5)+
3n(n−1)

2
x,

M3(T (n),x) =
3n(n−1)

2
,

Mt1,t3(T (n)) = 3t1+t2+1(6n−1)+
3n(n−1)

2
· (2t13t2 +3t12t2)+6 ·2t1+t2+1,

PM1(T (n)) = 66n−1 ·5
3n(n−1)

2 ·46,

PM2(T (n)) = 96n−1 ·6
3n(n−1)

2 ·46,

ReZG1(T (n)) =
5
4

n2− 11
4

n+
16
3
,

ReZG2(T (n)) =
9
5

n2− 36
5

n+
9
2
,

ReZG3(T (n)) = 45n2 +279n+42.

5 Degree Based Indices of Bridge Graph

Let {Gi}d
i=1 be a set of finite pairwise disjoint graphs with vi ∈ V (Gi). The bridge (molecular) graph

B(G1,G2, · · · ,Gd) = B(G1,G2, · · · ,Gd ;v1,v2, · · · ,vd) of {Gi}d
i=1 with respect to the vertices {vi}d

i=1 is yielded
from the graphs G1,G2, · · · ,Gd in which the vertices vi and vi+1 are connected by an edge for i = 1,2, ·,d− 1.
The main result of this section is determining the formulas of some degree based indices for the infinite family of
nano structures of bridge graph with G1,G2, · · · ,Gd(see Figure 4). We set Gd(H,v) = B(H,H, · · · ,H;v,v, · · · ,v)
for special situations of bridge graphs.

Fig. 4 The bridge graph T (n)

In the following context of this section, we discuss the bridge graphs in which the main parts of graphs are
path, cycle and complete graph, respectively.

Case 1. Let Pn be the path with n vertices. We have dn vertices and dn−1 edges for bridge graph Gd(Pn,v)
(see Figure 5 for more details). Additionally, the edge set of bridge graph Gd(Pn,v) can be divided into four
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Fig. 5 The nano structures bridge graph Gd(Pn,v1)

partitions. By computation, we get |E5| = |E∗6 | = d, |E6| = |E∗9 | = d− 3, |E4| = |E∗4 | = d(n− 3)+ 2, |E3| =
|E∗2 |= d.

Hence, in view of definition of degree-based indices, we deduce

Rk(Gd(Pn,v)) = d ·6k +(d−3)9k +(d(n−3)+2)4k +d ·2k,

M∗2(Gd(Pn,v)) =
dn
4

+
d
36

+
1
6
,

χ(Gd(Pn,v)) = 4dn+2d−10,

χk(Gd(Pn,v)) = d ·5k +(d−3)6k +(d(n−3)+2)4k +d ·3k,

HM(Gd(Pn,v)) = 16dn+22d−76,

H(Gd(Pn,v)) =
dn
2
− d

10
,

Hk(Gd(Pn,v)) = d(
2
5
)k +(d−3)(

1
3
)k +(d(n−3)+2)(

1
2
)k +d(

2
3
)k,

GAk(Gd(Pn,v)) = d(
2
√

6
5

)k +dn−2d−1+d(
2
√

2
3

)k,

M1(Gd(Pn,v),x) = dx5 +(d−3)x6 +(d(n−3)+2)x4 +dx3,

M2(Gd(Pn,v),x) = dx6 +(d−3)x9 +(d(n−3)+2)x4 +dx2,

M3(Gd(Pn,v)) = 2d,

M3(Gd(Pn,v),x) = 2dx+dn−2d−1,

Mt1,t2(Gd(Pn,v)) = d(2t13t2 +2t23t1)+(d−3)3t1+t2+1 +(d(n−3)+2)2t1+t2+1 +d(2t1 +2t2),

PM1(Gd(Pn,v)) = 5d6d−34d(n−3)+23d ,

PM2(Gd(Pn,v)) = 6d9d−34d(n−3)+22d ,

ReZG1(Gd(Pn,v)) = dn,

ReZG2(Gd(Pn,v)) = dn+
11
30

d− 5
2
,

ReZG3(Gd(Pn,v)) = 42d−130+16dn.

Case 2. Let Cn be the cycle with n vertices. There are dn vertices and dn+ d− 1 edges for bridge graph
Gd(Cn,v) (see Figure 6 for its structure). Moreover, the edge set of bridge graph Gd(Cn,v) can be divided
into five partitions which are stated as follows: |E5| = |E∗6 | = 4, |E6| = |E∗8 | = 2d− 4, |E4| = |E∗4 | = d(n− 2),
|E8|= |E∗16|= d−3 and |E7|= |E∗12|= 2.
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Fig. 6 The nano structures bridge graph Gd(C6,v)

Thus, by means of definition of degree-based indices, we get

Rk(Gd(Cn,v)) = 4 ·6k +(2d−4)8k +(d(n−2))4k +(d−3)16k +2 ·12k,

M∗2(Gd(Cn,v)) =
dn
4
− 3

16
d +

7
48

,

χ(Gd(Cn,v)) = 4dn+12d−14,

χk(Gd(Cn,v)) = 4 ·5k +(2d−4)6k +(d(n−2))4k +(d−3)8k +2 ·7k,

HM(Gd(Gd(Cn,v)) = 16dn+104d−138,

H(Gd(Gd(Cn,v)) =
dn
2
− d

12
+

37
420

,

Hk(Gd(Cn,v)) = 4(
2
5
)k +(2d−4)(

1
3
)k +(d(n−2))(

1
2
)k +(d−3)(

1
4
)k +2(

2
7
)k,

GAk(Gd(Cn,v)) = 4(
2
√

6
5

)k +(2d−4)(
2
√

2
3

)k +(dn−d−3)+2(
4
√

3
7

)k,

M1(Gd(Cn,v),x) = 4x5 +(2d−4)x6 +(d(n−2))x4 +(d−3)x8 +2x7,

M2(Gd(Cn,v),x) = 4x6 +(2d−4)x8 +(d(n−2))x4 +(d−3)x16 +2x12,

M3(Gd(Cn,v)) = 4d−2,

M3(Gd(Cn,v),x) = 6x+(2d−4)x2 +(dn−d−3),

Mt1,t2(Gd(Cn,v))= 4(2t13t2 +2t23t1)+(2d−4)(2t14t2 +2t24t1)+(d(n−2))2t1+t2+1+(d−3)4t1+t2+1+2(3t14t2 +3t24t1),

PM1(Gd(Gd(Cn,v)) = 30625 ·62d−44d(n−2)8d−3,

PM2(Gd(Gd(Cn,v)) = 186624 ·92d−44d(n−2)16d−3,

ReZG1(Gd(Gd(Cn,v)) = dn,

ReZG2(Gd(Gd(Cn,v)) = dn+
8d
3
− 326

105
,

ReZG3(Gd(Gd(Cn,v)) = 16dn+282d−292.

Case 3. Let Kn be the compete graph with n vertices. Hence, there are dn vertices and dn(n−1)
2 + d− 1

edges for bridge graph Gd(Kn,v) (see Figure 7 for its structure) and its edge set of graph can be divided into
five partitions: |E10| = |E∗25| = d− 2, |E9| = |E∗20| = 2, |En+3| = |E∗4(n−1)| = 2, |En+4| = |E∗5(n−1)| = d− 2 and

|E2n−2|= |E∗(n−1)2 |= d(n−1)(n−2)
3 .
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Fig. 7 The nano structures bridge graph Gd(K3,v)

Hence, in view of definition of degree based indices, we get

Rk(Gd(Kn,v)) = (d−2)25k +2 ·20k +2(4(n−1))k +(d−2)(5(n−1))k +
d(n−1)(n−2)

3
(n−1)2k,

M∗2(Gd(Kn,v)) =
d−2

25
+

1
10

+
1

2(n−1)
+

d−2
5(n−1)

+
d(n−2)
3(n−1)

,

χ(Gd(Kn,v)) = dn+14d−4+
2d(n−1)2(n−2)

3
,

χk(Gd(Kn,v)) = (d−2)10k +2 ·9k +2(n+3)k +(d−2)(n+4)k +
d(n−1)(n−2)

3
(2n−2)k,

HM(Gd(Gd(Kn,v)) = 100d−38+2(n+3)2 +(d−2)(n+4)2 +
4d(n−1)3(n−2)

3
,

H(Gd(Gd(Kn,v)) =
dn
3
− 7d

15
+

2
45

+
4

n+3
+

2(d−2)
n+4

,

Hk(Gd(Kn,v)) = (d−2)(
1
5
)k +2(

2
9
)k +2(

2
n+3

)k +(d−2)(
2

n+4
)k +

d(n−1)(n−2)
3

(
1

n−1
)k,

GAk(Gd(Kn,v)) = 2(
4
√

5
9

)k +2(
4
√

n−1
n+3

)k +(d−2)(
2
√

5(n−1)
n+4

)k +
d(n−1)(n−2)

3
+d−2,

M1(Gd(Kn,v),x) = (d−2)x10 +2x9 +2xn+3 +(d−2)xn+4 +
d(n−1)(n−2)

3
x2(n−1),

M2(Gd(Kn,v),x) = (d−2)x25 +2x20 +2x4(n−1)+(d−2)x5(n−1)+
d(n−1)(n−2)

3
x(n−1)2

,

M3(Gd(Kn,v)) =
d(n−1)(n−2)

3
+d−2,

M3(Gd(Kn,v),x) = 2x+2xn−5 +(d−2)xn−6 +
d(n−1)(n−2)

3
+d−2,

Mt1,t2(Gd(Kn,v)) = (d−2)5t1+t2+1 +2(4t15t2 +4t25t1)+2(4t1(n−1)t2 +4t2(n−1)t1)

+(d−2)(5t1(n−1)t2 +5t2(n−1)t1)+
d(n−1)(n−2)

3
(n−1)t1+t2+1,

PM1(Gd(Gd(Kn,v)) = 81 ·10d−2(n+3)2(n+4)d−2(2n−2)
d(n−1)(n−2)

3 ,

PM2(Gd(Gd(Kn,v)) = 400 ·25d−2(4(n−1))2(5(n−1))d−2(n−1)
2d(n−1)(n−2)

3 ,

ReZG1(Gd(Gd(Kn,v)) = (d−2)
2
5
+

9
10

+2
n+3

4(n−1)
+(d−2)

n+4
5(n−1)

+
d(n−1)(n−2)

3
2

n−1
,

ReZG2(Gd(Gd(Kn,v)) = (d−2)
5
2
+

40
9
+2

4(n−1)
n+3

+(d−2)
5(n−1)

n+4
+

d(n−1)(n−2)
3

n−1
2

,

ReZG3(Gd(Gd(Kn,v)) = 250(d−2)+360+8(n−1)(n+3)+5(n−1)(d−2)(n+4)+
2d(n−1)4(n−2)

3
.
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6 Degree Based Indices of Carbon Nanotube Network

In this section, we focus on the m×n quadrilateral section Pn
m with m ≥ 2 hexagons on the top and bottom

sides and n≥ 2 hexagons on the lateral sides cut from the regular hexagonal lattice L, see Figure 8 for its detailed
chemical structure.

Fig. 8 Quadrilateral section Pn
m cuts from the regular hexagonal lattice

The nanotube NAn
m with 2m(n+1) vertices and (3n+2)m edges is obtained by identifying two lateral sides

of Pn
m via identifying the vertices u j

0 and u j
m ( j = 0,1,2, · · · ,n).

Let n∈N be even so that n,m≥ 2. The nanotube NCn
m of order n(2m+1) with size n(3m+ 1

2) can be yielded
by identifying the top and bottom sides of the quadrilateral section Pn

m in a similarly way in which the vertices
u0

i and un
i for i = 0,1,2, · · · ,m and vertices v0

i and vn
i for i = 0,1,2, · · · ,m are identified. See Baca et al., [52] for

more details.
By analysis, the edge set of NAn

m can be divided into two parts: E6 = E∗9 and E5 = E∗6 with m(3n− 2) and
4m edges respectively. Therefore, by the definition of degree-based indices, we get

χ(NAn
m) = 18mn+8m,

χk(NAn
m) = m(3n−2) ·6k +4m ·5k,

HM(NAn
m) = 108mn+28m,

H(NAn
m) = nm− 14

15
m,

Hk(NAn
m) = m(3n−2)(

1
3
)k +4m(

2
5
)k,
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GAk(NAn
m) = m(3n−2)+4m(

2
√

6
5

)k,

M1(NAn
m,x) = m(3n−2)x6 +4mx5,

M2(NAn
m,x) = m(3n−2)x9 +4mx6,

M3(NAn
m) = 4m,

M3(NAn
m,x) = m(3n−2)+4mx,

Mt1,t3(NAn
m) = m(3n−2)3t1+t2+1 +4m(2t13t2 +2t23t1),

PM1(NAn
m) = 6m(3n−2)54m,

PM2(NAn
m) = 9m(3n−2)64m,

ReZG1(NAn
m) = 2mn+2m,

ReZG2(NAn
m) =

9mn
2

+
9m
5
,

ReZG3(NAn
m) = 162mn+12m.

For NCn
m, its edge set can be divided into three parts: |E4| = |E∗4 | = n, |E5| = |E∗6 | = 2n and |E6| = |E∗9 | =

n(3m− 5
2). Hence, according to the definition of degree based indices, we infer

χ(NCn
m) = 18mn−n,

χk(NCn
m) = n(3m− 5

2
)6k +2n ·5k +n ·4k,

HM(NCn
m) = 108mn−24n,

H(NCn
m) = nm− 7

15
m,

Hk(NCn
m) = n(3m− 5

2
)(

1
3
)k +2n(

2
5
)k +n(

1
2
)k,

GAk(NCn
m) = n(3m− 3

2
)+2n(

2
√

6
5

)k,

M1(NCn
m,x) = n(3m− 5

2
)x6 +2nx5 +nx4,

M2(NCn
m,x) = n(3m− 5

2
)x9 +2nx6 +nx4,

M3(NCn
m) = 2n,

M3(NCn
m,x) = n(3m− 3

2
)+2nx,

Mt1,t3(NCn
m) = n(3m− 5

2
)3t1+t2+1 +2n(2t13t2 +2t23t1)+n ·2t1+t2+1,

PM1(NCn
m) = 6n(3m− 5

2 )52n4n,

PM2(NCn
m) = 9n(3m− 5

2 )62n4n,

ReZG1(NCn
m) = 2mn+

13
3

n,

ReZG2(NCn
m) =

9
2

mn− 7
20

n,

ReZG3(NCn
m) = 162mn−59n.
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7 Degree Based Indices of Dendrimer Nanostars D3[n]

In this section, we discuss an important chemical structure D3[n] which denotes the n-th growth of nanostar
dendrimer for ∀n ∈ N∪{0}. See Figure 9 for more details on the structure of this chemical graph.

Fig. 9 The 2-Dimensional of the n-th growth of nanostar dendrimer D3[n].

Farahani [23] determined multiple Zagreb indices of D3[n]. However, there are typos on the computation
formulates. In this section, we calculate the degree based indices of dendrimer nanostars D3[n]. Also, the typos
in expression of multiple Zagreb indices of D3[n] in Farahani [23] are corrected. According to the analysis
in Farahani [23], we know that |V (D3[n])| = 4(3 · 2n+1− 5), |E(D3[n])| = 24(2n+1− 1) and E(D3[n]) can be
divided into four parts. Specifically, we have |E∗3 |= 3 ·2n, |E∗4 |= 6(2n+1−1), |E4|= |E∗3 |+ |E∗4 |= 15 ·2n−6,
|E5| = |E∗6 | = 12(2n+1− 1) and |E6| = |E∗9 | = 9 · 2n− 6. Hence, by the definition of degree based indices, we
infer

Rk(D3[n]) = 9k(9 ·2n−6)+3k(3 ·2n)+(12(2n+1−1))6k +(6(2n+1−1))4k,

M∗2(D3[n]) = 9 ·2n− 25
6
,

χk(D3[n]) = 6k(9 ·2n−6)+(12(2n+1−1))5k +(15 ·2n−6)4k,

HM(D3[n]) = 964 ·2n−612,
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Fig. 10 Classes of inlets occurring on the perimeter of a benzenoid system.

H(D3[n]) =
201
10
·2n− 49

5
,

Hk(D3[n]) = (
1
3
)k(9 ·2n−6)+(12(2n+1−1))(

2
5
)k +(15 ·2n−6)(

1
2
)k,

GA(D3[n]) = (21 ·2n−12)+
2
√

2
3

(3 ·2n)+(12(2n+1−1))
2
√

6
5

,

GAk(D3[n]) = (21 ·2n−12)+(
2
√

2
3

)k(3 ·2n)+(12(2n+1−1))(
2
√

6
5

)k,

ABC(D3[n]) = (6 ·2n−4)+

√
1
2
(39 ·2n−18),

M3(D3[n]) = 21 ·2n−12,

M3(D3[n],x) = (3 ·2n)x2 +(12(2n+1−1))x+(21 ·2n−12),

Mt1,t3(D3[n]) = 3t1+t2+1(9 ·2n−6)+(3t1 +3t2)(3 ·2n)+(12(2n+1−1))(2t13t2 +2t23t1)+(6(2n+1−1))2t1+t2+1,

PM1(D3[n]) = 69·2n−6 ·512(2n+1−1) ·415·2n−6,

PM2(D3[n]) = 99·2n−6 ·33·2n ·612(2n+1−1) ·46(2n+1−1),

ReZG1(D3[n]) = 42 ·2n−20,

ReZG2(D3[n]) =
1131

20
2n− 147

5
,

ReZG3(D3[n]) = 1434 ·2n−780.

8 Degree Based Indices of Benzenoid Systems and Phenylenes

In this section, we consider the degree based indices of benzenoid systems and phenylenes (the structure can
refer to Rada et al., [53], Cyvin and Brunvoll [54], Pavlovic and Gutman [55], Yousefi-Azari et al., [56], and
Xiao et al., [57]). Note that coves, fjords, fissures, bays and lagoons are basic structural characteristics of the
perimeter of the benzenoid systems which can refer to Figure 10.
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For the rest context of this section, we set S as a benzenoid system with n vertices, h hexagons and r inlets.
By calculating, we verify that |E4|= |E∗4 |+ |E∗4 |= n−2h− r+2, |E5|= |E∗6 |= 2r and |E6|= |E∗9 |= 3h− r−3.
Thus, following the definition of degree-based indices, we infer

Rk(NS3[n]) = 9k(3h− r−3)+(2r)6k +(n−2h− r+2)4k,

M2(NS3[n]) = 4n+19h− r−19.

M∗2(NS3[n]) =
n
4
− h

6
− r

36
+

1
6
,

χ(NS3[n]) = 4n+10h−10,

χk(NS3[n]) = 6k(3h− r−3)+(2r)5k +(n−2h− r+2)4k,

HM(NS3[n]) = 16n−2r+76h−76,

H(NS3[n]) =
n
2
− r

30
,

Hk(NS3[n]) = (
1
3
)k(3h− r−3)+(2r)(

2
5
)k +(n−2h− r+2)(

1
2
)k,

ABC(NS3[n]) =

√
1
2
(n+h−1),

GAk(NS3[n]) = (

√
3

2
)k(2n+1)+(28 ·2n−6)(

2
√

6
5

)k +(28 ·2n−7),

M1(NS3[n],x) = (3h− r−3)x6 +(2r)x5 +(n−2h− r+2)x4,

M2(NS3[n],x) = (3h− r−3)x9 +(2r)x6 +(n−2h− r+2)x4,

M3(NS3[n]) = 2r,

M3(NS3[n],x) = (n+h−2r−1)+(2r)x,

Mt1,t3(NS2[n]) = 3t1+t2+1(3h− r−3)+(2r)(2t13t2 +2t23t1)+(n−2h− r+2)2t1+t2+1,

PM1(NS3[n]) = 63h−r−352r4n−2h−r+2,

PM2(NS3[n]) = 93h−r−362r4n−2h−r+2,

ReZG1(NS3[n]) = n,

ReZG2(NS3[n]) = n+
5h
2
− 5

2
− r

10
,

ReZG3(NS3[n]) = 16n−30r+130h+32.

For phenylene chemical structure, we set PH as a phenylene with h hexagons and r inlets. The detailed
structure can refer to Figure 11.

By structure analysis and computation, we obtain |E4| = |E∗4 |+ |E∗4 | = 2h− r + 4, |E5| = |E∗6 | = 2r and
|E6|= |E∗9 |= 6h− r−6. Again, using the definition of degree based indices, we yield

Rk(NS3[n]) = 9k(6h− r−6)+(2r)6k +(2h− r+4)4k,

M2(NS3[n]) = 62h− r−38,

M∗2(NS3[n]) =
7h
6
− r

36
+

1
3
,

χ(NS3[n]) = 44h+20,
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Fig. 11 A phenylene (PH) and its hexagonal squeeze (HS).

χk(NS3[n]) = 6k(6h− r−6)+(2r)5k +(2h− r+4)4k,

HM(NS3[n]) = 248h−2r−152,

H(NS3[n]) = 3h− r
30

,

Hk(NS3[n]) = (
1
3
)k(6h− r−6)+(2r)(

2
5
)k +(2h− r+4)(

1
2
)k,

ABC(NS3[n]) = 4h− 2
3

r−4+

√
1
2
(2h+ r+4),

GAk(NS3[n]) = (8h−2r−2)+(2r)(
2
√

6
5

)k,

M1(NS3[n],x) = (6h− r−6)x6 +(2r)x5 +(2h− r+4)x4,

M2(NS3[n],x) = (6h− r−6)x9 +(2r)x6 +(2h− r+4)x4,

M3(NS3[n]) = 2r,

M3(NS3[n],x) = (8h−2r−2)+2rx,

Mt1,t3(NS2[n]) = 3t1+t2+1(6h− r−6)+(2r)(2t13t2 +2t23t1)+(2h− r+4)2t1+t2+1,

PM1(NS3[n]) = 66h−r−652r42h−r+4,

PM2(NS3[n]) = 96h−r−662r42h−r+4,

ReZG1(NS3[n]) = 6h,

ReZG2(NS3[n]) = 11n− r
25
−5,

ReZG3(NS3[n]) = 356h−10r−260.

9 Degree Based Indices of Polycyclic Aromatic Hydrocarbons PAHn

Polycyclic aromatic hydrocarbons PAHs is a family of hydrocarbon molecules which is consisted of cycles
with length six (Benzene) and can be considered as small pieces of graphene sheets with the free valences of the
dangling bonds saturated by H. Vice versa, a graphene sheet can be interpreted as an infinite PAH molecule. In
this section, the first members of this hydrocarbon family are stated as follows which are shown in Figure 12: let
PAH1 be the Benzene with six carbon (C) and six hydrogen (H) atoms, PAH2 be the Coronene with 24 carbon
and twelve hydrogen atoms and PAH3 be the Circumcoronene with 54 carbon and eighteen hydrogen atoms.
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Fig. 12 A phenylene (PH) and its hexagonal squeeze (HS).

It is not hard to check that the general representation of polycyclic aromatic hydrocarbon PAHn has 6n2

carbon (C) atoms and 6n hydrogen (H) atoms. By the analysis given by Farahani [58], we know that |V (PAHn)|=
6n2 +6n, |E(PAHn)|= 9n2 +3n, and the edge set of PAHn can be divided into two parts: E4 = E∗3 and E6 = E∗9
such that |E4|= |E∗3 |= 6n and |E6|= |E∗9 |= 9n2−3n. Therefore, by the definition of degree-based indices, we
infer

Rk(NS3[n]) = 9k(9n2−3n)+(6n)3k,

M∗2(NS3[n]) = n2 +
5n
3
,

χk(NS3[n]) = 6k(9n2−3n)+(6n)4k,

HM(NS3[n]) = 228n2−108n,

H(NS3[n]) = 3n2 +2n,

Hk(NS3[n]) = (
1
3
)k(9n2−3n)+(6n)(

1
2
)k,

ABC(NS3[n]) = 6n2−1n+(6n)

√
1
2
,

GA(NS3[n]) = (9n2−3n)+3n
√

3,

GAk(NS3[n]) = (9n2−3n)+(6n)(

√
3

2
)k,

M3(NS3[n]) = 12n,

M3(NS3[n],x) = (9n2−3n)+(6n)x2,

Mt1,t3(NS2[n]) = 3t1+t2+1(9n2−3n)+(6n)(3t1 +3t2),

PM1(NS3[n]) = 69n2−3n46n,

PM2(NS3[n]) = 99n2−3n ·36n,

ReZG1(NS3[n]) = 6n2 +6n,

ReZG2(NS3[n]) =
27
2

n2,

ReZG3(NS3[n]) = 486n2−90n.
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10 Conclusion

In our article, we mainly report the degree-based indices of some widely used chemical structures with
the help of molecular graph structure analysis, edge dividing technology and mathematical derivation. These
molecular structures are widely used in the analysis of both the melting point, boiling point, QSPR/QSAR
study and other chemical proptoses for chemical compounds and drugs. Thus, the promising prospects of the
application for the chemical and pharmacy engineering will be illustrated in the theoretical conclusion that is
obtained in this article.
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