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Abstract
In this survey paper we offer an analytical study regarding the perturbed planar restricted three-body problem in the case
that the three involved bodies are oblate. The existence of libration points and their linear stability are explored under the
effects of the perturbations in Coriolis and centrifugal forces. The periodic orbits around these points are also studied under
these effects. Moreover, the elements of periodic orbits around these points are determined.
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1 Introduction

The three-body problem has a special relevance, particularly in astrophysics and astrodynamics. In general,
the three-body problem is classified into two types:

(i) The general three-body problem, which describes the motion of three bodies of arbitrary masses under their
mutual attraction due to the gravitational field. The motion of the bodies take place in three dimensions
and there are no restrictions on their masses nor on the initial conditions.
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(ii) The restricted three-body problem in which the mass of the third body is very small in comparison with
the masses of the primaries, and it does not affect their motion. In this case, the primaries move around
their center of mass either along circular or elliptical orbits.

Thus, the general problem has some applications in celestial mechanics such as the dynamics of triple star
systems (and only a very few in space dynamics and solar system dynamics), whereas the restricted problem
plays an important role in studying the motion of artificial satellites. It can be used also to evaluate the motion of
the planets, minor planets and comets. The restricted problem gives an accurate description not only regarding
the motion of the Moon but also with respect to the motion of other natural satellites. Furthermore, the restricted
problem has many applications not only in celestial mechanics but also in physics, mathematics and quantum
mechanics, to name a few. In quantum mechanics, a general form of the restricted problem is formed to solve
the Schrödinger equation of helium-like ions. Furthermore, in modern solid state physics, the restricted problem
can be used to discuss the motion of an infinitesimal mass affected not only by the gravitational field but also by
light pressure from one (or both) of the primaries, which is called the photogravitational problem.

In the last decades, the restricted three-body problem has been enhanced by a great number of researches.
Many of them deal with the effects of the perturbed forces such as the lack of sphericity, photogravitational
force, Coriolis and centrifugal forces, variation of masses, the Pointing-Robertson and Yarkovsky effects and
the atmospheric drag and solar wind. The Kirkwood gaps in the ring of the asteroid’s orbits lying between the
orbits of Mars and Jupiter are examples of the perturbation produced by Jupiter on an asteroid. This motivates
many researchers to study the restricted three-body problem under the effects of small perturbations in Coriolis
and centrifugal forces when the three involved objects are oblate, . . . , etc.

The significance of the restricted problem when describing actual physical situations can be judged by the
results obtained when these are compared with observations. It is worth mentioning that the utility might be
prejudged by order of magnitude evaluations regarding the masses and the distances of the participating bodies.
In this way, a classic example in space dynamics is the Sun-Earth-Moon system.

Some important contributions related to the libration points in the restricted three-body problem with one
or both primaries are oblate spheroids when the equatorial plane is coincident with the plane of motion were
studied by Subbarao and Sharma [28], Sharma and Subbarao [23], and Markellos et al. [20]. Abouelmagd [9]
also studied the effects of oblateness J2 and J4 for the more massive primary in the planar restricted three-body
problem on the locations of the triangular points and their linear stability. He found that these locations are
affected by the coefficients of oblateness. Furthermore, he investigated that the triangular points are stable for
0 < µ < µc and unstable when µc ≤ µ ≤ 1/2, where µcis the critical mass parameter which depends on the
coefficients of oblateness.

The existence of libration points and their linear stability as well as periodic orbits around these points when
the more massive primary is radiating and the smaller is an oblate spheroid were studied by Abouelmagd and
Sharaf [3]. Their study also includes the effects of oblateness of J2i : i = 1,2, with respect to the smaller primary
in the restricted three-body problem.

The restricted problem when the three participating bodies are oblate spheroids was also studied by Elipe
and Ferrer [15], and El-Shaboury and El-Tantawy [18]. When one or two of the primaries are triaxial bodies this
problem was introduced by El-Shaboury et al. [17], Khanna and Bhatnagar [19], and Sharma et al. [24].

Various researchers made studies in the restricted three-body problem under the effects of small perturbations
in centrifugal and Coriolis forces such as in Szebehely [29], Bhatnagar and Hallan [12], Devi and Singh [14],
and Shu and Lu [25], to quote some of them.

The effect of small perturbations ε,ε ′ in Coriolis and centrifugal forces with variable mass in the restricted
three-body problem has been studied by Singh [26]. He found that in the nonlinear sense the triangular points
are stable for all mass ratios in the range of linear stability except for three mass ratios which depend on ε,ε ′

and the constant β due to the variation of mass governed by Jeans’ law.
Mittal et al. [21] have studied periodic orbits generated by Lagrangian solutions of the restricted three-

body problem when the bigger body is a source of radiation and the smaller is an oblate spheroid. They used
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the definition of Karimov and Sokolsky for mobile coordinates to determine these orbits, they also used the
predictor method to draw them.

Singh and Begha [27] have studied the existence of periodic orbits around the triangular points in the re-
stricted three-body problem when the bigger primary is a triaxial and the smaller primary is considered as an
oblate spheroid in the range of linear stability with the perturbed Coriolis and centrifugal forces. They deduced
that long and short periodic orbits exist around these points and their periods, orientation and eccentricities are
affected by the non sphericity and the perturbation in Coriolis and centrifugal forces.

The existence of libration points and their linear stability when the three participating bodies are oblate
spheroids and the primaries are radiation source as well were studied by Abouelmagd and El-Shaboury [2].
They found that the collinear points are still unstable while the triangular points are stable for 0 < µ < µc, and
unstable for µc ≤ µ ≤ 1/2, where µc ∈ (0,1/2). They also deduced that for these points the range of stability
will decrease. In addition they studied the periodic orbits around these points in the range 0 < µ < µc.

From a physical point of view, it is unreasonable to consider all objects as being point masses with no
physical dimensions. This is conflict with the real cases for the celestial bodies. On the other hand the effect
of rotation causes deformation in the shape of the objects at the poles as might be expected. For this reason
most objects may be treated to a good approximation as oblate spheroids, in this context there are a number
of contributions established by: Abouelmagd [5, 6], Abouelmagd et al. [7, 8], and Abouelmagd et al. [9–11].
Therefore in this paper we will generalize the restricted three-body, in which the three participating bodies are
oblate spheroids as well as the existence of small perturbations in the Coriolis and centrifugal forces. The
existence of libration points and their linear stability and the periodic orbits around these points will be studied.
This model could be applicable in astrodynamics or astrophysics.

Now we assume that the three participating bodies are oblate spheroids. Therefore we refer to oblateness
parameters of the bigger, smaller primaries and infinitesimal body by A1,A2, and A, respectively. We also
denote the small perturbations in Coriolis and centrifugal forces by εi : i = 1,2, where 0 < A1� 1, 0 < A2� 1,
0 < A� 1, and εi� 1.

2 The equations of motion

It is well known that there are five exact solutions in three-body problem which the three masses maintain a
constant configuration which revolves with constant angular velocity. An important specialization of the three-
body problem is the restricted three-body problem in which m is infinitesimal body, and m1 and m2 are the bigger
and smaller primaries, respectively. They move in circular orbits around their barycenter. The smallness of m
means that it does not influence the motion of m1 and m2. For many purposes, it is convenient to describe the
motion of m in a coordinate system which is attached to both m1 and m2. In this rotating coordinate system, the
five Lagrangian solutions show up as five fixed points at which m would be stationary if placed there with zero
velocity.

If the object has axial symmetry, it can be shown from potential theory that the gravitational potential expe-
rienced by the satellite can be written as in (Murray and Dermott, [22]), namely,

V =−Gm0

r

[
1−

∞

∑
n=2

Jn

(
R0

r

)n

pn(sinδ )

]
, (1)

where

• G is the universal constant.

• m0 and R0 are the mass and the mean radius of the object.

• pn(sinδ ) denote the Legendre polynomials of degree n.
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• r is the distance from the center of the object to the satellite.

• Jn is the dimensionless coefficient that characterizes the size of non-spherical components of the potential.

If the motion of the satellite and the object are in the same plane (δ = 0), then Eq. (1) becomes

V =−Gm0

r

[
1−

∞

∑
n=2

Jn

(
R0

r

)n

pn(0)

]
, (2)

where p2n(0) =
(−1)n(2n)!

22n(n!)2 , p2n+1(0) = 0. In addition, let us consider the first zonal harmonic. Hence, Eq. (6)

can be reduced to

V =−Gm0

r

[
1
r
+

J2R2
0

2r3

]
. (3)

Now we assume that m1,m2 and m are the masses of the bigger, smaller and infinitesimal bodies, r1 and r2 are
the distances from m1 and m2 to m, respectively.

Let m1 and m2 have a circular orbit about their common center of mass and m is moving under their gravita-
tional field in the same plane but it is so small that it does not affect their motion. Furthermore let:

• R = ui+ v j be the position vector of m2 with respect to m1.

• R is the separation distance between m1 and m2.

Using Eq. (3), then the potential V12 between m1 and m2 can be written as

V12 =−Gm1m2

[
1
R
+

A1 +A2

2R3

]
. (4)

Thus, the equation of motion for m2 is

R̈ =−

(
m1 +m2

m1m2

)
∇V12, (5)

where

∇ = i
∂

∂u
+ j

∂

∂v
.

Hence Eq. (5) has the following particular solutions:

(i) R = constant.

(ii) u = Rcosθ .

(iii) v = Rsinθ .

(iv) θ = nt.

Therefore, the perturbed mean motion is given by the following relation

n2 = G(m1 +m2)

[
1

R3 +
3(A1 +A2)

2R5

]
. (6)

Now we assume that XY is the sidereal frame while xy are the synodic frames such that they have the same
origin at the center of mass for the primaries. We also chose the synodic frame to rotate with angular velocity n
in positive direction (see Fig. (1)). Let the coordinates of m1,m2, and m in the sidereal frame be (X1,Y1),(X2,Y2),
and (X ,Y ), respectively, but in the synodic frame are (x1,y1),(x2,y2), and (x,y), respectively, too.
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Fig. 1 Configuration of the sidereal XY and synodic xy frames of the restricted three-body problem.

Based on the above discussion, the sidereal coordinates are related to the synodic coordinates via the follow-
ing relation:

X = xcosnt− ysinnt. (7)

Y = xsinnt + ycosnt. (8)

Using Newton’s law, the equations of motion for infinitesimal body in a sidereal frame are as follows:

mẌ =
∂V
∂X

. (9)

mŸ =
∂V
∂Y

. (10)

From Eq. (3), the potential V1 between m and m1 is given by

V1 =−Gmm1

[
1
r1

+
A1 +A

2r3
1

]
, (11)

and the potential V between m,m1 and m2 is also given by

V2 =−Gmm2

[
1
r2

+
A2 +A

2r3
2

]
, (12)

while the total potential V between m,m1, and m2 is controlled by

V =−Gmm1

[
1
r1

+
A1 +A

2r3
1

]
−Gmm2

[
1
r2

+
A2 +A

2r3
2

]
, (13)

once the notation and terminology of Szebehely [30] has been adopted. As a consequence, the distance between
the primaries does not change and is equal to one, the sum of masses of the primaries is also taken as one, the
unit time is chosen as to make the unperturbed mean motion and the gravitational constant unity, then it follows
that m1 = 1−µ , whose coordinate is (µ,0),m2 = µ ≤ 1/2 and located at (µ−1,0).

Substituting Eqs. (7-8) and (11-13) into (9-138) that gives the equations of motion in a synodic coordinate
system (x− y) for infinitesimal body with dimensionless variables as

(i) ẍ−2nẏ =Ux.

(ii) ÿ+2nẋ =Uy,
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where

U =
1
2

n2

[
(1−µ)r2

1 +µr2
2

]
+(1−µ)

[
1
r1

+
A1 +A

2r3
1

]
+µ

[
1
r2

+
A2 +A

2r3
2

]
. (14)

n2 = 1+
3
2
(A1 +A2). (15)

r2
1 = (x−µ)2 + y2. (16)

r2
2 = (x−µ +1)2 + y2. (17)

Eqs. (i)-(ii) and (14) represent the equation of motion for the infinitesimal body in a rotating coordinate system
when the three participating bodies are oblate spheroids.

In the previous equations the perturbed effects of Coriolis and centrifugal forces are switched off. In physics
the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame. In
a reference frame with clockwise rotation the deflection is to the left of the motion of the object, in one with
counter-clockwise rotation the deflection is to the right. The Newton’s laws of motion govern the motion of an
object in a non-accelerating inertial frame of reference. When Newton’s laws are transformed to a uniformly
rotating frame of reference, the Coriolis and centrifugal forces appear.

Both forces are proportional to the mass of the object. The Coriolis force is proportional to the rotation rate
and the centrifugal force is proportional to its square. The Coriolis force acts in a direction perpendicular to the
rotation axis and to the velocity of the body in the rotating frame and is proportional to the object’s speed in the
rotating frame. The centrifugal force acts outwards in the radial direction and is proportional to the distance of
the body from the axis of the rotating frame.

It is important to note that these forces do not arise from any physical agency: they arise solely as a result
of rotation for the coordinate system. Thus, if the angular velocity is reduced to zero, both the Coriolis and the
centrifugal forces will vanish. For this reason, the Coriolis and centrifugal forces are referred to as “fictitious”
or “inertial” forces. These additional forces allow the application of Newton’s laws to a rotating system. They
are correcting factors that do not exist in a non-accelerating or inertial reference frame.

Anyway, if the perturbed effects of Coriolis and centrifugal forces are considered, let φ ,ψ denote these
forces, respectively. Assume that ε1 represents the perturbation in Coriolis force, while ε2 is the accompanying
perturbation in the centrifugal force such that

ϕ = 1+ ε1, ε1� 1. (18)

ψ = 1+ ε2, ε2� 1. (19)

Hence, Eqs. (i)-(ii) and (14) can be written as follows:

ẍ−2ϕnẏ = Ωx. (20)

ÿ+2ϕnẋ = Ωy, (21)

where

Ω =
1
2

n2
ψ

[
(1−µ)r2

1 +µr2
2

]
+(1−µ)

[
1
r1

+
A1 +A

2r3
1

]
+µ

[
1
r2

+
A2 +A

2r3
2

]
. (22)

It is worth mentioning that the subscripts on the right handside denote the partial derivation with respect to x and
y, respectively.
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Fig. 2 The positions of the equilibrium points Li : i = 1, . . . ,5.

3 The locations of the libration points

The libration points are singular points of the differential equations of motions in the restricted problem of
three bodies. They are also equilibrium points since the gravitational force on a mass placed in such a point
are balanced by the centrifugal force. The three libration points are called the collinear points which are found
on the line connecting with the primaries. The other two are called the triangular points which are symmetrical
with respect to this line and form triangles, see Fig. (1).

From Eqs. (i)-(91), we can obtain the Jacobi integral as

ẍ2 + ÿ2−2Ω+ c = 0, (23)

where c is a constant of integration.
The locations of these points will be determined by solving the following expressions:

Ωx = Ωẋ = Ωy = Ωẏ = 0, (24)

where the first partial derivatives of Ω will be governed by

Ωx = (x−µ) f1(r1)+(x−µ +1) f2(r2). (25)

Ωy = y[ f1(r1)+ f2(r2)]. (26)

f1(r1) = (1−µ)

[
ψn2−

(
1
r3

1
+

3(A1 +A)
2r5

1

)]
. (27)

f2(r2) = µ

[
ψn2−

(
1
r3

2
+

3(A2 +A)
2r5

2

)]
. (28)

From Eqs. (25-26), two cases yield. They will be investigated in the following subsection.

3.1 The collinear points

The collinear points Li : i = 1,2,3 are the solutions of Eqs. (24) and (25-26) when y = 0. Therefore,

ν = (−1)i r4
2(r

5
1− pr2

1−a)
r4

1(r
5
2− pr2

2−b)
: i = 1,2,3, (29)

where i indicates the value of ν at Li : i = 1,2,3. Further,

ν =
µ

1−µ
, p =

1
q
, q = ψn2, (30)

http://www.up4sciences.org


130 Elbaz I. Abouelmagd, Juan L.G. Guirao. Applied Mathematics and Nonlinear Sciences 1(2016) 123–144

a =
3(A1 +A)

2q
, b =

3(A2 +A)
2q

. (31)

Lagrange developed a useful method for inverting series expansions which could be applicable in the present
work. He investigated that if a variable χ can be expressed as a function of Y as in the below relation (Murray
and Dermott, [22]):

Y = χ +ϑφ(ϒ), ϑ < 1. (32)

Therefore, ϒ can be also expressed as a function of χ as follows:

Y = χ +
∞

∑
k=1

ϑ k

k!
dk−1

dχk−1 [φ(χ)]
k. (33)

3.1.1 Location of L1

The solution of L1 lies beyond the smaller mass as in Fig. (2). Therefore, r1− r2 = 1, and hence, r2 =
µ− x−1,r1 = µ− x, which implies that

∂ r1

∂x
=

∂ r2

∂x
=−1,

provided that we take r2 = r,r1 = 1+ r, and substitute them into Eq. (29). After some simple calculations the
value of ν will be written as

ν = a4r4 +a5r5 +a6r6 +a7r7 +O[r8], (34)

where the values a4,a5,a6 and a7 are given as in Appendix I.
Now, we use Lagrange’s inversion method to invert the above series and hence to express r as a function of

ν which is written as

r =

(
1
a4

) 1
4

ν
1
4 − 1

4

(
1
a4

) 3
2

a5
√

ν +
1
32

(
1
a4

) 11
4

(7a2
5−8a4a6)ν

3
4 +
−a3

5 +2a4a5a6−a2
4a7

4a4
4

ν +O[ν
5
4 ]. (35)

Consequently, the location of L1 will be given by

x1 =−1+
ν

1+ν
−

(
1
a4

) 1
4

ν
1
4 +

1
4

(
1
a4

) 3
2

a5
√

ν− 1
32

(
1
a4

) 11
4

(7a2
5−8a4a6)ν

3
4 −
−a3

5 +2a4a5a6−a2
4a7

4a4
4

ν .

(36)

3.1.2 Location of L2

The solution of L2 lies between the two finite bodies as in Fig. (2), where r1 + r2 = 1. Hence, r2 = x−µ +
1,r1 = µ− x. This implies that

∂ r1

∂x
=−∂ r2

∂x
=−1.

Thus, if we take r2 = ρ,r1 = 1−ρ , and substitute them into Eq. (29), then the value of ν will be given by

ν = b4ρ
4 +b5ρ

5 +b6ρ
6 +b7ρ

7 +O[ρ8],

where the values b4,b5,b6, and b7 are governed as in Appendix I.
As mentioned previously, we use Lagrange’s inversion method in order to invert the above series and hence,

express ρ as a function of ν , which can be written as

ρ =

(
1
b4

) 1
4

ν
1
4 − 1

4

(
1
b4

) 3
2

b5
√

ν +
1
32

(
1
b4

) 11
4

(7b2
5−8b4b6)ν

3
4 +

(−b3
5 +2b4b5b6−b2

4b7)

4b4
4

ν +O[ν
5
4 ]. (37)

Therefore, the location of L2 could be written as

x2 =−1+
ν

1+ν
+

(
1
b4

) 1
4

ν
1
4 − 1

4

(
1
b4

) 3
2

b5
√

ν +
1
32

(
1
b4

) 11
4

(7b2
5−8b4b6)ν

3
4 +

(−b3
5 +2b4b5b6−b2

4b7)

4b4
4

ν .

(38)

http://www.up4sciences.org


On the perturbed restricted three-body problem 131

3.1.3 Location of L3

The solution of L3 lies beyond the large mass as in Fig. (2), where r2− r1 = 1. Hence, r2 = 1−µ + x,r1 =
x−µ . This implies that

∂ r1

∂x
=

∂ r2

∂x
= 1.

Thus, if we take r1 = 1−+δ ,r2 = 2+δ , and substitute them into Eq. (29), then ν is as follows:

ν = c0 + c1δ + c2δ
2 +O[δ 3], (39)

where c0,c1 and c2 are given as in Appendix I.
We also use Lagrange’s inversion method to invert the above series and to express δ as a function of ν .

Hence, the following expression yields:

δ =
ν− c0

c1
− c2(ν− c0)

2

c3
1

+O[(ν− c0)
3]. (40)

Thus, the location of L3 will be controlled by

x3 = 1+
ν

1+ν
+

ν− c0

c1
− c2(ν− c0)

2

c3
1

. (41)

Note that Eqs. (36), (38) and (41) represent semi-closed forms for the positions of collinear points. Furthermore,
the small perturbation in the Coriolis force has no effect on these positions.

3.1.4 The triangular points

The solutions of Eqs. (24) and (25-26) when y 6= 0 will give the triangular points L4 and L5. These solutions
will lead to

f1(r1) = 0 = f2(r2). (42)

Therefore, we get

ψn2 =

(
1
r3

1
+

3(A1 +A)
2r5

1

)
. (43)

ψn2 =

(
1
r3

2
+

3(A2 +A)
2r5

2

)
. (44)

To study the effect of oblateness in the perturbed problem on the locations of the triangular points, we will
assume that the three participating bodies are not oblate spheroids, namely, A1 = A2 = A = 0.

Hence Eqs. (43-44) will admit ri =
1

3
√

ψ
. Consequently if the three bodies are oblate, then the solution of

Eqs. (43-44) will be controlled by

ri =
1

3
√

ψ
+πi, πi = 1 : i = 1,2, (45)

where πi is the additive displacement in ri as a result of oblateness effects. Substituting Eq. (45) into (43-44)
and restricting ourselves to the linear terms in π1,π2,A1,A2, and A, we obtain an appropriate approach to πi as
follows:

π1 =−
1
2
(A1 +A2)ψ

− 1
3 +

1
2
(A1 +A)ψ

1
3 . (46)

π2 =−
1
2
(A1 +A2)ψ

− 1
3 +

1
2
(A2 +A)ψ

1
3 . (47)
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From Eqs. (16-17), the exact solutions of the triangular points could be written as

x =−1
2
[
1−2µ + r2

1− r2
2
]
. (48)

y =±

[(
r2

1 + r2
2

2

)
−
(

r2
1− r2

2
2

)2

− 1
4

] 1
2

. (49)

Substituting Eqs. (46-47) and (45) into both (48-49) and limiting ourselves to the previous assumptions, it holds
that

x = µ− 1
2
− 1

2
(A1−A2). (50)

y =±
√

3
2

[
1− 1

3
(A1 +A2−2A)− 4

9
(1+A1 +A2 +A)ε2

]
. (51)

Eqs. (50-51) state that the presence of parameters that represent the oblateness of the infinitesimal body, the
small perturbations in Coriolis and centrifugal forces have no effect on the x−coordinate of the triangular points.
While the y−coordinate of the triangular points may be affected by all the parameters of the perturbed forces
except for the small perturbations in the Coriolis force.

4 The stability of the libration points

The models which describe the restricted three-body problem are developed so far they provide a concise
description regarding the third body motion. These models depend on the state variables that define the initial
conditions and the variety of parameters that either affects the measurement process or dynamical motions,
as well. There is a difficulty to solve these models directly for any choice of parameters from a given set of
measurements, due to the great complexity underlying these models. This is the main reason for which our
attention is focused on linearizing the dynamical system to obtain simplified expressions that could be handled
more easily. To understand the possible motion of the third body in the vicinity of equilibrium points, the
equations of motion should be linearized along the initial state vector. In other words, we will expand the right
handside of motion equations around the equilibrium points. Consequently, the linear part in these equations is
called the variational equations. We also assume that the variation vector is related to the initial state vector by
the following expression:

r = r0 +∆r, (52)

where r ≡ (x,y),r0 ≡ (x0,y0), and ∆r ≡ (ξ ,η), provided that ξ and η are small enough. Thus, substituting Eq.
(52) into Eq. (20-21), and expanding them via a Taylor series, one obtain that

ξ̈ −2nϕη̇ = Ω
0
x +

1
1!

[
ξ

∂

∂x
+η

∂

∂y

]
Ω

0
x +

1
2!

[
ξ

∂

∂x
+η

∂

∂y

]2

Ω
0
x +O[3]. (53)

η̈ +2nϕξ̇ = Ω
0
y +

1
1!

[
ξ

∂

∂x
+η

∂

∂y

]
Ω

0
y +

1
2!

[
ξ

∂

∂x
+η

∂

∂y

]2

Ω
0
y +O[3], (54)

where O[3] stands from the third and higher order terms in ξ and η . When these terms and the second order
terms are omitted, then Eqs. (53-54) give us the linear variational equations and ξ and η are called the variations.
Indeed,

ξ̈ −2nϕη̇ = ξ Ω
0
xx +ηΩ

0
xy. (55)

η̈ +2nϕξ̇ = ξ Ω
0
xy +ηΩ

0
yy, (56)
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where the subscripts x and y denote the second partial derivatives of Ω and superscript 0 means that these
derivatives are calculated with respect to one of the five equilibrium points (x0,y0).

Eqs. (55-56) represent the linear differential system of second order in R2. Hence, we transform such a
system in a first order system in R4. To deal with, let us assume that ξ1 = ξ ,ξ2 = η ,ξ3 = ξ̇1,ξ4 = ξ̇2, and let
also substitute them into Eqs. (55-56). Then the system can be written as follows:

ξ̇1 = ξ3. (57)

ξ̇2 = ξ4. (58)

ξ̇3 = Ω
0
xxξ1 +Ω

0
xyξ2 +2nϕξ4. (59)

ξ̇4 = Ω
0
xyξ1 +Ω

0
yyξ2−2nϕξ3. (60)

The stability of libration points is a well-known problem explored alongn the classical literature. Therefore, in
this section and also in forthcoming sections, we will follow the analysis based on Szebehely computations [29].

4.1 Characteristic equation

Let us consider a dynamical system within four degree of freedom which is described through the following
set of differential equations:

χ̇ = g(χ, t), (61)

where χ ∈ R4, and g = (g1,g2,g3,g4) is a vector function. This system is non-autonomous whether the vector
function g explicitly depends on time. Otherwise, it is autonomous and can be describes in the following form:

χ̇ = g(χ), (62)

Thus, the solution of the set of equations g(χ
0
) = 0 for the system at Eq. (62) gives us an equilibrium point

χ = χ
0
. Hence, the solution of the system in Eq. (62) at time t can be written as χ̇ = χ(χ

0
, t) : t ∈ R, in terms

of the initial state vector χ
0
. Further, let χ = (x1,x2,x3,x4)

S, where S denotes the transposed vector. Hence, if
M is the matrix of the dynamical system, then the linearized system can be written as

χ̇ = Mχ. (63)

It is worth mentioning that this system has a non-trivial solution if and only if

det(λ I−M) = 0, (64)

where λ is an eigenvalue of matrix M or a root of the characteristic polynomial appeared in Eq. (64). Moreover,
if ei is an eigenvector associated with λi, then the relation Mei = λei will be achieved. Consequently, the general
solution of Eq. (63) can be written as

χ(t) =
4

∑
i=1

cieλitei. (65)

The properties of stability for t ≥ t0 of the linearized system depend on the nature regarding the eigenvalues of
the matrix M. According to that, next we distinguish three main cases:

(i) If all the eigenvalues are negative real numbers, then the solution becomes stable. However, if any one of
them is positive, then the solution is unstable.

(ii) If the eigenvalues are complex numbers having negative real parts, then the equilibrium point becomes
asymptotically stable. Otherwise, if some of the eigenvalues or all of them have positive real parts, then
the equilibrium point becomes unstable.
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(iii) If the eigenvalues are pure imaginary numbers, then the solution is stable. Nevertheless, if there are
multiple roots, then the solution contains periodic and secular terms, so the equilibrium point becomes
unstable (see Szebehely [29] and Celletti (2010)).

From the previous discussion, we can write the system in Eq. (57)-(60) in the form

Ṙ = MR, (66)

where

R =


ξ1
ξ2
ξ3
ξ4

 , Ṙ =


ξ̇1

ξ̇2

ξ̇3

ξ̇4

 , M =


0 0 1 0
0 0 0 0

Ω0
xx Ω0

xy 0 2nϕ

Ω0
xy Ω0

yy −2nϕ 0

 .

Thus, M is the matrix of the linear system such that the derivatives of the potential functions are be governed by
the following expressions:

Ωxx = f1(r1)+ f2(r2)+
1
r1

∂ f1

∂ r1
(x−µ)2 +

1
r2

∂ f2

∂ r2
(x−µ +1)2. (67)

Ωxy =

[
1
r1

∂ f1

∂ r1
(x−µ)+

1
r2

∂ f2

∂ r2
(x−µ +1)

]
y. (68)

Ωyy = f1(r1)+ f2(r2)+

[
1
r1

∂ f1

∂ r1
+

1
r2

∂ f2

∂ r2

]
y2, (69)

where
∂ f1

∂ r1
= (1−µ)

[
3
r4

1
+

15(A1 +A)
2r6

1

]
. (70)

∂ f2

∂ r2
= µ

[
3
r4

2
+

15(A2 +A)
2r6

2

]
. (71)

Further, the characteristic equation corresponding to Eq. (39) is as follows:

λ
4 +(4n2

ϕ
2−Ω

0
xx−Ω

0
yy)λ

2 +Ω
0
xxΩ

0
yy− (Ω0

xy)
2 = 0. (72)

The most fundamental questions regarding the motion near libration points are those about the stability of such
points. Thus, in the next subsections we will survey the results obtained regarding the stability.

4.2 Stability of collinear points

To investigate the stability of collinear points, we have to study the motion in the vicinity of such points. For
this purpose, Eqs. (67-69) could be written at the collinear points as follows:

Ω
0
xx = ψn2 +(1−µ)

(
2
r3

1
+

6(A1 +A)
r5

1

)
+µ

(
2
r3

2
+

6(A2 +A)
r5

2

)
. (73)

Ω
0
xy = 0. (74)

Ω
0
yy = ψn2− (1−µ)

(
1
r3

1
+

3(A1 +A)
2r5

1

)
−µ

(
1
r3

2
+

3(A2 +A)
2r5

2

)
. (75)

It is worth mentioning that Eqs. (73)-(76) show that Ω0
xx > 0,Ω0

xy = 0, and Ω0
yy < 0 at Li : i = 1,2,3. Thus, as a

result of this,
Ω

0
xxΩ

0
yy− (Ω0

xy)
2 < 0. (76)
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Let λ 2 = Λ. Therefore, Eq. (72) could be written as

Λ
2 +λ 1cΛ+λ 2c = 0, (77)

where
λ 1c = 4n2

ϕ
2−Ω

0
xx−Ω

0
yy. (78)

λ 2c = Ω
0
xxΩ

0
yy. (79)

Hence, the roots of Eq. (77) are

Λ1,2 =−
1
2

[
λ 1c∓

√
λ

2
1c−4λ 2c

]
. (80)

Eqs. (78-79) and (80) show that the roots of the characteristic Eqs. (72) could be written as λ1,2 = ±σ ,λ3,4 =
±iτ , where σ and τ are real numbers. Furthermore, it holds that

σ
2 =

1
2

[√
λ

2
1c−4λ 2c−λ 1c

]
. (81)

τ
2 =

1
2

[√
λ

2
1c−4λ 2c +λ 1c

]
. (82)

In addition, the general solution of Eqs. (53-54) can be written as

ξ (t) =
4

∑
i=1

δieλit , η(t) =
4

∑
i=1

ρieλit . (83)

Therefore,

ξ̇ (t) =
4

∑
i=1

λiδieλit , ˙η(t) =
4

∑
i=1

λiρieλit . (84)

Hence, we can establish that the motion around the collinear points is unbounded. However, it holds that λ3,4
are pure imaginary, and λ1,2 are real. Accordingly, the solutions of these points become unstable.

4.3 Stability of triangular points

In this case, Eqs. (67-69) could be written as follows:

Ω
0
xx =

3
4

[
1+

5
2
(A1 +A2)+2(1−2µ)(A1−A2)

]
+

5
4

[
1+

5
2
(A1 +A2)+2(1−2µ)(A1−A2)

]
ε2. (85)

Ω
0
xy =∓

3
√

3
4

[
1−2µ +

19
6

(
1− 26

19
µ

)
A1 +

7
6

(
1− 26

7
µ

)
A2 +

2
3
(1−2µ)A

]
+

11
9

[
1−2µ +

80
297

(1−14µ)(A1 +A2)+
560
297

(
1+

4
7

µ

)
A
]

ε2.

(86)

Ω
0
yy =

9
4

[
1+

11
6
(A1 +A2)+

4
3

A
]
+

7
4

[
1+

27
14

(A1 +A2)+
36
7

A
]

ε2. (87)

Let λ 2 = ω . Then Eq. (72) leads to
ω

2 +λ 1tω +λ 2t = 0, (88)

where
λ 1t = 4n2

ϕ
2−Ω

0
xx−Ω

0
yy. (89)
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λ 2t = Ω
0
xxΩ

0
yy− (Ω0

yy)
2, (90)

where the superscript 0 refers to the second partial derivatives which have to be evaluated at the triangular points.
Hence,

ω1,2 =−
1
2

[
λ 1t ∓

√
D
]
, (91)

where D = λ
2
1t −4λ 2t is the discriminant of the quadratic appeared in Eq. (ii). Thus, we can write the discrimi-

nant as
D = αµ

2 +β µ + γ, (92)

where α,β , and γ have to be evaluated as in Appendix 2.
The variations ξ and η will represent stable solutions in the proximity of L4 and L5, provided that the four

roots of the characteristic Eq. (72) are purely imaginary numbers. Otherwise, if any of such roots are real or
complex, then these solutions will increase with time, and therefore, the solutions become unstable. Moroever,
from Eq. (92), it is easy to show that

Dµ=0 > 0, Dµ=1/2 < 0,
dD
dµ
≤ 0, for all µ ∈ (0,1/2). (93)

Eq. (93) establishes that D is a decreasing function on the interval (0,1/2). Consequently, there is only one
value of µ , say µc, on that interval for which D equals zero and D is positive provided that 0 < µ < µc. In that
case, the solutions are stable.

4.4 Critical mass

From the discussion above, it holds that the value of µ for which D equals zero is called the critical mass
value (see Eq. (92)). This value will be governed by

µc =−
1

2α

[
β +

√
β 2−4αγ

]
. (94)

Thus, if we substitute α,β , and γ into Eq. (94) and restrict ourselves to the linear terms of Ai,A,εi, as well as to
the coupling terms in Aiεi and Aεi : i = 1,2, then the critical mass value could be written as

µc = µ00 + p, (95)

where µ00 = (9−
√

69)/18 is the critical value given by Szebehely [30], when the three participating bodies are
considered as point masses and the effects of small perturbations of Coriolis and centrifugal forces are neglected.
Further, p represents these effects when the three participating bodies are oblate spheroids. Accordingly,

p = µ10−µ01A1 +µ02A2−µ03A− (µ11ε1−µ21ε2)A1 +(µ12ε1−µ22ε2)A2− (µ13ε1−µ23ε2)A, (96)

where µ00,µ10,µi1,µi2, and µi3 are as in Appendix 3.
It is worth mentioning that Eq. (96) consists of three main parts. The first part gives the effects of small

perturbations ε1 and ε2 in Coriolis and centrifugal forces, respectively. The second part represents oblateness
influence of the three participating bodies, namely, A1,A2, and A3. Finally, the third part represents the mixed
effects for only one of the parameters A1,A2,A, together with ε1 and ε2. Thus, that part will disappear provided
that one of the parameters is ignored.

5 Periodic orbits

The periodic orbits have great significance generally in the celestial mechanics and specially in space dy-
namics. That significance makes necessity for studying the periodic orbits. There are some important reasons
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that motivated this study. First of all, note that the non-integrable dynamical systems prevent us to obtain a
complete solution for any orbits unless they are asymptotic or periodic orbits. For any particular solution of
the restricted three-body problem, one can always find out a periodic solution. We can also get periodic orbits
via linearized solutions for the motion of infinitesimal body around the libration points. Periodic orbits play a
crucial role in order to classify the different classes of orbits and also to reduce the dimensionality of the problem
in the phase space. Additionally, they can be used as reference orbits.

5.1 Periodic orbits around collinear points

It is easy to find out periodic orbits about the collinear points L1,2,3. However, these points are unstable, i.e.,
if a body in any of these points is disturbed, then it will move away. This is quite reasonable from a physical
point of view. In fact, for these points there are saddle points in the potential function. Thus, substituting Eq.
(83) into (55-56), simple calculations give the relations between the coefficients ρi and δi. In fact, it holds that

ρi = niδi, (97)

where

ni =±

√
λ 2

i −Ω0
xx

Ω0
yy−λ 2

i
. (98)

These relations show that the coefficients δi and ρi : i = 1,2,3,4 are dependent. Therefore, the four initial
conditions ξ0,η0, ξ̇0 and η̇0 associated with Eqs. (55-56) will determine the two sets of coefficients. In particular,
each set includes eight constants δi and ρi, where the subscript 0 refers to these quantities have to be evaluated
at the initial time (t = t0). Hence, substituting Eq. (97) into both Eqs. (83) and (84), the following expressions
hold:

ξ0 =
4

∑
i=1

δieλit . (99)

η0 =
4

∑
i=1

niδieλit . (100)

ξ̇0 =
4

∑
i=1

λiδieλit . (101)

η̇0 =
4

∑
i=1

niλiδieλit . (102)

Since the determinant (∆) of the system appeared in Eqs. (99)-(102) is not zero, then

∆ =−

√
Ω0

xx

Ω0
yy
(σ2 + τ

2)2 6= 0. (103)

The coefficients in that system can be written as functions of the initial conditions. Thus, if the initial conditions
ξ0 and η0 are properly chosen for δ1 = δ2 = 0, then Eq. (83 could be written in the form

ξ = ξ0 cosτ(t− t0)+
η0

m3
sinτ(t− t0). (104)

η = η0 cosτ(t− t0)−ξ0m3 sinτ(t− t0). (105)

n3 = im3. (106)
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Thus, from Eqs. (104-106), the following holds:

ξ̇0 =
η0τ

m3
. (107)

η̇0 =−ξ0m3τ. (108)

This means that once the components of the initial conditions ξ0 and η0 are chosen, then we cannot select
the associated initial velocities ξ̇0 and η̇0 as wished. Hence, after solving Eqs. (104-106) together in order to
eliminate the time component, then the periodic orbits could be written in the form

ξ 2

(η2
0 +ξ 2

0 m2
3)/m2

3
+

η2

η2
0 +ξ 2

0 m2
3
= 1. (109)

Eq. (109) establishes that the trajectory of the infinitesimal body around the collinear points becomes an ellipse
whose center is located at these points. Further, the semi-major (ac) and the semi-minor bc axes are parallel to
the y−axis and the x−axis, respectively. Accordingly, these axes, the eccentricity (ec), and the period (Tc) can
be written in the following form:

a2
c = η

2
0 +ξ

2
0 m2

3. (110)

b2
c = (η2

0 +ξ
2
0 m2

3)/m2
3. (111)

e2
c = 1− 1

m2
3
. (112)

Tc = 2π/τ. (113)

Since η̇0 =−ξ0m3τ, ξ̇0 = 0 at ξ0 6= 0, and η0 = 0, then we conclude that the motion along the orbits is retrograde.

5.2 Periodic orbits around triangular points

Since the triangular points are linearly stable provided that 0 < µ < µc, and the characteristic equation
presents four purely imaginary roots, then we have a bounded motion around the triangular points which consists
of two harmonic motions. Consequently, this motion will be governed by

ξ =C1 coss1t +D1 sins1t +C2 coss2t +D2 sins2t. (114)

η =C1 coss1t +D1 sins1t +C2 coss2t +D2 sins2t, (115)

where s1 and s2 are the angular frequencies with respect to long and short periodic orbits, respectively. Moreover,
the terms within the coefficients C1,D1,C1, and D1, are the long periodic terms, while the coefficients C2,D2,C2,
and D2 are the short periodic terms. In addition, s2

1,2 = −ω1,2. Hence, after substituting Eq. (92) into Eq. (91)
and simplifying, it holds that the angular frequencies s1 and s2 will be given by

s1 =
3
√

3
2
√

µ

(
1− 1

2
µ

)(
1− 4

3
ε1 +

53
18

ε2 +
1
6

(
33− 52

3
ε +

653
18

ε2

)
(A1 +A2)+

1
3

(
11− 4

3
ε1 +

65
18

ε2

)
A
)

(116)

s2 = 1+8ε1−3ε2−
27
8

(
1− 8

3
ε1 +

49
9

ε2

)
µ(1−µ)+

3
4
(1+8ε1−3ε2)(A1 +A2)

− 3
2

(
1+

5
3

ε2

)
[(A1 +A)−µ(A1−A2)]

− 9
8

µ(1−µ)

[(
13−104ε1 +

215
3

ε2

)
(A1 +A2)+4

(
1−8ε1 +

19
3

ε

)
A
] (117)
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Eqs. (116-117) give the frequencies for the orbits of the long and short periodic motion when the influence of
oblateness, small perturbations of Coriolis (ε1), and centrifugal (ε2) forces are considered. We would like also
to show that these equations are valid in the range 0 < µ < µc, where µc is the critical mass value.

Substituting Eqs. (114-115) into Eqs. (55-56), and equaling the coefficients of sine and cosine terms,
respectively, then the following relation among the coefficients of the long and short periodic terms yields:

Ci = Γi
[
2ϕnsiDi−Ω

0
xyCi
]

: i = 1,2. (118)

Di =−Γi
[
2ϕnsiCi +Ω

0
xyDi

]
: i = 1,2, (119)

where

Γi =
s2

i +Ω0
xx

4ϕ2n2s2
i +(Ω0

xy)
2 =

1
s2

i +Ω0
yy

: i = 1,2, (120)

and Ω0
xx,Ω

0
xy, and Ω0

yy are given as in Eqs. (85-87). We can eliminate the short periodic or the long periodic terms
in the solution provided that the initial conditions are properly chosen. Hence, we can assume that {C2 = D2 =
C2 = D2 = 0} and {ξ0,η0, ξ̇0, η̇0} are the initial conditions at t = 0, i.e., the short periodic terms are removed.
Thus, substituting these quantities into Eqs. (114-115) and (118-119), then the following expressions hold:

C1 = ξ0. (121)

C1 = η0. (122)

D1 =
Ω0

xyξ0 +η0
(
s2

1 +Ω0
yy
)

2ϕns1
. (123)

D1 =−
ξ0
(
s2

1 +Ω0
xx
)
+η0Ω0

xy

2ϕns1
. (124)

ξ̇0 =
Ω0

xyξ0 +η0
(
s2

1 +Ω0
yy
)

2ϕn
. (125)

η̇0 =−
ξ0
(
s2

1 +Ω0
xx
)
+η0Ω0

xy

2ϕn
. (126)

Let us assume that the triangular points represent the origin of the coordinate system and also that the infinitesi-
mal body starts its motion at the origin. Thus, from Eqs. (50-51) and (52), it holds that the initial conditions will
be controlled by (ξ0,η0) = (−x0,−y0), where

ξ0 =−µ +
1
2
+

1
2
(A1−A2) . (127)

η0 =∓
√

3
2

[
1− 1

3
(A1 +A2−2A)− 4

9
(1+A1 +A2 +A)ε2

]
, (128)

where the ∓ sign means that the origin is at L4 (L5).

5.3 Elliptic orbits

After we have removed the long or the short periodic terms, it holds that the path of the infinitesimal body
will be an ellipse. We can justify this fact by rewriting Eqs. (114-115) with respect to the long periodic terms in
the following form:

ξ =C1 coss1t +D1 sins1t. (129)

η =C1 coss1t +D1 sins1t. (130)
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On the other hand, if we replace Eqs. (121-124) into Eqs. (129-130), and remove the time effect, then these
expressions could be reduced to

α1ξ
2 +2β1ξ η +η

2 = γ1. (131)

This equation represents an ellipse centred at the origin of the coordinate system ξ and η , since∣∣∣∣α1 β1
β1 1

∣∣∣∣= (2ϕns1Γ1)
2 > 0, (132)

where

α1 =
s2

1 +Ω0
xx

s2
1 +Ω0

yy
. (133)

β1 =
Ω0

xy

s2
1 +Ω0

yy
. (134)

γ1 = α1ξ
2
0 +2β1ξ0η0 +η

2
0 . (135)

5.4 The orientation of principal axes of the ellipse

Since Eq. (131) includes a bilinear term of the form ξ η , then the principal axes of the ellipse are rotated by
an angle θ corresponding to the coordinate system (ξ ,η). This motivates the introduction of a new coordinate
(ξ ,η) such that the quadratic term only appears without the bilinear term. Thus, both the old and the new
coordinate systems are governed by the following equations:

ξ = ξ cosθ −η sinθ . (136)

η = ξ sinθ +η cosθ . (137)

Hence, let us substitute Eqs. (136-137) into Eq. (131), and equate the coefficient of ξ η to zero. Thus, the
orientation of the principal axes is given as

tan2θ =±
√

3
[

1−2µ +
8
3

(
1− 19

8
µ

)
A1−

4
3

(
1+

7
4

µ

)
A2−

4
3
(1+µ)A

]
±
√

3
8
9

[[
1−2µ +

13
3

(
1− 55

26
µ

)
A1−

8
3

(
1− 5

16
µ

)
A2−

11
3

(
1+

5
11

µ

)
A
]

ε2

]
,

(138)

where the + sign refers to the center of the ellipse at L4, while the − sign corresponds to the L5 case. Further-
more, it holds that the lengths of the semi-major (at) and the semi-minor (bt) axes, the eccentricity (et), as well
as the period of the motion (Tt), are controlled by

a2
t =

2γ1

(1+α1)− (1−α1)cos2θ +2β1 sin2θ
. (139)

b2
t =

2γ1

(1+α1)+(1−α1)cos2θ −2β1 sin2θ
. (140)

e2
t =

2 [(1−α1)cos2θ −2β1 sin2θ ]

(1+α1)+(1−α1)cos2θ −2β1 sin2θ
. (141)

T 2
t =

2π

si
: i = 1,2. (142)

Next, we will introduce an algorithm which allows to find out the elements in the periodic orbits around the
equilibrium points. This algorithm will be formulated via the following steps:

http://www.up4sciences.org


On the perturbed restricted three-body problem 141

(i) Determine the parameters µ,A1,A2,A,ε1, and ε2, for any given system.

(ii) Evaluate Ω0
xx,Ω

0
xy, and Ω0

yy.

(iii) Evaluate τ .

(iv) Evaluate s1 and s2.

(v) Evaluate m3.

(vi) Evaluate ξ0 and η0.

(vii) Evaluate α1,β1, and γ1.

(viii) Evaluate sin2θ and cos2θ .

(ix) Apply steps (v) and (vi) to obtain the lengths of the semi-major (ac) and the semi-minor (bc) axes as well
as the value of the eccentricity (ec).

(x) Apply step (v) to find the period of motion Tc.

(xi) Use steps (vii) and (viii) to get the lengths of the semi-major (at) and the semi-minor (bt) axes as well as
the value of the eccentricity (et).

(xii) Use step (iv) to find the period of motion Tt .

(xiii) Use steps (ix) and (x) for the periodic orbits around the collinear points.

(xiv) Use steps (xi) and (xii) for the periodic orbits around the triangular points.

6 Conclusions

The restricted three-body problem is investigated in the framework the three participating are oblate spheroids,
as well as the effect of small perturbations in the Coriolis and the centrifugal forces. The existence of libration
points and their linear stability have been studied, under the parameter effects consisting of the oblateness and
the small perturbations in the Coriolis and the centrifugal forces. The Lagrangian method is applied to invert
expansion series in order to determined the locations of the collinear points by a semi-closed formula. We state
that under the aforementioned effects, the collinear points remain unstable and the triangular points are stable
for 0 < µ < µc, and unstable for µc ≤ µ ≤ 1/2.

We prove that the trajectories of the infinitesimal body around the five libration points are ellipses. In this
context the elements of these ellipses (the frequencies, the semi-major,the semi-minor axes, the eccentricity and
the period of motion) are also found. In addition, the directions of the principal axes for the orbits around the
triangular points and the coefficients of long and short periodic terms have been evaluated. Furthermore, an
algorithm has been provided in order to calculate the elements of the periodic orbits around such points.

Appendix I: The series of coefficients at the collinear points

• The series of coefficients at L1 in Eqs. (20-21) are given as follows:

a4 =
1−a− p

b
, a5 =

1+4a+2p
b

.

a6 =−
10ab+ p−ap+3bp+ p2

b2 , a7 =
20ab− p−4ap+4bp−2p2

b2 .
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• The series of coefficients at L2 in Eq. (24) are given by:

b4 =
a+ p−1

b
, b5 =

1+4a+2p
b

.

b6 =
10ab+ p−ap+3bp+ p2

b2 , b7 =
20ab− p−4ap+4bp−2p2

b2 .

• The series of coefficients at L3 in Eq. (29) are as follows:

c0 =
16(a+ p−1)
32−b−4p

, c1 =−
16
(
16+144a−3b−2ab−12ap+72p−4p2

)
(32−b−4p)2 .

c2 =
8

(32−b−4p)3 (512+25088a−192b−608ab−7b2 +7ab2 +8384p−4160ap+66bp

+70abp−40p2 +200ap2 +b2 p−832p2 +6bp2 +40p3).

Appendix II: The coefficients of the discriminant at Eq. (63)

α = 27
[

1+
13
3
(A1 +A2)+

4
3

A+
22
9

[
1+

49
11

(A1 +A2)+
20
11

A
]

ε2

]
.

β =−27
[

1+
1
9
(37A1 +41A2)+

4
3

A+
2
9
[11ε2− (16ε1−160ε2)A1 +(16ε1 +134ε2)A2 +20ε2A

]
.

γ = 1−3(A1−A2 +2A)−10ε1A1 +(16ε1−6ε2)(1+3A2)−8(6ε1− ε2)A.

Appendix III: The coefficients of the oblateness parameters for the critical mass in Eqs. (67-69)

µ00 =
1
2

(
1−
√

69
9

)
, µ10 =

4
27
√

69
(36ε1−19ε2).

µ01 =
1
9

(
1+

13√
69

)
, µ11 =

16
9

(
1+

325
23
√

69

)
.

µ21 =
61
81

(
1+

20091
1403

√
69

)
.

µ02 =
1
9

(
1−
√

69
9

)
, µ12 =

16
9

(
1− 325

23
√

69

)
, µ22 =

61
81

(
1− 20091

1403
√

69

)
.

µ03 =
22

9
√

69
, µ13 =

8800
207
√

69
, µ23 =

8296
621

√
69.
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