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Abstract
In this article, we propose an ontology learning algorithm for ontology similarity measure and ontology mapping in view
of distance function learning techniques. Using the distance computation formulation, all the pairs of ontology vertices
are mapped into real numbers which express the distance of their corresponding vectors. The more distance between two
vertices, the smaller similarity between their corresponding concepts. The stabilities of our learning algorithm are defined
and several bounds are yielded via stability assumptions. The simulation experimental conclusions show that the new
proposed ontology algorithm has high efficiency and accuracy in ontology similarity measure and ontology mapping in
certain engineering applications.
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1 Introduction

Ontology originally comes from philosophy. It is used to describe the natural connection of things and their
components’ inherently hidden connections. Ontology is set up as a model for knowledge storage and represen-
tation in information and computer science. It has been extensively applied in different fields such as knowledge
management, machine learning, information systems, image retrieval, information retrieval search extension,

†Corresponding author.
Email address: gaoyun@ynnu.edu.cn

ISSN 2444-8656 doi:10.21042/AMNS.2016.1.00012

http://journals.up4sciences.org
http://dx.doi.org/10.21042/AMNS.2016.1.00012
http://www.up4sciences.org
http://crossmark.crossref.org/dialog/?doi=10.21042/AMNS.2016.1.00012


160 Y. Gao, M. R. Farahani and W. Gao. Applied Mathematics and Nonlinear Sciences 1(2016) 159–174

collaboration and intelligent information integration. As a conceptually semantic model and an analysis tool,
being quite effective, ontology has been favored by researchers from pharmacology science, biology science,
medical science, geographic information system and social sciences since a few years ago (for instance, see
Przydzial et al., [1], Koehler et al., [2], Ivanovic and Budimac [3], Hristoskova et al., [4], and Kabir [5]).

A simple graph is usually used by researchers to represent the structure of ontology. Every concept, objects
and elements in ontology are made to correspond to a vertex. Each (directed or undirected) edge on an ontol-
ogy graph represents a relationship (or potential link) between two concepts (objects or elements). Let O be
an ontology and G be a simple graph corresponding to O. It can be attributed to getting. We use the similarity
calculating function, the nature of ontology engineer application to compute the similarities between ontology
vertices, which represent the intrinsic link between vertices in ontology graph. The ontology similarity measur-
ing function is obtained by measuring the similarity between vertices from different ontologies. That is the goal
of ontology mapping. The mapping serves as a bridge connecting different ontologies. Only through mapping,
we gain a potential association between the objects or elements from different ontologies. The semi-positive
score function Sim : V ×V → R+∪{0} maps each pair of vertices to a non-negative real number.

Several effective methods exist for getting efficient ontology similarity measure or ontology mapping algo-
rithm in terms of ontology function. The ontology similarity calculation in terms of ranking learning technology
was considered by Wang et al., [12]. The fast ontology algorithm in order to cut the time complexity for ontol-
ogy application was raised by Huang et al., [13]. An ontology optimizing model in which the ontology function
is determined by virtue of NDCG measure was presented by Gao and Liang [14], which is successfully applied
in physics education. More ontology applications on various engineering can be refered to Gao et al., [11].

In this article, we determine a new ontology learning method by means of distance calculating. Moreover,
we give a theoretical analysis for proposed ontology algorithm.

2 Algorithm Description

Let S = {(vi,v j,yi j)}N
i, j=1 be the ontology training data, where vi,v j ∈Rp are ontology vectors and yi j =±1

(if vi and v j are similar, then yi j = 1; otherwise, yi j =−1. We also fixed m relevant source ontology training sets
Sq = {(vqi,vq j,yqi j)}

Nq
i, j=1 (q = 1, · · · ,m) if the number of target ontology training samples N is not large, and

vqi,vq j ∈ Rp belong to the certain ontology feature space as vi, v j in this setting.
We aim to learn a distance function d(vi,v j|W) = (vi− v j)

T W(vi− v j) which equals to learning a distance
matrix W, and the similarity or dissimilarity between a ontology vertex pair vi and v j is obtained by comparing
d(vi,v j|W) with a constant threshold parameter c. Specifically, our ontology optimization problem can be stated
as

argmin
1(N
2

)∑
i< j

g(yi j[1−‖vi− v j‖2
W])+

η

2
‖W‖2

F (1)

s.t.
m

∑
i=1

αq = 1,αq ≥ 0,q = 1, · · · ,m.

where ‖vi− v j‖2
W = (vi− v j)

T W(vi− v j), g(z) = max(0,b− z) is an ontology hinge loss function, ‖W‖F is the
Frobenius norm of the metric W which is applied to control the model complexity, η is a balance parameter, and
the constraint condition reveals that W is positive semi-definite.

The general version of ontology distance learning approach is formulated by

argmin
1(N
2

)∑
i< j

L(vi,v j,yi j)+
γ1

2
‖W−WD‖2

F +
γ2

2
‖α‖2

2 + γ3‖θ‖1, (2)

s.t.
m

∑
i=1

αq = 1,αq ≥ 0,q = 1, · · · ,m.
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where W = ∑
n
i=1 θiuiuT

i and WD = ∑
m
q=1 αqWq. Both ‖α‖2

2 and ‖θ‖1 are employed to control the complexity
of model. In what follows, γ1, γ2 and γ3 are all positive balance parameters.

Select L(vi,v j,yi j) = g(yi j[1−‖vi− v j‖2
W]) and use the ontology hinge loss for g, that is to say, g(z) =

max(0,b− z) and b is set to be 0. Thus, we deduce the following ontology optimization problem:

argmin
1(N
2

)∑
i< j

g(yi j[1−‖vi− v j‖2
W])+

γW

2
‖W−WD‖2

F +
γ2

2
‖α‖2

2 + γ3‖θ‖1, (3)

s.t.
n

∑
i=1

αq = 1,αq ≥ 0,q = 1, · · · ,m.

For short expressions, we use vi, x j and yi j to denote v1
k , v2

k and yk with k = 1, · · · ,
(N

2

)
= N′. Let δk = v1

k − v2
k

with ‖v1
k − v2

k‖2
W = ∑

n
i=1 θiδ

T
k uiuT

i δk = δ T fk, fk = [ f 1
k , · · · , f n

k ]
T and f i

k = δ T
k uiuT

i δk. Therefore, the ontology
problem (3) can be re-expressed as

argmin
α,θ

1
N′

N′

∑
k=1

g(yk[1−θ
T fk)+

γW

2
‖W−WD‖2

F +
γ2

2
‖α‖2

2 + γ3‖θ‖1, (4)

s.t.
n

∑
i=1

αq = 1,αq ≥ 0,q = 1, · · · ,m.

The answer can be inferred by alternating between two sub ontology problems (minimization α = [α1, · · · ,αm]
T

and θ = [θ1, · · · ,θn]
T respectively) until its convergence.

Given α , the ontology optimization problem with respect to θ then it can be stated as

argmin
θ

F(θ) = Λ(θ)+Ω(θ) (5)

where Λ(θ) = 1
N′ ∑

N′
k=1 g(yk[1−θ T fk)+γ3‖θ‖1, and Ω(θ) = γW

2 ‖W−WD‖2
F . Since the ontology loss part Λ(θ)

is non-differentiable, we should smooth the ontology loss and then solve (5) in terms of the gradient trick. Let
Θ = {x : 0 ≤ xk ≤ 1,x ∈ RN′} and σ be the smooth parameter. Then, the smoothed expression of the ontology
hinge loss g( fk,yk,θ) = max{0,−yk(1−θ T fk)} can be formulated as

gσ = max
x∈Θ

xk(−yk(1−θ
T fk))−

σ

2
‖ fk‖∞x2

k , (6)

where ‖ fk‖∞ term is used as a normalization. In view of setting the objective ontology function of (6) to 0 and
projecting xk on Θ, we infer the following solution: xk = median{−yk(1−θ T fk)

σ‖ fk‖∞
,0,1}. Furthermore, the piece-wise

approximation of g can be expressed as

gσ =


0, yk(1−θ T fk)> 0
−yk(1−θ T fk)− σ

2 ‖ fk‖∞, yk(1−θ T fk)<−σ‖ fk‖∞

(yk(1−θ T fk))
2

2σ‖ fk‖∞
, Otherwise.

(7)

By the computation and deduction, the gradient of the smoothed hinge ontology loss gσ (θ) is

∂gσ ( fk,yk,θ)

∂θ
= yk fkxk. (8)

Let HΛ = [ f1, · · · , fN′ ] and Y = diag(y). We get gσ (θ)
∂θ

= ∑k yk fkxk = HRY x, and Lg(θ)N′
σ

max ‖ fk f T
k ‖2

‖ fk‖∞
is the

Lipschitz constant of gσ (θ).

http://www.up4sciences.org


162 Y. Gao, M. R. Farahani and W. Gao. Applied Mathematics and Nonlinear Sciences 1(2016) 159–174

By setting l(θ) = ‖θ‖1, we infer the approximation of l with the smooth parameter σ ′ as

l
′
σ =


−θr− σ ′

2 , θr <−σ ′

θr− σ ′

2 , θr > σ ′

θ 2
r

2σ ′ , Otherwise.

Furthermore, for each x
′
r = median{ θr

σ ′ ,−1,1}, the gradient can be computed by ∂ ∑
n
i=1 l

σ ′ (θr)
∂θ

= x′ and the Lips-
chitz constant is denoted as Ll(θ) = 1

σ ′ .
Moreover, set HΩ

st = γ1Tr((usuT
s )(utuT

t )) and f Ω
r = γ1Tr(WT

S (utuT
t )), we have ∂Ω(θ)

∂θ
= HΩθ − f Ω, ∂Fσ (θ)

∂θ
=

1
N′H

RY x+ γcx′+HΩθ − f Ω and Lσ = 1
σ

maxk
‖ fk f T

k ‖2
‖ fk‖∞

+ γC
σ ′ +‖H

Ω‖2 is the Lipschitz constant of F(θ).

Denote θ t , yt and zt as the solutions in the t-th iteration round, and use θ̂ as a guessed solution of θ . We
obtain that Lσ is the Lipschitz constant of Fσ (θ) and the two attached ontology optimizations are stated as

min
y

<5Fσ (θ
t),y−θ

t >+
Lσ

2
‖y−θ

t‖2
2

and

min
z

t

∑
i=0

i+1
2

[Fσ (θ
i)+<5Fσ (θ

i),y−θ
i >]+

Lσ

2
‖y− θ̂‖2

2,

respectively. Set the gradients of the two objective ontology functions in the above two attached ontology
problems to be zeros, we yield yt = θ t − 1

Lσ
5Fσ (θ

t) and zt = θ̂ − 1
Lσ

∑
t
i=0

i+1
2 5Fσ (θ

i). Hence, we deduce
θ t+1 = 2

t+3 zt + t+1
t+3 yt and the stop criterion is given by |Fσ (θ

t+1)−Fσ (θ
t)|< ε .

Given θ , the optimization ontology problem on parameter α can be stated as

argmin
α

γ1

2
‖W−

m

∑
p=1

αpWp‖2
F +

γ2

2
‖α‖2

2 (9)

s.t.
m

∑
q=1

αq = 1,αq ≥ 0,q = 1, · · · ,m.

And, the ontology problem (9) can be expressed in compact form which is stated by

argmin
α

1
2

α
T Hα

T +
γ2

2
‖α‖2

2 (10)

s.t.
m

∑
q=1

αq = 1,αq ≥ 0,q = 1, · · · ,m.

where f = [ f1, · · · , fm] with fq = γ1Tr(WT Wq), and H is a symmetric positive semi-definite matrix such that
Hst = γ1Tr(WT

s Wt). We only choose two elements αi and α j to update for each iteration. In order to meet the
restraint ∑

m
q=1 αq = 1, we get α∗i +α∗j = αi +α j, where α∗i and α∗j are the solutions of the current iteration.

Then, according to (10) and set εi j = (Hii−Hi j−H ji+H j j)αi−∑k(Hik−H jk)αk, we designed the updating rule
as follows: α∗i =

γ2(αi+α j)+( fi− f j)+εi j
(Hii−Hi j−H ji+H j j)+2γ2

and α∗j = αi +α j−α∗i . In case the obtained α∗i and α∗j don’t meet the
restraint αq ≥ 0, we further set{

α∗i = 0,α∗j = αi +α j if γ2(αi +α j)+(hi−h j)+ εi j ≤ 0
α∗j = 0,α∗i = αi +α j, if γ2(αi +α j)+(h j−hi)+ εi j ≤ 0.

The whole ontology algorithm is stated as follows:
Initialize: α(0), θ (0), γ

(0)
2 and γ

(0)
3 . Set t = 0, construct W0 = ∑

n
r=0 θ

(0)
r uruT

r and W0
S = ∑

m
q=1 α

(0)
q Wq.
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Iterate:
Optimize θ (t+1)← argminθ

1
N′ ∑

N′
k=1 g(yk(1−θ T fk))+

γ1
2 ‖W−Wt

S‖2
F + γ

(t)
3 ‖θ‖t

and update W(t+1) = ∑
n
r=1 θ

(t+1)
r uruT

r ;

Optimize α(t+1)← argminα
γ1
2 ‖W

(t+1)−WS‖2
F +

γ
(t)
2
2 ‖α‖

2
2

and update Wt+1
S = ∑

m
q=1 α

(t+1)
q Wq;

Determine γ
t+1
3 =

|ρC|( 1
N′ ∑

N′
k=1 g(yk(1−(θ t+1)T fk))+

γ1
2 ‖W

(t+1)−W(t)
S ‖2

F )

‖θ (t+1)‖1
;

Obtain γ
(t+1)
2 =

|ρB|(γ1‖W(t+1)−W(t+1)
S ‖2

F )

‖α(t+1)‖2
2

;
t← t +1.
Until convergence.

3 Stability Analysis

In this section, we give the theoretical analysis of our ontology algorithm via stability assumption.

3.1 Uniform stability

Definition 1. (Leave-One-Out) An ontology algorithm has uniform stability β1 with respect to the ontology loss
function l if the following holds

∀s ∈ Zm, ∀i ∈ {1, · · · ,m},‖l( fs, ·)− l( fsi , ·)‖∞ ≤ β1, (11)

where Z is the ontology sample space, fs is the ontology function determined by the ontology algorithm learning
with the set of samples s, and si = {z1, · · · ,zi−1,zi+1, · · · ,zm} denotes an ontology sample set with the i′-th
element zi deleted.

Definition 2. (Leave-Two-Out) An ontology algorithm has uniform stability β2 with respect to the ontology loss
function l if the following holds

∀s ∈ Zm, ∀i ∈ {1, · · · ,m},‖l( fs, ·)− l( fsi, j , ·)‖∞ ≤ β2, (12)

where Z is the ontology sample space, fs is the ontology function determined by the ontology algorithm learning
with the set of samples s, and si, j is the ontology sample set given from s by deleting two elements zi and z j.

For any convex and differentiable ontology function F : F → R as follows (here F denotes the Hilbert
space): ∀ f ,g∈F ,BF( f ||g)=F( f )−F(g)−Tr(< f−g,5F(g)>), we have ∂F( f )= {g∈F |∀ f ′ ∈F ,F( f ′)−
F( f ) ≥ Tr(< f ′ − f ,δF( f ) >)}. Let δF( f ) be any element of ∂F(h). We infer ∀ f , f ′ ∈ F ,BF( f ′|| f ) =
F( f ′)−F( f )−Tr(< f ′− f ,5F( f )>), BF( f ′|| f )≥ 0 and BP+Q = BP +BQ for any convex ontology functions
P and Q.

Lemma 1. For any three distance metrics W and W′, the following inequality established for any ontology
sample zi and z j

|V (W,zi,z j)−V (W′,zi,z j)| ≤ 4LM2‖W−W′‖F (13)

Next, we describe the LOO and LTO stability of our algorithm.

Theorem 2. Let β1 and β2 be the LOO and LTO stability of our ontology algorithm problem (2). Suppose that
‖v‖2 ≤M for any sample v. Then, we have

β1 ≤
32L2M4

γ1N
, β2 ≤

64L2M4

γ1N
(14)

where L is the Lipschitz constant of the function g.
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Proof. We only present the detailed proof of the first inequality, and the second one can be determined in the
similar way. Let FN (θ) = PN (θ)+Q(θ), where PN (θ) = 1

(N
2)

∑i< j V (A,zi,z j) and Q(θ) = γ1
2 ‖W−WS‖2

F +

γ3‖θ‖1. Clearly, both PN (θ and Q(θ) are convex. Suppose θN and θN ′ be the minimizers of FN (θ) and
FN ′(θ) respectively, where N ′ is the set of ontology examples that deletes zi ∈N from N .

Note that
BFN (θN ′ ||θN )+BFN ′ (θN ||θN ′)≥ BQ(θN ′ ||θN )+BQ(θN ||θN ′).

Let 4 = ‖θN ′‖1− < θN ,sgn(θN ′) > +‖θN ′‖1− < θN ′ ,sgn(θN ) >≥ 0, sgn(θ) = [sgn(θ1), · · · ,sgn(θn)]
T .

Hence, we have ∂Q(θN )
∂θ

where δ f (θ) is the sub-gradient of ‖θ‖1 and

BQ(θN ′ ||θN )+BQ(θN ||θN ′) = γ1‖WN ′−WN ‖2
F + γ34.

We have ∂FN (θN ) = ∂FN ′(θN ′) = 0 since θN and θN ′ are minimizers of FN (θ) and FN ′(θ). Using
Lemma 1, we obtain

γ1‖WN ′−WN ‖2
F ≤ BFN (θN ′ ||θN )+BFN ′ (θN ||θN ′)

= FN (θN ′)−FN (θN )−< θN ′−θN ,∂FN (θN )>+FN ′(θN ′)−FN ′(θN ′)−< θN −θN ′ ,∂FN ′(θ ′N )>

= FN (θN ′)−FN (θN )+FN ′(θN ′)−FN ′(θN ′)

=
1(N
2

)(∑
N

V (WN ′ ,zi,z j)−∑
N

V (WN ,zi,z j)+∑
N ′

V (WN ,zi′ ,z j)−∑
N ′

V (WN ′ ,zi′ ,z j))

≤ 1(N
2

)(∑
N

|V (WN ′ ,zi,z j)−V (WN ,zi,z j)|+∑
N ′
|V (WN ,zi′ ,z j)−V (WN ′ ,zi′ ,z j)|)

≤ 8LM2

N
‖WN ′−WN ‖F .

This implies that

‖WN −WN ′‖F ≤
8LM2

γ1N
.

By virtue of |V (WN ,zi,z j)−V (WN ′ ,zi,z j)| ≤ 4LM2‖WN −WN ′‖F , we deduce

|V (WN ,zi,z j)−V (WN ′ ,zi,z j)| ≤
32LM2

γ1N
.

Therefore, the expected result is obtained.
Let N be the ontology sample set and V (W,zi,z j) = g(yi j[1−‖vi− v j‖2

W]). In this sub-section, the em-
pirical ontology risk and expected ontology risk are denoted by RN (W) = 1

(N
2)

∑i< j V (W,zi,z j) and R(W) =

E(zi,z j)[V (W,zi,z j)], respectively. We will determine the generalization bound R(W)−RN (W) in the next
theorem. For this purpose, we should use the following McDiarmid inequality.

Theorem 3. [15] Let X1, · · · ,XN be independent random variables, each taking values in a set A. Let φ : AN→R
be such that for each i ∈ {1, · · · ,N}, there exists a constant ci > 0 such that

sup
x1,··· ,xN∈A,x′i∈A

|φ(x1, · · · ,xN)−φ(x1, · · · ,xi−1,x
′
i,xi+1, · · · ,xN)| ≤ ci. (15)

Then for any ε > 0,
P{φ(X1, · · · ,XN)−E{φ(X1, · · · ,XN)} ≥ ε} ≤ e−2ε2/∑

N
i=1 c2

i . (16)

The generalization error bound via uniform stability is presented as follows.
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Theorem 4. Let N be a set of N randomly selected ontology samples and WN be the ontology distance matrix
determined by (2). With probability at least 1−δ , we have

R(WN )−RN (WN )≤ 128L2M4

γ1N
+ ς

√
ln 1

δ

2N
, (17)

where

ς =
128L2M4 +4γ1gWs +16

√
2γ1LM2

√
gWs + γ3‖γ3‖1

γ1
.

The method to proof Theorem 4 mainly followed by [16–19], we skip the detailed proof here.

3.2 Strong and weak stabilities

Naturally, the stability in uniform version is too restrictive for most learning algorithms, and only a small
number of literatures presented that standard ontology learning algorithms met the uniform stability directly,
most of these ontology learning algorithms were uncertain. Thus, we are inspired to consider the other “almost
everywhere stability” beyond uniform stability in our ontology setting. We define strong and weak stabilities for
our ontology framework which are also good measures to show how robust a ontology algorithm is. We assume
0 < δ3,δ4 < 1 in this subsection.

Definition 3. (Strong Stability) Let A be our ontology algorithm whose output on an ontology training sample Z
is denoted by fs, and let l be an ontology loss function. Let β3 : N→ R and si be the ontology sample set which
vi is replaced by v

′
i. We say that ontology algorithm A has β3 loss stable with respect to ontology loss l if for all

n ∈ N, v
′
i ∈V , i ∈ {1, · · · ,n}, we have,

|l( fs, ·)− l( fsi , ·)| ≤ β3, (18)

We say that the ontology algorithm A has strong loss stability β3 if

P{A is β3 loss stable at s} ≥ 1−δ . (19)

Definition 4. (Weak Stability) Let A be our ontology algorithm whose output on an ontology training sample Z
is denoted by fs, and let l be an ontology loss function. Let β4 : N→ R. We say that our ontology algorithm A
has weak loss stability β4 if for all n ∈ N, i ∈ {1, · · · ,n}, we have

P{|l( fs, ·)− l( fsi , ·)| ≤ β3} ≥ 1−δ
′.

We present the following lemma which is a fundamental for proving the results on strong and weak stability.

Lemma 5. (Kutin [22]) Let X1, · · · ,XN be independent random variables, each taking values in a set C. There
is a “bad” subset B ⊆C, where P(x1, · · · ,xN ∈ B) = δ . Let φ : CN → R be such that for each k ∈ {1, · · · ,N},
there exists b≥ ck > 0 such that

sup
x1,··· ,xN∈C−B,x′k∈C

|φ(x1, · · · ,xN)−φ(x1, · · · ,xk−1,x
′
k,xk+1, · · · ,xN)| ≤ ck,

sup
x1,··· ,xN∈C,x′k∈C

|φ(x1, · · · ,xN)−φ(x1, · · · ,xk−1,x
′
k,xk+1, · · · ,xN)| ≤ b.

Then for any ε > 0,

P{|φ(X1, · · · ,XN)−E{φ(X1, · · · ,XN)}| ≥ ε} ≤ 2(e−ε2/8∑
N
i=1 c2

i +
N2bδ

∑
N
i=1 ck

).
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Lemma 6. (Kutin [22]) Let X1, · · · ,XN be independent random variables, each taking values in a set C. Let
φ : CN → R be such that for each k ∈ {1, · · · ,N}, there satisfies two condition inequalities in Lemma 1 by
substituting λk

N for ck, and substituting e−KN for δ . If 0 < ε ≤ mink T (b,λk,K), and N ≥ maxk ∆(b,λk,K,ε),
then

P{|φ(X1, · · · ,XN)−E{φ(X1, · · · ,XN)}| ≥ ε} ≤ 4e−ε2N2/40∑
N
i=1 λ 2

i .

T (b,λk,K) = min{15λk

2
,4λk
√

K,
λ 2

k K
b
},

∆(b,λk,K,ε) = max{ b
λk

,λk
√

40,3(
24
K

+3) ln(
24
K

+3),
1
ε
}.

The main result in this subsection is stated as follows.

Theorem 7. Let A be our ontology algorithm whose output on an ontology training sample Z is denoted by fs.
Let l be an ontology loss function such that 0≤ l( f , ·)≤ Ξ for all f and

M∗ = 2β3 +
4gWS

N
+[

8
√

2LM2(
√

gWS + γ3(‖θS‖1−‖θN ‖1)+
√

gWS + γ3(‖θS‖1‖1))√
γ1N

].

1) Let β3 such that our ontology algorithm A has strong loss stability (β3,δ1). Then for any 0 < δ < 1, with
probability at least 1−δ , we have

R(WN )−RN (WN )≤ Ξ+

√
8N(M∗)2 ln

2(M∗)2

8(M∗)2−4NΞδ1
.

2) Let β4 such that our ontology algorithm A has weak loss stability (β4,δ2). And if

0 < ε ≤min{15N(M∗)
2

,4NM∗
√

ln(1/δ1)

N
,
N2(M∗))2 In(1/δ2)

N
2Ξ

},

and

N ≥max{ 2Ξ

N(M∗)
,N(M∗)

√
40,3(

24N
ln(1/δ2)

+3)In(
24N

In(1/δ2)
+3),

1
ε
}.

Then, for any 0 < δ < 1, with probability at least 1−δ , we have

R(WN )−RN (WN )≤ Ξ+

√
40N(M∗)2)2 ln( 4

δ
)

N
.

The method to proof Theorem 7 is mainly followed by [20, 21], we skip the detailed proof here.

4 Experiments

In this section, we design five simulation experiments respectively concerning ontology measure and on-
tology mapping. In our experiment, we select the ontology loss function as the square loss. To make sure
the accuracy of the comparison, we ran our algorithm in C++ through available LAPACK and BLAS libraries
for linear algebra and operation computations. We implement five experiments on a double-core CPU with a
memory of 8GB.
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Fig. 1 The Structure of “PO” Ontology.

Table 1 Tab. 1.The Experiment Results of Ontology Similarity measure

P@3 average P@5 average P@10 average

precision ratio precision ratio precision ratio

Our Algorithm 0.5358 0.6517 0.8821

Algorithm in [12] 0.4549 0.5117 0.5859

Algorithm in [13] 0.4282 0.4849 0.5632

Algorithm in [14] 0.4831 0.5635 0.6871

4.1 Ontology similarity measure experiment on plant data

We use O1, a plant “PO” ontology in the first experiment. It was constructed in www.plantontology.org. We
use the structure of O1 presented in Fig. 1. P@N (Precision Ratio see Craswell and Hawking [5]) to measure
the quality of the experiment data. At first, the closest N concepts for every vertex on the ontology graph in
plant field was given by experts. Then we gain the first N concepts for every vertex on ontology graph by our
algorithm, and compute the precision ratio.

Meanwhile, we apply ontology methods in [12], [13] and [14] to the “PO” ontology. Then after getting the
average precision ratio by means of these three algorithms, the results with our algorithm are compared. Parts
of the data can be referred to Table 1.

When N =3, 5 or 10, the precision ratio gained from our algorithms are a little bit higher than the precision
ratio determined by algorithms proposed in [12], [13] and [14]. Furthermore, the precision ratios show it tends
to increase apparently as N increases. As a result, our algorithms is proved to be better and more effective than
those raised by [12], [13] and [14].

4.2 Ontology mapping experiment on humanoid robotics data

“Humanoid robotics” ontologies O2 and O3 are used in the second experiment. The structure of O2 and O3
are respectively presented in Fig. 2 and Fig. 3. The leg joint structure of bionic walking device for six-legged
robot is presented by the ontology O2. The exoskeleton frame of a robot with wearable and power assisted lower
extremities is presented by the ontology O3.
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Fig. 2 ‘Humanoid Robotics” Ontology O2.

Fig. 3 “Humanoid Robotics” Ontology O3.
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Table 2 Tab. 2. The Experiment Results of Ontology Mapping

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Our Algorithm 0.2778 0.5000 0.7667

Algorithm in [24] 0.2778 0.4815 0.5444

Algorithm in [13] 0.2222 0.4074 0.4889

Algorithm in [14] 0.2778 0.4630 0.5333

Fig. 4 The Structure of “GO” Ontology.

We set the experiment, aiming to get ontology mapping between O2 and O3. P@N Precision Ratio is taken as
a measure for the quality of experiment. After applying ontology algorithms in [24], [13] and [14] on “humanoid
robotics” ontology and getting the average precision ratio, the precision ratios gained from these three methods
are compared. Some results can refer to Table 2.

When N = 1, 3 or 5, the precision ratios gained from our new ontology algorithm are higher than the
precision ratios determined by algorithms proposed in [24], [13] and [14]. Furthermore, the precision ratios
show they tend to increase apparently as N increases. As a result, our algorithms shows much more efficiency
than those raised by [24], [13] and [14].

4.3 Ontology similarity measure experiment on biology data

Gene “GO” ontology O4 is used in the third experiment, which was constructed in the website http: //www.
geneontology. We present the structure of O4 in Figure 4. Again, P@N is chosen as a measure for the quality
of the experiment data. Then we apply the ontology methods in [13], [14] and [25] to the “GO” ontology. Then
after getting the average precision ratio by means of these three algorithms, the results with our algorithm are
compared. Parts of the data can be referred to Table 3.

When N = 3, 5 or 10, the precision ratios gained from our ontology algorithms are higher than the precision
ratios determined by algorithms proposed in [13], [14] and [25]. Furthermore, the precision ratios show they
tend to increase apparently as N increases. As a result, our algorithms turn out to have more effectiveness than
those raised by [13], [14] and [25].
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Table 3 Tab. 3. The Experiment Results of Ontology Similarity measure

P@3 average P@5 average P@10 average P@20 average

precision ratio precision ratio precision ratio precision ratio

Our Algorithm 0.4987 0.6364 0.7602 0.8546

Algorithm in [13] 0.4638 0.5348 0.6234 0.7459

Algorithm in [14] 0.4356 0.4938 0.5647 0.7194

Algorithm in [25] 0.4213 0.5183 0.6019 0.7239

Fig. 5 “Physics Education” Ontology O5.

4.4 Ontology mapping experiment on physics education data

“Physics education” ontologies O5 and O6 are used in the fourth experiment. We respectively present the
structures of O5 and O6 in Fig. 5 and Fig. 6.

We set the experiment, aiming to give ontology mapping between O5 and O6. P@N precision ratio is taken
as a measure for the quality of the experiment. Ontology algorithms are applied in [13], [14] and [26] on
“physics education” ontology. The precision ratio gotten from the three methods is compared. Some results can
be referred to Table 4.

When N = 1, 3 or 5, the precision ratio in terms of our new ontology mapping algorithms are much higher
than the precision ratio determined by algorithms proposed in [13], [14] and [26]. Furthermore, the precision
ratios show they tend to increase apparently as N increases. As a result, our algorithms shows more effectiveness
than those raised by [13], [14] and [26].

4.5 Ontology mapping experiment on university data

“University” ontologies O7 and O8 are applied in the last experiment. We present the structures of O7 and
O8 in Fig. 7 and Fig. 8.

We set the experiment, aiming to give ontology mapping between O7 and O8. P@N precision ratio is taken
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Fig. 6 “Physics Education” Ontology O6.

Fig. 7 “University” Ontology O7.
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Table 4 Tab. 4. The Experiment Results of Ontology Mapping

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Our Algorithm 0.6913 0.7556 0.9161

Algorithm in [13] 0.6129 0.7312 0.7935

Algorithm in [14] 0.6913 0.7556 0.8452

Algorithm in [26] 0.6774 0.7742 0.8968

Fig. 8 “University” Ontology O8.

Table 5 Tab. 5. The Experiment Results of Ontology Mapping

P@1 average P@3 average P@5 average

precision ratio precision ratio precision ratio

Our Algorithm 0.5714 0.6786 0.7714

Algorithm in [12] 0.5000 0.5952 0.6857

Algorithm in [13] 0.4286 0.5238 0.6071

Algorithm in [14] 0.5714 0.6429 0.6500

as a criterion to measure the quality of the experiment. Ontology algorithms are applied in [12], [13] and [14]
on “University” ontology. The precision ratios gotten from the three methods are compared. Some results can
be referred to Table 5.

When N = 1, 3 or 5, the precision ratios in terms of our new ontology mapping algorithms are much higher
than the precision ratios determined by algorithms proposed in [12], [13] and [14]. Furthermore, the precision
ratios show they tend to increase apparently as N increases. As a result, our algorithms turn out to have more
effectiveness than those raised by [12], [13] and [14].
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5 Conclusions

In this paper, the new ontology learning framework and its optimal approaches are manifested for ontology
similarity calculating and ontology mapping. The new ontology algorithm is based on distance function learning
tricks. Also, the stability analysis and generalized bounding computation of ontology learning algorithm are
presented. Finally, simulation data in five experiments show that our new ontology learning algorithm has high
efficiency in these engineering applications. The distance learning based ontology algorithm proposed in our
paper illustrates the promising application prospects for multiple disciplines.
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