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Abstract
We study the relative equilibria in the 4-vortex problem when two of vorticities are equal to 1, and the other two equal to
m are enough small. We prove that for m > 0 there is a unique concave kite relative equilibria. We also prove that there
is a unique convex planar relative equilibria having two pairs of equal vorticities located at the adjacent vertices of the
configuration and it is an isosceles trapezoid.
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1 Introduction

The equations of motion for the interaction of point vortices were introduced by Helmholtz [8] (1858).
In that paper, Helmholtz was the first to make explicit key properties of those portions of a fluid in which the
vorticity occurs. Although his research was motivated in part by his interest in the effect of friction within a fluid,
he developed the theory restricted to the dynamics of a perfect incompressible fluid with vorticity. Towards the
end of his article, he introduces the concept of parallel vertical infinitely thin vortex filaments, each of which
contains an invariant amount of circulation. Equivalently, we can consider the trace of this family of filaments,
the intersection of them with a plane perpendicular to all these points are known as point vortices, and we think
that they play an analogue to the point masses in celestial mechanics.
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A good introduction to the problem and methods of vortex dynamics can be found in Aref (2007) [2] and
Newton (2001) [12]. In this paper, we are particularly interested in the relative equilibria motions, which are
the simplest solutions described in the problem of n–point vortices. In this case the dynamics of the vortices
is uniform with respect to a fixed rotation center, or a uniform translation. The simplest relative equilibria are
those where n–settings vortices form a regular polygon where all values at the vortices or vorticities are equal.

In 2001, Kossin and Schubert [10] performed numerical experiments that describe the evolution of thin
annular rings with high vorticity as a model for the behavior observed in the eye of a hurricane. A polygonal
rigid rotation has been found in the eye of hurricane research models and weather forecast in the Group at the
National Hurricane Center for Atmospheric Research (see the website [4] to observe some simulations).

It is natural to explore configurations that rotate rigidly in a framework of dynamical systems, studying the
planar relative equilibria of n-vortex problem. The case of three-vortices has been widely studied by Gröbli [5],
Kossin and Schubert [10] and Hernández-Garduño and Lacomba [9]. Equilateral triangles are always relative
equilibria. There is also collinear relative equilibria, which are determined by a cubic equation with coefficients
which are linear in the vorticities. Depending on the parameters you can get one, two or three collinear relative
equilibria. In 2008, R. Moeckel and M. Hampton [6] proved the finiteness of relative equilibria in the four-vortex
problem. The case of four vortices with two pairs of equal vorticities was studied by Hampton, Roberts and
Santoprete [7]. In 1988, Meyer and Schmidt [11] showed that there is a parametric family of relative equilibria
relating to the problem of 4-vortices which becomes degenerate to a value of the parameter. This degeneration
suggests that a bifurcation occurs.

The motivation of this work is to find new relative equilibria, when two of the vortices are fusing at the same
point, we believe that this kind of results can be applied to the analysis of the hurricanes, particularly when they
are born.

The paper is organized as follows: After the introduction, in Section 2 we give the background on this sub-
ject, stating the equations of motion and defining the different kinds of configurations for the relative equilibria
that we are studying. Section 3 contains the main results of this paper, starting with an equilateral triangle con-
figuration, where in the limit case m= 0, we fuse the massless particles and prove that for this limit case emanate
a unique concave kite relative equilibria and a unique convex relative equilibria which is an isosceles trapezoid.

2 The n-vortex problem

The governing equations for a collection of n–vortices, each one with strength Γi ∈ R and located at zi =
(xi,yi) ∈ R2, are given by

żi =
n

∑
i 6= j

Γ j
zi− z j

‖zi− z j‖2 . (1)

A motion of n vortices is said to be a relative equilibrium if, and only if, there exists a real number λ 6= 0,
called angular velocity, such that, for every i and for all time

żi = λ (zi− c), (2)

where c =
∑

n
i Γizi

∑i Γi
is the center of vorticity. Of course we are assuming that ∑i Γi 6= 0, which is the case studied

in this paper, when the sum vanishes it is a degenerate case, the interested reader can find its analysis for instance
in [13].

It is easy to check that when the n–vortices have the same vorticity and they are located at the vertices of a
regular n–gon, they form a relative equilibrium. We are interested in relative equilibria formed with two pairs of
equals vorticities where the mass of one of them is sufficiently small.

We are interested in the study of non-collinear planar relative equilibria formed by 4 vortex located at the
vertex of a regular polygon. In this paper we follow the work made by Corbera and Llibre for the case of central

http://www.up4sciences.org


R.E. in the 4-Vortex Problem Bifurcating from an Equilateral Triangle 303

configurations in celestial mechanics [3]. In that article, they study all central configurations that can be obtained
in the case m1 = m2 > m3 = m4 = m > 0 with m enough small. First, they analyzed the case when the bodies are
not in collision and study the collinear and planar case with two or three masses equal to 0, and then they studied
the central configurations in binary collision for the collinear case, equilateral triangle, and kite configuration.
In this work we will point the similarities and differences with that paper.

Definition 1. Assume that z = (z1,z2,z3,z4) is a relative equilibria of the planar 4 vortex problem:

• z is convex if none of the vorticities is located in the interior of the triangle formed by the others,

• z is concave if one of the bodies is in the interior of the triangle formed by the others,

• z is a kite relative equilibria if it has an axis of symmetry passing through two non-adjacent bodies,

• z is a rhombus if it is convex and the four exterior edges are equal to each other.

For the case of central configurations in celestial mechanics Albouy, Fu and Sun showed that when four
particles (q1,q2,q3,q4) form a two-dimensional central configuration, which is a convex quadrilateral having
[q1,q2] and [q3,q4] as diagonals [1]. This configuration is symmetric con respect to the axis [q3,q4] if and only
if m1 = m2. It is symmetric with respect to the axis [q1,q2] if and only if m3 = m4. Using exactly the same kind
of computations it is possible to get a similar result in the 4–vortex problem, we omit here the details.

The goal of this paper is look for new configurations of relative equilibria in the 4–vortex problem for which
Γ1 = Γ2 and Γ3 = Γ4 is small enough. A point that we must clarify is about the singularity that appear when the
motion start with one couple of masses in binary collision, we will do ahead in this paper.

3 Relative equilibria with vorticities Γ1 = Γ2, Γ3 = Γ4 = m and m small

In this section we will give a description of relative equilibria for the planar 4-vortex problem where the
vorticities are equal two a two and one couple of them have vorticities small enough.

Starting from an equilateral triangle configuration, where the vortices 3 and 4 are in binary collision and each
vortex is located on the vertices of a triangle. After normalization, we can assume without loss of generality that
the value of the vorticities are Γ1 = Γ2 = 1 and Γ3 = Γ4 = m with m small enough.

Let be z1 = (−1,0), z2 = (1,0), z3 = (x3,y3) and z4 = (x4,y4) the positions of 4–point vortices with vor-
ticities Γ1,Γ2,Γ3 and Γ4 respectively. We say that two planar relative equilibria are equivalent if one can be
obtained by the other one by doing a rotation or interchanging the names of the vorticities Γ3 y Γ4. It is easy to
verify that this is an equivalence relation, so from here on we look for classes of relative equilibria, that by short
we will continue called them simply as relative equilibria.

Since the vortices 1 and 2 are fixed at z1 and z2, we define s= (x3,y3,x4,y4) as a relative equilibrium solution.
A collision relative equilibrium solution is given by sc = (0,

√
3,0,
√

3).
The main result of this article is the following:

Theorem 1. Let be Γ1 = Γ2 = 1,Γ3 = Γ4 =m,z1 = (−1,0),z2 = (1,0),3= (x3,y3) and z4 = (x4,y4) the positions
of the vortices Γ1,Γ2,Γ3 and Γ4 respectively. We assume that x3,y3 ≥ 0, y3 ≥ y4. Then the relative equilibria
for m = 0 given by sc = (0,

√
3,0,
√

3) can be continued to

1. A unique family (x3(m),y3(m),x4(m),y4(m)) concave kite relative equilibria for m > 0 small where

x3(m) = x4(m) = 0,

y3(µ) =
√

3+
2
3

m1/2 +
68
405

m3/2 +O(µ2),

y4(µ) =
√

3− 2
3

m1/2− 68
405

m3/2 +O(µ2).
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2. A unique family (x3(m),y3(m),x4(m),y4(m)) of isosceles trapezoid relative equilibria for m ∈ (0,3/2)
where

x3(m) =
2√
3

m1/2− 4
3
√

3
m3/2 +O(m2),

x4(m) = −x3(m),

y3(µ) =
√

3+O(m2),

y4(m) = y3(m).

Remark 1. The assumptions in the above Theorem are not of great significance, the other configurations that we
can have can be obtained from the configurations given in the Theorem by doing either a rotation in dimension
three or by interchanging the names of the vortices Γ3 and Γ4.

3.1 Equations for relative equilibria

The centre of vorticities for a relative equilibria with the hypothesis of Theorem 1 is

c =
(

m(x3 + x4)

2(m+1)
,
m(y3 + y4)

2(m+1)

)
,

with this the equations (2) become
ei = 0, for i = 1, . . . ,8, (3)

where

e1 = −1
2
− m(x3 +1)

r2
13

− m(x4 +1)
r2

14
+λ

(
1+

m(x3 + x4)

2(m+1)

)
,

e2 =
1
2
− m(x3−1)

r2
23

− m(x4−1)
r2

24
−λ

(
1− m(x3 + x4)

2(m+1)

)
,

e3 =
m(x3 +1)

r2
13

+
m(x3−1)

r2
23

+
m(x3− x4)

r2
34

−λ

(
x3−

m(x3 + x4)

2(m+1)

)
,

e4 =
m(x4 +1)

r2
14

+
m(x4−1)

r2
24

+
m(x4− x3)

r2
34

−λ

(
x4−

m(x3 + x4)

2(m+1)

)
,

e5 = m
(
− y3

r2
13
− y4

r2
14

+
λ (y3 + y4)

2(m+1)

)
,

e6 = m
(
− y3

r2
23
− y4

r2
24

+
λ (y3 + y4)

2(m+1)

)
,

e7 =
y3

r2
13

+
y3

r2
23

+
m(y3− y4)

r2
34

−λ

(
y3−

m(y3 + y4)

2(m+1)

)
,

e8 =
y4

r2
14

+
y4

r2
24

+
m(y4− y3)

r2
34

−λ

(
y4−

m(y3 + y4)

2(m+1)

)
,

and

r13 =
√

(x3 +1)2 + y2
3, r14 =

√
(x4 +1)2 + y2

4,

r23 =
√

(x3−1)2 + y2
3, r24 =

√
(x4−1)2 + y2

4,

r34 =
√

(x3− x4)2 +(y3− y4)2.
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Equations (3) are not defined in binary collision between the vortices. That is, when it has one of the following,
r13 = 0,r14 = 0,r23 = 0,r24 = 0 o r34 = 0.
The eight equations of (3) are not independent because

e1 + e2 +me3 +me4 = 0,

e5 + e6 +me7 +me8 = 0. (4)

We observe that equations (3) are not defined in binary collision among the vortices, that is, when one of the
following relationships hold, r13 = 0,r14 = 0,r23 = 0,r24 = 0 or r34 = 0.

Now we define

E1 = e1− e2, E2 = e3− e2, E3 = e4− e2,

E4 = e5− e6, E5 = e6− e7, E6 = e8− e6,

system (3) taken inside the system (4) is equivalent to the system

Ei = 0, para i = 1, . . . ,6. (5)

Solving for λ in equation E1 = 0, and substituting its value in the other equations of (5) we obtain

Fi = 0, para i = 1, . . . ,5, (6)

where

F1 =−
x3

2
+

x3 +1
r2

13
+

x3−1
r2

23
+m

(
−

x2
3−1
2r2

13
+

x2
3−1
2r2

23
+

x3− x4

r2
34

+
(x3 +1)(x4−1)

2r2
24

− (x3−1)(x4 +1)
2r2

14

)
,

F2 =−
x4

2
+

x4 +1
r2

14
+

x4−1
r2

24
+m

(
−x2

4−1
2r2

14
+

x2
4−1
2r2

24
+

x4− x3

r2
34
− (x3 +1)(x4−1)

2r2
13

− (x3−1)(x4 +1)
2r2

23

)
,

F3 = m
(
− y3

r2
13

+
y3

r2
23

+
y4

r2
24
− y4

r2
14

)
,

F4 =
y3

r2
13

+
y3

r2
23
− y3

2
+m

(
−(x3 +1)y3

2r2
13

+
(x3 +1)y3

2r2
23

− (x4 +1)y3

2r2
14

+

y3− y4

r2
34

+
(x4−1)y3 +2y4

2r2
24

)
,

F5 =
y4

r2
14

+
y4

r2
24
− y4

2
+m

(
−(x3 +1)y4

2r2
13

− (x4 +1)y4

2r2
14

− (x4 +1)y4

2r2
24

+

y4− y3

r2
34

+
(x3−1)y4 +2y3

2r2
23

)
,
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3.2 Relative equilibria with m = 0

When m = 0 system (6) is equivalent to

G(x3,y3) = 0, G(x4,y4) = 0,

H(x3,y3) = 0, G(x4,y4) = 0, (7)

where

G(x,y) =
x−1

(x−1)2 + y2 +
x+1

(x+1)2 + y2 −
x
2
,

H(x,y) =
y

(x−1)2 + y2 +
y

(x+1)2 + y2 −
y
2
.

Solving system (7) we find the solutions

(x,y) = {(0,0),(0,
√

3),(0,−
√

3),(−
√

5,0),(
√

5,0)}.

We will use only the solution (x,y) = (0,
√

3), which is in agreement with our assumptions that x3,y3 ≥ 0,
and that agrees with our original assumption that we have started with an equilateral triangle configuration with
vortices 3 and 4 fusing in binary collision.

3.3 Relative equilibria for m small emanating from a relative equilibrium in collision for m = 0

System (6) is not well defined when (x3,y3) = (x4,y4), so we have to transform it into a new system that is
well defined and analytic in a neighbourhood of (x3,y3) = (x4,y4). In this way, we first consider the following
system of equations

G1 = F1 +F2 = 0, G2 = F4 +F5 = 0, G3 = F3,

G4 = F2−F1 = 0, G5 = F5−F4 = 0, (8)

which is equivalent to system (6). The first three equations of (8) are analytic with respect to all its variables in
a neighbourhood of (x3,y3) = (x4,y4) and m = 0. The last two equations of (8) are not analytic at these points
because they contain the term

m
r2

34
=

m
(x3− x4)2 +(y3− y4)2 .

This term is well defined when m→ 0 if (x3,y3)−(x4,y4) =O(mβ ) with β ≤ 1/2. Let be µ =m1/2, then making
the change of variable (x4,y4) = (x3,y3)+µ(X4,Y4), we obtain a new system of equations, which is analytic in
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a neighbourhood of the point (x3,y3),µ = 0, and (X4,Y4) 6= 0. The new system is given by

G1 =
2(x3−1)

r2
23

+
2(x2 +1)

r2
13

− x3 +O(µ),

G2 =
2y3

r2
23

+
2y3

r2
13
− y3 +O(µ),

G3 = 2y3

(
1

r2
23
− 1

r2
13

)
µ

2 +O(µ3),

G4 = −X4

2
+

X4(−1+2x3− x2
3 + y2

3)+2(1+ x3)y3Y4

r4
23

+
X4(−1+2x3− x2

3 + y2
3)−2(1+ x3)y3Y4

r4
13

+
2X4

X2
4 + y2

4
,

G5 = −Y4

2
+

Y4(−1+2x3 + x2
3− y2

3)−2(1+ x3)y3X4

r4
13

+
Y4(−1+2x3− x2

3− y2
3)+2(1− x3)y3X4

r4
23

+
2Y4

X2
4 + y2

4
.

Now we consider the following system of equations

G1 = G1 = 0, G2 = G2 = 0, G3 = G3/µ
2 = 0,

G4 = G4/µ = 0, G5 = G5/µ = 0, (9)

which is analytic with respect to all variables in a neighbourhood of (x3,y3) = (0,0) and (X4,Y4) 6= 0.
First, we calculate the solutions of (9) with µ = 0. The solutions of the first three equations with x3,y3 ≥ 0

are (x3,y3) = (0,0),(0,
√

3,
√

5,0). As we have remarked at the beginning of this section, we are interested in
solutions where the vortices form an equilateral triangle with two of the vortices fusing in a binary collision.
Hence, we substitute the solution (x3,y3) = (0,

√
3) into the last two equations of (3), so that the resulting system

has the following four distinct real solutions:

sc1 = (0,
√

3,0,4/3), sc2 = (0,
√

3,0,−4/3),

sc3 = (0,
√

3,4/
√

3,0), sc4 = (0,
√

3,4/
√

3,0),

the components of sc j are (x3,y3,X4,Y4).
In the next step we use the Implicit Function Theorem to continue the solution of system (3) with µ = 0 to

solutions with µ small and positive. Let be

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂G1

∂x3

∂G1

∂y3

∂G1

∂X4

∂G1

∂Y4

∂G2

∂x3

∂G2

∂y3

∂G2

∂X4

∂G2

∂Y4

∂G4

∂x3

∂G4

∂y3

∂G4

∂X4

∂G4

∂Y4

∂G5

∂x3

∂G5

∂y3

∂G5

∂X4

∂G5

∂Y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and s = (x3,y3,X4,Y4). Since the system of equations (9) is analytic with respect to all its variables in a neigh-
bourhood of the points sc j with j = 1,2,3,4 and

D|µ=0,s=sc1 = −
81
64

= D|µ=0,s=sc2 6= 0,

D|µ=0,s=sc3 =
27
64

= D|µ=0,s=sc4 6= 0.

By the Implicit Function Theorem, in a small neighbourhood U of µ = 0, we can find a unique analytic
function (x3(µ),y3(µ),X4(µ),Y4(µ)), satisfying the following system o equations

G1 = 0, G2 = 0, G4 = 0, G5 = 0, (10)

and such that sc j = (x3(0),y3(0),X4(0),Y4(0)) for all j = 1,2,3,4.

A solution s = s(µ) = (x3(µ),y3(µ),X4(µ),Y4(µ)) of equations (10) expressed as a Taylor series takes the
form

x3(µ) =
∞

∑
k=0

x3kµ
k, X4(µ) =

∞

∑
k=0

X4kµ
k,

y3(µ) =
∞

∑
k=0

y3kµ
k, Y4(µ) =

∞

∑
k=0

Y4kµ
k.

Expanding the equations G1,G2,G4 and G5 as a Taylor series around the point s= s(µ) with (x30,y30,X40,Y40)=
sc j, and truncating the solutions at order four in µ , yields the following results:

If sc1 = (0,
√

3,0,4/3) then

x3(µ) = 0+O(µ4), X4(µ) = 0+O(µ4),

y3(µ) =
√

3− 2
3

µ +
68
405

µ
3 +O(µ4), Y4(µ) =

4
3
− 136

405
µ

2 +O(µ4).

These values do not provide solutions of (6) with y3 ≥ y4 and so we discard them.

If sc1 = (0,
√

3,0,−4/3) then

x3(µ) = 0+O(µ4), X4(µ) = 0+O(µ4),

y3(µ) =
√

3+
2
3

µ− 68
405

µ
3 +O(µ4), Y4(µ) =−

4
3
+

136
405

µ
2 +O(µ4).

After the following change of variables (x4,y4) = (x3,y3)+µ(X4,Y4) we obtain

x3(µ) = 0+O(µ4), x4(µ) = 0+O(µ4),

y3(µ) =
√

3+
2
3

µ +
68
405

µ
3 +O(µ4), y4(µ) =

√
3− 2

3
µ− 68

405
µ

3 +O(µ4),

so x3 = x4 = 0 and y3 ≥ y4, therefore, the new family is a concave kite (see Fig. 1).
If sc1 = (0,

√
3,4/
√

3,0) we have

x3(µ) =
−2√

3
µ +

4
3
√

3
µ

3 +O(µ4), X4(µ) =
4√
3
− 8

3
√

3
µ

2 +O(µ4),

y3(µ) =
√

3+O(µ4), Y4(µ) = 0+O(µ4).

We discard this solution since it fails to satisfy the assumption that x3 ≥ 0.
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Fig. 1 Graph of functions y3(m) (continuos line) and y4(m) (dashed line), for m > 0.

If sc1 = (0,
√

3,−4/
√

3,0) then

x3(µ) =
2√
3

µ− 4
3
√

3
µ

3 +O(µ4), X4(µ) =−
4√
3
+

8
3
√

3
µ

2 +O(µ4),

y3(µ) =
√

3+O(µ4), Y4(µ) = 0+O(µ4).

Making the change of variables (x4,y4) = (x3,y3)+µ(X4,Y4) yields

x3(µ) =
2√
3

µ− 4
3
√

3
µ

3 +O(µ4), x4(µ) =−
2√
3

µ +
4

3
√

3
µ

3 +O(µ4),

y3(µ) =
√

3+O(µ4), y4(µ) =
√

3+O(µ4).

We can observe that x3 = −x4, y3 = y4 and x3 ≥ 0 if m ∈ (0,3/2), so the new family that emanates from the
relative equilibrium in collision is an isosceles trapezoid (see Fig. 2).

Summarizing, all non-collinear relative equilibria in binary collision with the small mass m = 0 having an
equilateral triangle shape can be continued to a concave kite configuration or to an isosceles trapezoid. There
are not more possibilities. With all the above, we have proved Theorem 1.
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