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Abstract
ARecently, Ghorbani et. al. introduced the eccentric versions of first and second Zagreb indices called third and fourth
Zagreb indices defined asM3 (G) = ∑uv∈E(G) (ε (u)+ ε (v)) and M4 (G) = ∑v∈V (G) ε (v)2, respectively, where ε (v)is the
eccentricity of the vertex v. In this paper, we compute the closed formula for third Zagreb index of Polycyclic Aromatic
Hydrocarbons (PAHk).
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1 Introduction

Let G be simple connected graph with vertex set V(G) and edge set E(G). The number of elements in the set
V(G) and E(G) are called the order and size of the graph G, respectively. In a graph G, the distance between two
vertices is the shortest length path connecting them. For a vertex v∈V (G), the eccentricity of v is the maximum
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Fig. 1 A general representation of Polycyclic Aromatic Hydrocarbons PAHk.

distance between v and any other vertex of G denoted as ε (v). The maximum eccentricity is called the diameter
and the minimum eccentricity is called the radius of the graph G. In a graph G the degree of a vertex v is the
number of its first neighbors, d(v).
Topological index is a numerical descriptor of the molecular structure derived from the corresponding molecular
graph. Many topological indices are widely used for quantitative structure-property relationship (QSPR) and
quantitative structure-activity relationship (QSAR) studies.
Gutman et.al. [1] proposed vertex degree based topological indices of a graph, named as first Zagreb index
M1(G) and second Zagreb index M2(G). These are defined as:

M1 (G) = ∑v∈V (G) d (v)2

M2 (G) = ∑uv∈V (G) d (u) ·d (v)

In 2010, Todeschini et. al. [2] and [3] introduced the multiplicative versions of the above Zagreb indices named
as multiplicative Zagreb indices, which are defined as follows:

∏1 (G) = ∏v∈V (G) d (v)2

∏2 (G) = ∏uv∈E(G) d (u) ·d (v)

More history and results on Zagreb and multiplicative Zagreb indices can be found in [4]– [10].
Recently, Ghorbani and Hosseinzadeh [11] defined the eccentric versions of Zagreb indices. These are named
as third and fourth Zagreb indices and defined as follows:

M3 (G) = ∑uv∈E(G) (ε (u)+ ε (v))
M4 (G) = ∑v∈V (G) ε (v)2

The Polycyclic Aromatic hydrocarbons PAHk for all positive integer number k is ubiquitous combustion prod-
ucts. They have been implicated as carcinogens and play a role in graphitization of organic materials. A general
representation of Polycyclic Aromatic Hydrocarbons is shown in Figure 1. For more details see [12]– [16].
In this paper, we compute the third Zagreb index of Polycyclic Aromatic Hydrocarbons PAHk.

2 Computation Techniques and Main Results

In this section, we discussed the techniques to find the eccentricity of vertices of the Polycyclic Aromatic Hy-
drocarbons PAHk and gave the closed formula of third Zagreb index of PAHk. We use the ring cut method [17,18]
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Fig. 2 Another representation of Polycyclic Aromatic Hydrocarbons (PAHk).

to divide the vertices in partition sets. From Figure 2 we have the vertex set as V (PAHk) = {αz, l , β i
z, l , γ i

z, j : l =
1, ...,k , j ∈ Zi , l ∈ Zi−1 &z ∈ Z6}, where α,β and γ represents the vertices with degree 1, 3 and 3, respectively,
and Zi = {1,2, . . . , i}.

Theorem 1. Let G be the Polycyclic aromatic hydrocarbons PAHk. Then the third Zagreb index of PAHk is equal
to

M3 (PAHk) = 6
k

∑
i=1

(12i(i+ k)+2k−9i+5) .

Proof. To obtain the final result we used the ring cut method. The i-th ring cut contains 6(2i−1) vertices also
d(β i

z,l,β
k
z,l) = d(γ i

z, j,γ
k
z, j) = 2(k− i). So, we have

1. For all vertices αz, j of PAHk ( j ∈ Zk,z ∈ Z6)

ε(αz, j) = d(αz, j,γ
k
z, j)︸ ︷︷ ︸

1

+d(γk
z, j,γ

k
z′, j′)︸ ︷︷ ︸

4k−1

+d(γk
z′, j′ ,αz′, j′)︸ ︷︷ ︸

1

= 4k+1

1. For all vertices β i
z, jof PAHk (∀i = 1, · · · ,k;z ∈ Z6, j ∈ Zi−1)

ε(β i
z, j) = d(β i

z, j,β
i
z+3, j)︸ ︷︷ ︸

4i−3

+d(β i
z+3, j,γ

k
z+3, j)︸ ︷︷ ︸

2(k−i)+1

+d(γk
z+3, j,αz+3, j)︸ ︷︷ ︸

1

= 2k+2i−1.

1. For all vertices γ i
z, j of PAHn (∀i = 1, · · · ,k;z ∈ Z6, j ∈ Zi.

ε(γ i
z, j) = d(γ i

z, j,γ
i
z+3, j)︸ ︷︷ ︸

4i−1

+d(γ i
z+3, j,γ

k
z+3, j)︸ ︷︷ ︸

2(k−i)

+d(γk
z+3, j,αz+3, j)︸ ︷︷ ︸

1

= 2(k+ i).
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Now we apply these results on the definition of third Zagreb index to obtain the required result.

M3 (PAHk) = ∑
uv∈E(G)

(ε (u)+ ε (v))

=

 ∑
β i

z, jγ
i
z, j∈E(Hk)

(
ε
(
β

i
z, j
)
+ ε
(
γ

i
z, j
))+

 ∑
β i

z, jγ
i
z, j+1∈E(Hk)

(
ε
(
β

i
z, j
)
+ ε
(
γ

i
z, j+1

))

+

 ∑
β i

z, jγ
i−1
z, j ∈E(Hk)

(
ε

(
β

i+1
z, j

)
+ ε

(
γ

i−1
z, j

))+

 ∑
γ i

z,iγ
i
z+1,1∈E(Hk)

(
ε
(
γ

i
z,i
)
+ ε
(
γ

i
z+1,1

))

+

 ∑
αz, jγ

k
z, j

(
ε (αz, j)+ ε

(
γ

k
z, j

))
=

6

∑
z=1

(
k

∑
i=2

i

∑
j=1

(
ε
(
β

i
z, j
)
+ ε
(
γ

i
z, j
)))

+
6

∑
z=1

(
k

∑
i=2

i

∑
j=1

(
ε
(
β

i
z, j
)
+ ε
(
γ

i
z, j+1

)))

+
6

∑
z=1

(
k

∑
i=2

i

∑
j=1

(
ε

(
β

i+1
z, j

)
+ ε

(
γ

i−1
z, j

)))
+

6

∑
z=1

(
k

∑
i=2

(
ε
(
γ

i
z,i
)
+ ε
(
γ

i
z+1,1

)))

+
6

∑
z=1

(
k

∑
i=1

(
ε (αz, j)+ ε

(
γ

k
z, j

)))

=
k

∑
i=2

6(i−1) [(2k+2i−1)+(2k+2i−2)]+
k

∑
i=2

6(i−1) [(2k+2i−1)+(2k+2i−2)]

+
k

∑
i=1

6i [(2k+2i−1)+(2k+2i)]+
k

∑
i=1

6 [2(2k+2i−1)]

+
k

∑
i=1

6 [(4k+1)+(2k+2i)]

=
k

∑
i=1

(12(i−1)(4k+4i−3))+
k

∑
i=1

6i(4k+4i−1)+
k

∑
i=1

12(2k+2i−1)

+
k

∑
i=1

6(6k+2i+1)

= 6
k

∑
i=1

(12i(i+ k)+2k−9i+5)

which ends the proof.
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