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Abstract
The min-max symbols generalize the kneading symbols in that they contain also information about the minimum or max-
imum character of the critical values and their iterates. Interestingly enough, this additional information can be obtained
from the kneading symbols without further computation. In this paper we review some interesting applications of the
min-max symbols. The applications chosen concern new expressions for the topological entropy of multimodal maps, as
well as a numerical algorithm to compute it.
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1 Introduction

The kneading sequences of a multimodal map f of a closed interval I are symbolic sequences that locate
the iterates of its critical values up to the precision set by the partition defined by its critical points [15, 16].
See Sect. 2 for the exact meaning of these concepts in the present work and the general mathematical setting.
Since the nth iterate of a critical point of f is a critical value of the nth iterate of f , f n, one may attach to
the symbols of each kneading sequence of f a label informing about their minimum/maximum (or “critical”)
character. The result is called a min-max sequence, one per critical point, consisting of min-max symbols. These
symbols and sequences were introduced in [10, 11] for unimodal maps, and in [3] for multimodal maps. Thus,
min-max sequences generalize kneading sequences in that they give additional geometric information about the
extrema structure of f n at the critical points for all n≥ 1. It turns out that the computational cost of a min-max
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symbol is virtually the same as of a kneading symbol. Indeed, the extra piece of information contained in each
symbol of the min-max sequence generated by a critical point, as compared to the corresponding symbol of
the kneading sequence generated by the same critical point, can be automatically retrieved from a look-up table
once the min-max symbol of the previous iterate of f and the kneading symbol of the current iterate of f have
been calculated.

The min-max symbols have been studied in recent years in the papers in [12] for twice-differentiable uni-
modal maps, in [3] for twice-differentiable multimodal maps, and in [4,5] for just continuous multimodal maps.
Along with theoretical aspects, such as a number of relations between the min-max symbols of a unimodal or
multimodal map and certain geometrical properties of the map and its iterates, the practical aspects were also
on the fore in those references. In particular, several numerical algorithms for the topological entropy [1, 19]
can be found as well in those references, the algorithm in [5] being a variant of the algorithm in [4] and this
one a simplification of the algorithm in [3]. The interested reader is also referred to [6–9, 13, 14, 18] for several
numerical techniques to compute the topological entropy with various degrees of generality.

In this paper we review two interesting applications of the min-max symbols of a multimodal map f , namely,
new expressions for its topological entropy, h( f ), and a general algorithm to compute it. In so doing we resort
to the well-known expression

h( f ) = lim
n→∞

1
n

log lap( f n), (1)

where lap( f n) is shorthand for the lap number of f n (i.e., the number of maximal monotonicity segments of
f n) [2, 17]. We will see in Sect. 3 that the min-max symbols allow to relate lap( f n) with the number of
‘transversal’ intersections of f n with the so-called critical lines. Let us also recall at this point other remarkable
formulas such as

h( f ) = lim
n→∞

1
n

log#{x ∈ I : f n(x) = x} (2)

= lim
n→∞

1
n

log+Var( f n), (3)

where Var( f n) stands for the variation of f n [17].
The rest of this paper is organized as follows. In order to make the paper self-contained, we summarize in

Sect. 2 all the basic concepts, especially the concept of min-max sequences, needed in the subsequent sections,
and the concept of ‘bad’ symbols, which are the hallmark of this approach. In Sect. 3 we derive the two new
expressions (11) and (19) for h( f ), which add to (1)-(3). A third expression, Eq. (22), is derived in Sect. 4
and, in turn, transformed into a numerical scheme to compute h( f ). The resulting algorithm is put to test with
bimodal and trimodal maps in Sects. 4.1 and 4.2.

In sum, the following pages give a general panorama of the min-max symbols in action. For other appli-
cations of the min-max symbols the reader is referred to [3]. Further applications are the subject of current
research.

2 Preliminaries

Let I be a compact interval [a,b] ⊂ R and f : I→ I a piecewise monotone continuous map. Such a map is
called l-modal if f has precisely l turning points (i.e., points in (a,b) where f has a local extremum). More
precisely, we assume that f has local extrema at c1 < ... < cl and that f is strictly monotone on each of the l+1
intervals

I1 = [a,c1), I2 = (c1,c2), ..., Il = (cl−1,cl), Il+1 = (cl,b]. (4)

The set of l-modal maps will be denoted hereafter as Ml(I), Ml([a,b]), or just Ml if the interval I = [a,b] is
clear from the context or unimportant for the argument. As in the Introduction, sometimes one also speaks of
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multimodal maps in general, the name unimodal map being reserved for the case l = 1. Furthermore, if f (c1) is
a maximum (resp. minimum), f is said to have a positive (resp. negative) shape.

The itinerary of x ∈ I under f is a symbolic sequence

i(x) = (i0(x), i1(x), ..., in(x), ...) ∈ {I1,c1, I2, ...,cl, Il+1}N0

(N0 ≡ {0}∪N) defined as follows:

in(x) =
{

I j if f n(x) ∈ I j (1≤ j ≤ l +1),
ck if f n(x) = ck (1≤ k ≤ l).

The itineraries of the critical values,

γ
i = (γ i

1, ...,γ
i
n, ...) = i( f (ci)), 1≤ i≤ l,

are called the kneading sequences of f [15].
It is easily shown [3] that the iterates of the critical points, f n(ci), are local extrema. This information is

included in the min-max sequences of an l-modal map f ,

ω
i = (ω i

1,ω
i
2, ...,ω

i
n, ...), 1≤ i≤ l,

where

ω
i
n =

{
mγ i

n if f n(ci) is a minimum,
Mγ i

n if f n(ci) is a maximum,
(5)

and γ i
n are kneading symbols [3, 10–12]. Hence, the min-max symbols ω i

n are a generalization of the kneading
symbols γ i

n in that they also specify whether f n(ci) is a maximum or a minimum. In the exponential-like notation
of (5), the ‘base’ belongs to the alphabet {m,M}, and the ‘exponent’ (also called signature in [3]) belongs to
the alphabet {I1,c1, I2, ...,cl, Il+1}. Therefore, the extra information of a min-max symbol ω i

n as compared to a
kneading symbol γ i

n is contained in its base.
In [4, Theorem 1] it is proved that if f ∈Ml has a positive shape, then the ‘transition rules’ given in Table 1

hold:

ω i
n → ω i

n+1

mIodd ,MIeven → mγ i
n+1

mIeven ,MIodd → Mγ i
n+1

mceven ,Mceven → mγ i
n+1

mcodd ,Mcodd → Mγ i
n+1

Table 1 Transition rules for l-modal maps with a positive shape.

Here “even” and “odd” refer to the parity of the subindices of I j (1 ≤ j ≤ l + 1) or ck (1 ≤ i ≤ l) in the
exponent of ω i

n. If, otherwise, f has a negative shape, then one has to swap m and M on the right column of
Table 1 [4, Theorem 1]:

ω i
n → ω i

n+1

mIodd ,MIeven → Mγ i
n+1

mIeven ,MIodd → mγ i
n+1

mceven ,Mceven → Mγ i
n+1

mcodd ,Mcodd → mγ i
n+1

Table 2 Transition rules for l-modal maps with a negative shape.
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These transition rules prove our claim in the Introduction that, from the point of view of the computational
cost, min-max sequences and kneading sequences are virtually equivalent.

Let the ith critical line, 1 ≤ i ≤ l, be the line y = ci on the Cartesian plane {(x,y) : x,y ∈ R}. Min-max
symbols split into bad and good symbols with respect to the ith critical line. Geometrically, the latter correspond
to local maxima strictly above the line y = ci, and to local minima strictly below the line y = ci. All other
min-max symbols are bad by definition with respect to the ith critical line. We use the notation

Bi = {MI1 ,Mc1 , ...,MIi ,Mci ,mci ,mIi+1 , ...,mcl ,mIl+1} (6)

for the set of bad symbols of f ∈Ml with respect to the ith critical line. There are 2(l +1) bad symbols and 2l
good symbols with respect to a given critical line. Fig. 1 shows four bad min-max symbols with respect to the
critical line y = ci. Since the concept of bad symbol needs the minimum/maximum character of f n(ci), it is a
distinctive ingredient of properties derived via min-max symbols.
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Fig. 1 Four bad symbols with respect to the critical line y = ci. The rest are of the form MI j ,Mck with j,k < i, and
mI j ,mck with j,k > i.

For further reference, define the sets of pairs of indices

K i
n = {(k,m),1≤ k ≤ l,1≤ m≤ n : ω

k
m ∈Bi}, (7)

(n≥ 1, 1≤ i≤ l). That is, K i
n collects the upper and lower indices (k,m), respectively, of the bad symbols with

respect to the ith critical line in all the initial segments of length n of the min-max sequences of f :

ω
1
1 ,ω

1
2 , ...,ω

1
n ; ω

2
1 ,ω

2
2 , ...,ω

2
n ; ...; ω

l
1,ω

l
2, ...,ω

l
n.

3 New expressions for the topological entropy

Let f ∈Ml(I). Since f is continuous and piecewise strictly monotone, so is f n for all n≥ 2 as well. We say
that x0 ∈ I is an interior simple zero of f n(x)−ci = 0, n≥ 0, if a < x0 < b, f n(x0) = ci, and f n(x0) is not a local
extremum, thus f n(x) −ci takes both signs in every neighborhood of x0. In the case of (everywhere) differen-
tiable maps, an interior simple zero x0 of f n(x)− ci = 0 amounts geometrically to a transversal intersection on
the two-dimensional interval I× I = {(x,y) : x,y ∈ I} of the curve y = f n(x) and the critical line y = ci.

Let si
n, 1≤ i≤ l, stand for the number of interior simple zeros of f n(x)− ci = 0, n≥ 0. In order to simplify

the notation, set

sn =
l

∑
i=1

si
n, (8)

n≥ 0. In particular,

s0 =
l

∑
i=1

si
0 =

l

∑
i=1

1 = l. (9)
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According to [3, Eqn. (31)], lap( f n) satisfies

lap( f n) = 1+
n−1

∑
ν=0

sν . (10)

Plug (10) into (1) to obtain

h( f ) = lim
n→∞

1
n

log

(
1+

n−1

∑
ν=0

sν

)
, (11)

which expresses the topological entropy of a multimodal map f by means of the number of interior simple zeros
of f n(x)− ci = 0, 1 ≤ i ≤ l, or, in more geometrical terms, via the number of ‘transversal’ intersections of f n

with the critical lines, for n≥ 1.
For (11) to provide also a practical tool for computing h( f ), a procedure is needed to go from s0,s1, ...,sn−1

to sn. Here is where the min-max sequences of f enter the scene.
We say that an l-modal map f of the interval I = [a,b] is boundary-anchored if f{a,b} ⊂ {a,b}, i.e., if

f (a) = a, and f (b) =
{

a if l is odd,
b if l is even,

in case that f has a positive shape, or

f (a) = b, and f (b) =
{

b if l is odd,
a if l is even,

in case that f has a negative shape.

Remark 1. It is well-known that when it comes to calculate the topological entropy of an l-modal map f , h( f ),
then one may assume without restriction that f is boundary-anchored. Explicitly, given f ∈Ml(I) there exist a
closed interval J ⊃ I and F ∈Ml(J) such that h(F) = h( f ) and F is boundary-anchored; see, e.g., [4, Theorem
3] and the references therein.

Therefore, assume for the time being that f ∈Ml is boundary-anchored. Then it is proved in [4, Theorem
2] that for any n≥ 1, 1≤ i≤ l,

si
n = 1+

n−1

∑
ν=0

sν −Si
n, (12)

where
Si

n = 2 ∑
(k,m)∈K i

n

sk
n−m (13)

with Si
n = 0 if K i

n = /0. Thus, see (8),

sn = l

(
1+

n−1

∑
ν=0

sν

)
−Sn, (14)

where

Sn =
l

∑
i=1

Si
n. (15)

Note that the right hand of (12) only contains the numbers sν with 0 ≤ ν ≤ n− 1, what allows to calculate sn

in a fully recursive way from the seeds s1
0 = ... = sl

0 = 1. This fact and Remark 1 render Eq. (11) a formula
for actually computing the topological entropy of any (i.e., not necessarily boundary-anchored) l-modal map
f . Since the calculation of Si

n involves the bad symbol set K i
n , the corresponding algorithm presupposes the

knowledge of the min-max symbols ωk
m with 1≤ k ≤ l, and 1≤ m≤ n.
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Remark 2. The generalization of (12) to general f ∈Ml , regardless of the boundary conditions, can be found
in [3, Theorem 5.3].

The relation (14) not only promotes (11) to the basis of an algorithm for the computation of h( f ) via min-
max symbols, but also leads to a further expression for h( f ). For this insert (10) in (14) to write the lap number
lap( f n) of a boundary-anchored l-modal map as

lap( f n) =
1
l
(sn +Sn). (16)

Next we derive from (16) a formula for h( f ) which involves the min-max symbols of f in an explicit manner.
To this end we are going to express sn in terms of S1, ...,Sn.

Lemma 1. [5]. Let f ∈Ml be boundary-anchored. Then

sn = l(l +1)n− l
n−1

∑
ν=1

(l +1)n−ν−1Sν −Sn (17)

for n≥ 1, where the summation over ν is missing for n = 1.

From (16) and (17) it follows

lap( f n) = (l +1)n

(
1−

n−1

∑
ν=1

Sν

(l +1)ν+1

)
(18)

for boundary-anchored l-modal maps. Apply now (1) to (18) and derive the following formula for the topological
entropy of any l-modal map in virtue of Remark 1.

Theorem 2. [5]. The topological entropy of f ∈Ml is given by

h( f ) = log(l +1)+ lim
n→∞

1
n

log

(
1−

n−1

∑
ν=1

Sν

(l +1)ν+1

)
, (19)

with Sν as in (15) and (13).

According to (19) h( f )≤ log(l+1)=: h( f )max, a well-known result for l-modal maps. Therefore, (19) expresses
the difference h( f )max−h( f ) by means of the sequence (Sn)n≥1. Note that the convergence is monotonic, i.e.,

log(l +1)− 1
n

∣∣∣∣∣log

(
1−

n−1

∑
ν=1

Sν

(l +1)ν+1

)∣∣∣∣∣↘ h( f ) (20)

as n→ ∞. See [5, Sect. 5] for details of the convergence (20). The application of (19) to the logistic family,

qv(x) = 4vx(1− x), (21)

0≤ x≤ 1, 0 < v≤ 1, was extensively studied in [5, Sect. 6].

4 Computation of the topological entropy

In this section we are going to review a general algorithm to compute h( f ) [4]. This algorithm is based on
the formula for h( f ) which follows readily from (1) and (16),

h( f ) = lim
n→∞

1
n

log
1
l
(sn +Sn)

= lim
n→∞

1
n

log
1
l

l

∑
i=1

(
si

n +2 ∑
(k,m)∈K i

n

sk
n−m

)
, (22)
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again for any l-modal map f (Remark 1). All we need is a recursive scheme to compute the right hand side of
(22) for ever larger n’s.

The core of the algorithm consists of a loop over n. Each time the algorithm enters the loop, the values of
sn−1 and Sn−1 are updated to sn and Sn, and the current estimation of h( f ) is compared to the previous one. Note
that the computation of Si

n, 1≤ i≤ l, requires si
0 = 1,si

1, ...,s
i
n−1, see (13), while the computation of si

n, 1≤ i≤ l,
requires si

0,s
i
1, ...,s

i
n−1, and Si

n, see (12). Note also that K i
n = K i

n−1∪ (K i
n \K i

n−1), where

K i
n \K i

n−1 = {(k,n),1≤ k ≤ l : ω
k
n ∈Bi}. (23)

We summarize next the algorithm resulting from (22) in the following scheme (“A −→ B” stands for “B is
computed by means of A”).

(A1) Parameters: l ≥ 1 (number of critical points), ε > 0 (dynamic halt criterion), and nmax ≥ 2 (maximum
number of loops).

(A2) Initialization: si
0 = 1, and K i

1 = {k,1≤ k ≤ l : ωk
1 ∈Bi} (1≤ i≤ l).

(A3) First iteration: For 1≤ i≤ l,
si

0,K
i

1 −→ Si
1,S1 (use (13), (15))

si
0,S

i
1 −→ si

1,s1 (use (12), (14))

(A4) Computation loop. For 1≤ i≤ l and n≥ 2 keep calculating K i
n , Si

n, and si
n according to the recursions

K i
n−1 −→K i

n (use (23), and Table 1 or 2)
si

0,s
i
1, ...,s

i
n−1,K

i
n −→ Si

n,Sn (use (13), (15))
si

0,s
i
1, ...,s

i
n−1,S

i
n −→ si

n,sn (use (12), (14))
(24)

until (i) ∣∣∣∣1n log
sn +Sn

l
− 1

n−1
log

sn−1 +Sn−1

l

∣∣∣∣≤ ε, (25)

or, else, (ii) n = nmax +1.

(A5) Output. In case (i) output

h( f ) =
1
n

log
sn +Sn

l
. (26)

In case (ii) output “Algorithm failed”.

As a matter of course, the parameter ε does not bound the error
∣∣∣h( f )− 1

n log sn+Sn
l

∣∣∣ but the difference
between two consecutive estimations, see (25). The number of exact decimal positions of h( f ) can be found out
by taking different ε’s, as we will see in the numerical simulations below. Equivalently, one can control how
successive decimal positions of 1

n log sn+Sn
l stabilize with growing n. Moreover, the smaller h( f ), the smaller ε

has to be chosen to achieve a given numerical precision.

Remark 3. There are, of course, very efficient algorithms for the computation of h( f ) tailored to particular
cases; for unimodal maps, see, e.g., [7]. Also in the unimodal case, the relation (16) leads easily to the recursive
formula [12]

lap( f n+1) = 2 lap( f n)−2 ∑
m∈K 1

n

(lap( f n+1−m)− lap( f n−m)), (27)

n≥ 1, which allows to compute h( f ) in a simple and fast manner.
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The algorithm (A1)-(A5) was benchmarked in [4] against (27) for unimodal maps and against the algorithm
of [3] (also based on (22)) for l-modal maps with 2 ≤ l ≤ 5. The result was that (27) is faster for unimodal
maps, otherwise the algorithm (A1)-(A5) is faster. Let us mention in passing that (19) was used in [5] to derive
a similar though slower computational scheme.

For the sake of completeness, we show next numerical results obtained with the above algorithm (A1)-(A5)
applied to bimodal and trimodal maps. The algorithm was coded for arbitrary l with PYTHON and run on an
Intel(R) Core(TM)2 Duo CPU. The base of the logarithm function is 2.

4.1 Bimodal maps

Consider the bimodal maps fv1,v2 : [0,1]→ [0,1] defined as

fv1,v2(x) = (2v2− v1)−2(v2− v1)sin
(

π

6

(
5−4

√
6x+6x2

))
,

where 0≤ v1 6= v2 ≤ 1. The critical points of fv1,v2 on the interval [0,1] are

c1 =
1√
3
(
√

2−1) = 0.2391..., c2 =
√

2
3 = 0.8165....

Moreover,

fv1,v2(0) = v2, fv1,v2(c1) = v1, fv1,v2(c2) = v2, fv1,v2(1)
{
> v2 if v1 > v2
< v2 if v1 < v2

.

Therefore, if we choose v1 > v2, then fv1,v2 has a positive shape, while v1 < v2 entails a negative shape. Fig. 2
shows the graphs of the full range maps f1,0 and f0,1, together with f0.75,0.25 and f0.25,0.75.

Fig. 3 shows the plot of h( f0,v2) vs. v2, 0 < v2 ≤ 1, computed with ε = 10−4 and ∆v2 = 0.001. Fig. 4
depicts the values of h( fv1,v2) vs. v1 and v2, with ε = 10−4 and ∆v1 = ∆v2 = 0.01. Finally, Table 3 illustrates the
convergence of the algorithm (as measured by the number of computation loops) when calculating h( f0.1,0.9).
We see that ε = 10−7 is necessary to fix the first two decimal positions.

0.000 0.239 0.816 1.000

1.00

0.75

0.25

0.000.00

0.25

0.75

1.00

f1,0

f0.75,0.25

f0.25,0.75

f0,1

Fig. 2 Graph of the trimodal maps fv1,v2
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h
(f

0,
v 2

)

Fig. 3 Plot h( f0,v2) in bits vs v2, 0 < v2 ≤ 1 (ε = 10−4,∆v2 = 0.001).

0.0 0.2 0.4 0.6 0.8 1.0
v1

0.0

0.2

0.4

0.6

0.8

1.0

v 2

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

1.28

Fig. 4 Level sets of h( fv1,v2) in bits vs v1,v2, 0≤ v1,v2 ≤ 1 and v1 6= v2 (ε = 10−4,∆v1 = ∆v2 = 0.01).

4.2 Trimodal maps

Consider the trimodal maps gv1,v2 : [0,1]→ [0,1] defined as

gv1,v2(x) =
v1 cos π

8 − v2 +(v2− v1)sin
(

π

8

(
5−8x+8x2

))
cos π

8 −1
,

where 0≤ v1 6= v2 ≤ 1. The critical points of gv1,v2 on the interval [0,1] are

c1 =
1
2

(
1− 1√

2

)
= 0.1464..., c2 =

1
2 , c3 =

1
2

(
1+ 1√

2

)
= 0.8535...

Moreover,

gv1,v2(0) = v2, gv1,v2(c1) = v1, gv1,v2(c2) = v2, gv1,v2(c3) = v1, gv1,v2(1) = v2.
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precision h n
ε = 10−4 0.655591287672 179
ε = 10−5 0.643433302022 565
ε = 10−6 0.639578859603 1786
ε = 10−7 0.638359574751 5645

Table 3 Performances when computing h( f0.1,0.9) in bits with the bimodal map.

As before, if we choose v1 > v2, then gv1,v2 has a positive shape, while v1 < v2 entails a negative shape. Fig. 5
shows the graphs of the full range maps g1,0 and g0,1, together with g0.75,0.25 and g0.25,0.75.

Fig. 6 shows the plot of h(g0,v2) vs. v2, 0 < v2 ≤ 1, computed with ε = 10−4 and ∆v2 = 0.001. Fig. 7
depicts the values of h(gv1,v2) vs. v1 and v2, with ε = 10−4 and ∆v1 = ∆v2 = 0.01. Finally, Table 4 illustrates the
convergence of the algorithm when calculating h(g0.1,0.9). Here ε = 10−6 fixes the first two decimal positions.

0.000 0.146 0.500 0.854 1.000

1.00

0.75

0.25

0.000.00

0.25

0.75

1.00

g1,0

g0.75,0.25

g0.25,0.75

g0,1

Fig. 5 Graph of the trimodal maps gv1,v2

precision h n
ε = 10−4 1.02013528493 203
ε = 10−5 1.00638666069 640
ε = 10−6 1.00202049572 2023
ε = 10−7 1.00063926538 6394

Table 4 Performances when computing h(g0.1,0.9) in bits with the trimodal map.

5 Conclusion

In this paper we have reviewed a few applications of the min-max symbols to both theoretical and computa-
tional aspects of the topological entropy of multimodal maps. Among the first, see Eqs. (19) and (22); among
the latter, see the fast and numerically stable algorithm for h( f ) presented in Sect. 4, which is based on Eq.
(22). The application of this algorithm to bimodal and trimodal maps was illustrated in Sect. 4 as well. The
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Fig. 6 Plot h(g0,v2) in bits vs v2, 0 < v2 ≤ 1 (ε = 10−4,∆v2 = 0.001).
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Fig. 7 Level sets of h(gv1,v2) in bits vs v1,v2, 0≤ v1,v2 ≤ 1 and v1 6= v2 (ε = 10−4,∆v1 = ∆v2 = 0.01).

expressions (19), (22), and also (11) add to other well-known ones for h( f ) such as (1)-(3).
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