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Abstract
A topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The
Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = ∑e=uv∈E(G) [nu +nv], where nu is the number of edges of
G lying closer to v than u, analogously nv. In this paper, we compute the vertex PI index of Titania carbon Nanotubes
TiO2[m,n].
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1 Introduction

Let G be a connected graph with vertex and edge sets V(G) and E(G), respectively. As usual, the distance
between the vertices u and v of G is the number of edges in a minimal path connecting them, denoted as d(u,v).
Define NG(u) to be the set of all vertices adjacent to u. The diameter is the greatest distance between two vertices
of G, denoted as diam(G).

Let e=uv be an edge of the graph G. The number of vertices of G whose distance to the vertex u is smaller
than the distance to the vertex v is denoted by nu(e). Analogously, nv(e) is the number of vertices of G whose
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distance to the vertex v is smaller than the distance to the vertex u.

Suppose X denoted the class of all graphs. A map Top from X into real numbers is called a topological index
if G∼= Himplies that Top(G) = Top(H). Obviously, the maps Topvand Tope defined as the number of edges and
vertices respectively, are topological indices.

The Wiener index was the first reported topological index based on graph distances [1]. This index is defined
as the sum of all distances between vertices of the graph under consideration. The Wiener index is applicable to
acyclic graphs only. For cyclic compounds a novel molecular graph based descriptor, referred to as the Szeged
index [2]. This is considered as the modification of Wiener index to cyclic graph. The Szeged index is defined
as

Sz(G) = ∑
e=uv∈E(G)

nu ·nv

Note that vertices equidistant to u and v are not counted.

For acyclic graphs the Szeged and Wiener indices coincide. As a consequence, Padmaker and Ivan intro-
duced another index called Padmakar-Ivan index (PIv) [3, 4]. PI of a graph G is defined as

PIv(G) = ∑
e=uv∈E(G)

(nu +nv).

Note that vertices equidistant to u and v are not counted. Many methods for the calculation of these indices of
some systems are considered in [5–11].

As a well-known semiconductor with numerous technological applications, Titania nanotubes are compre-
hensively studied in material sciences. Titania nanotubes were systematically synthesized during the last 10-15
years using different methods and carefully studied as prospective technological materials. Since the growth
mechanism for TiO2nanotubes is still not well defined, their comprehensive theoretical studies attract enhanced
attention. The TiO2 sheets with a thickness of a few atomic layers were found to be remarkably stable.

In this paper, we compute the vertex PI index of the Titania nanotubes. For further results we refer [12–14].

2 Main Results

The 2-dimensional graph of the Titania nanotube, TiO2[m,n], is shown in Figure 1, where m and n denotes
the number of octagons in a column and the number of octagons in a row of the Titania nanotube. This graph
has 2(3n+2)(m+1) vertices and 10mn+6m+8n+4 edges.

By using the orthogonal cuts and cut method of the Titania nanotubes, we can determine all edge cuts of
the Titania nanotubes. The edge cut C(e) is an orthogonal cut, such that the set of all edges f∈E(G) are strongly
co-distant to e. For further research and study of the cut method and orthogonal cuts in some classes of chemical
graphs see [8, 9, 11, 15].

By using the cut method and finding orthogonal cuts, we can compute the quantities of nu(e|TiO2[m,n])
and nv(e|TiO2[m,n]), ∀e∈E(TiO2[m,n]), which are the number of vertices in two sub-graphs TiO2[m,n]-C(e).
In case the Titania Nanotubes TiO2[m,n] ∀e=uv∈E(TiO2[m,n]), we denote nu(e|TiO2[m,n]) as the number of
vertices in the left component of TiO2[m,n]-C(e) and alternatively nv(e|TiO2[m,n]) as the number of vertices in
the right component of TiO2[m,n]-C(e), since all edges in TiO2[m,n] Nanotubes sheets are oblique or horizontal.

Theorem 1. Let TiO2[m,n] be the Titania Nanotubes, where m,n∈N. Then vertex PI index of TiO2[m,n] is:

PIv(TiO2 (m,n)) = 2(m+1)(3n+2)(n+1)(11m+9)
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Fig. 1 2-dimensional model to Titania nanotube TiO2[m,n].

Proof. According to the structure of the Titania Nanotubes TiO2[m,n] for all integer numbers m,n>1, we have
following results:

For the edge e1=u1v1 that belong to the first square of TiO2[m,n] Nanotubes (in the first column and row),
we see that

nu1(e1|TiO2[m,n])=2(m+1)

nv1(e2|TiO2[m,n])=6mn+4m+6n+4-2(m+1)=6mn+2m+6n+2.

For the edge e2=u2v2:

nu2(e2|TiO2[m,n])=3×2(m+1)+1×2(m+1)=8(m+1)

and

nv2(e2|TiO2[m,n])=6mn+4m+6n+4-8(m+1)=6mn-4m+6n-4.

For the edge en+1=un+1vn+1:

nun+1(en+1|TiO2[m,n])=(3n+1)×2(m+1)

and

nvn+1 (en+1|TiO2[m,n])=6mn+4m+6n+4-(6mn+6n+2m+2)=2(m+1).

Thus, by a simple induction for i=1,2,. . . ,n; we can see that for the edge ei=uivi:

nui(ei|TiO2[m,n])=2(m+1)×(3(i-1)+1)

and

nvi(ei|TiO2[m,n])=6mn+4m+6n+4-(6mi+6i-4m-4)
=6m(n-i)+6(n-i)+8(m+1)

=6(m+1)(n-i)+8(m+1)
=2(m+1)(3(n-i)+4).

Let the edge f1=u1v1∈E(TiO2[m,n]) be the first oblique edge in the first square of TiO2[m,n] Nanotubes (in the
first column and row), we see that

nu1(f1|TiO2[m,n])=m+1

and
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Fig. 2 Categories for edges of the Titania Carbon Nanotubes.

nv1(f1|TiO2[m,n])=6mn+4m+6n+4-(m+1)
=6mn+3m+6n+3

=6n(m+1)+3(m+1)
=(6n+3)(m+1).

For the edge f2=u2v2:
nu2(f2|TiO2[m,n])=(m+1)+3×2(m+1)=7(m+1)

and

nv2(f2|TiO2[m,n])=6mn+4m+6n+4-7(m+1)=6n(m+1) -3 (m+1)=(6n-3)(m+1).

For the edge f(n+1)=uv:
nu(n+1)(f(n+1)|TiO2[m,n])=(m+1)+3n×2(m+1)=(6n+1)(m+1)

and

nv(n+1)(f(n+1)|TiO2[m,n])=(6n+4)(m+1)- (6n+1)(m+1)=3(m+1).

Therefore, by a simple induction for j=1,2,. . . ,n+1; we can proof the previous statement.

For the edge f j=u jv j:
nu j(f j|TjO2(m,n))=3(j-1)×2(m+1)+(m+1)=(m+1)(6j-5)

and

nv j(f j|TjO2(m,n))=(6n+4)(m+1)- (m+1)(6j-5)
=(m+1)(6n-6j+9)

=3(m+1)(2n+3-2j).

Let the edge g1=u1v1∈E(TiO2[m,n]) be the second oblique edge in the first square of TiO2[m,n] Nanotubes (in
the first column and row), so we have

nu1(g1|TiO2[m,n])=2(m+1)+(m+1)

and

nv1(g1|TiO2[m,n])=(6n+4)(m+1)-3(m+1)=(6n+1)(m+1)

For g2=u2v2:
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nu2(g2|TiO2[m,n])=3×2(m+1)+2(m+1)+(m+1)=9(m+1)

and

nv2(g2|TiO2[m,n])=(6n+4)(m+1)-9(m+1)=(6n-5)(m+1)

For gn+1=un+1vn+1:
nun+1(gn+1|TiO2[m,n])=3n×2(m+1)+2(m+1)+(m+1)=(6n+3)(m+1)

and

nvn+1(gn+1|TiO2[m,n])=(6n+4)(m+1)- (6n+3)(m+1)=(m+1).

And these imply that ∀j=1,2,. . . ,n+1
nu j(g j|TjO2(m,n))=3j×2(m+1)+3(m+1)=(m+1)(6j+3)

and

nv j(g j|TjO2(m,n))=(6n+4)(m+1)- (m+1)(6j+3)=(m+1)(6n-6j+1).

Finally, let h1=u1v1& l2=u2v2∈E(TiO2[m,n]) be the first and second oblique edges in the second square of the
first row (or the first square in the second column) of TiO2[m,n] Nanotubes, then

nu1(h1|TiO2[m,n])=2×2(m+1)

and nu2(l2|TiO2[m,n])=3×2(m+1)

nv1(h1|TiO2[m,n])=(6n+4)(m+1)- 2(m+1)=(6n+2)(m+1)

and nv2(l2|TiO2[m,n])=(6n+1)(m+1)

And by a simple induction on ∀i=1,2,. . . ,n; for the edges hi=uiviand li=aibi we have
nui(hi|TiO2[m,n])=3(i-1)×2(m+1)+2×2(m+1)=2(m+1)(3i-1)

and

nvi (hi|TiO2[m,n])=(6n+4)(m+1)- 2(m+1)(3i-1)
=(m+1)(6n-6i+6)
=6(m+1)(n+1-i).

nai(li|TiO2[m,n])=3(i-1)×2(m+1)+3×2(m+1)=6i(m+1)

and

nbi (li|TiO2[m,n])=(6n+4)(m+1)- 6i(m+1)
=(m+1)(6n-6i+4)

=3(m+1)(3n+2-2i).

On the other hands, by according to Figure 2, we can see that the size of all orthogonal cuts for these edge
categories in the Titania Nanotubes TiO2[m,n] are equal to (∀i=1,2,. . . ,n+1):

|C(ei)|=|C(hi)|=|C(li)|=2(m+1)

and

|C(fi)|=|C(gi)|=2m+1.

From the above calculations and Figure 2, we can compute the vertex PI index of Titania Nanotubes TiO2[m,n].

PIv(TiO2[m,n])=∑e=uv∈E(G) (nu(e|TiO2(m,n)+nv(e|TiO2(m,n))

= ∑
ei = uv ∈ E(TiO2 (m,n))
∀i = 1,2, . . . ,n+1

|C (ei)|(nu(ei|TiO2 (m,n))+nv(ei|TiO2 (m,n)))
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+ ∑
fi = uv ∈ E(TiO2 (m,n))
∀i = 1,2, . . . ,n+1

|C ( fi)| [nu( fi|TiO2 (m,n))+nv( fi|TiO2 (m,n))]

+ ∑
gi = uv ∈ E(TiO2 (m,n))
∀i = 1,2, . . . ,n+1

|C (gi)| [nu(gi|TiO2 (m,n))+nv(gi|TiO2 (m,n))]

+ ∑
hi = uv ∈ E(TiO2 (m,n))
∀i = 1,2, . . . ,n

|C (hi)| [nu(hi|TiO2 (m,n))+nv(hi|TiO2 (m,n))]

+ ∑
li = uv ∈ E(TiO2 (m,n))
∀i = 1,2, . . . ,n

|C (li)| [nu(li|TiO2 (m,n))+nv(li|TiO2 (m,n))]

= ∑
n+1
i=1 2(m+1)(2(m+1)(3(i−1)+1)+2(m+1)(3(n− i)+4))

+∑
n+1
i=1 2(m+1)((m+1)(6i−5)+3(m+1)(2n+3−2i))

+∑
n+1
i=1 2(m+1)((m+1)(6i+3)+(m+1)(6n−6i+1))

+∑
n
i=1 (2m+1)(2(m+1)(3i−1)+(m+1)(n+1− i))

+∑
n
i=1 (2m+1)(6i(m+1)+3(m+1)(3n+2−2i))

= 4(m+1)2
n+1

∑
i=1

(3n+2)+(2m+1)(m+1)
n+1

∑
i=1

(6n+4)+(2m+1)(m+1)
n+1

∑
i=1

(6n+4)+

4(m+1)2
n+1

∑
i=1

(3n+2)+6(m+1)2
n+1

∑
i=1

(3n+2)

= 4(m+1)2(3n+2)(n+1)+(2m+1)(m+1)(6n+4)(n+1)+(2m+1)(m+1)(6n+4)(n+1)

+4(m+1)2(3n+2)(n+1)+6(m+1)2(3n+2)(n+1)

= 2(m+1)(3n+2)(n+1)(11m+9)

which is the required result and the proof is over
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