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Abstract

In this paper, we study the two-point boundary value problems for fractional differential equation with causal operator.
By lower and upper solution method and the monotone iterative technique, some results for the extremal solution and
quasisolutions are obtained. At last, an example is given to demonstrate the validity of assumptions and theoretical results.
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1 Introduction

In this paper, we consider the following two-point boundary value problem :

{"D“u(r) = (Qu)(1),t €7 =[0,T],
_ (D
8(u(0),u(T)) =0,

where D is the Caputo fractional derivative with 0 < a < 1, Q is a causal operator.

Fractional differential equation have proved to be valuable tools in modeling many phenomena in various
fields of engineering, physics and economics, it draws a great application in nonlinear oscillations of earth-
quakes, seepage flow in porous media, fluid dynamics traffic model, to name but a few. Fractional differen-
tial equations have been studied extensively in recently years, for more details,one can see the monographs
of [1,2,7,11], and the journal literatures [13, 18, 20-22, 24-26]. In these previous works, Cauchy prob-
lems,optimal control problems,Numerical methods and the existence and uniquencess of solutions for various
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classes of initial and boundary value problems for fractional differential equations are discussed.

On the other hand, causal operators is adopted from the engineering literature and the theory of these op-
erators has the powerful quality of unifying ordinary differential equations, integrodifferential equation, differ-
ential equations with finite and infinite delay, Volterra integral equations,neutral differential equations and so
on. Recently, functional equations with causal operators are discussed (such as the monographs of [3, 4],and
the research papers of [8,27]). Fractional differential equations with causal operator in Banach spaces also have
been studied (one can see [6,9,12,28,29],). the boundary value problems for integer order differential equation
with causal operators have been concerned in [5].

As far as the authors are aware, the boundary value problems for fractional functional differential equations
( in form of Caputo derivative) with causal operator in infinite dimensional spaces have not been studied, it is
just our interest in this paper. To get approximate solutions of (1), we can apply the monotone iterative tech-
nique,which has been investigated extensively, for detailed see [5, 10, 14—16]. The rest of this paper is organized
as follows. In sect.2, Some notations and preparation results are given, some lemmas which are essential parts of
the proof of our main results are proved by Schauder’s fixed point theorem. Sect.3 is devoted to obtain the main
results by monotone iterative technique and upper and lower solutions method to the extremal solutions and qua-
sisolutions of the differential equation. At last, an examples is given to demonstrate the validity of assumptions
and theoretical results in sect.4.

2 Preliminaries

We introduce some preliminaries which are used throughout the paper in this section. Let E = C(J,R)
be the space of all continuous functions x : / — R with J = [0,7]. Q € C(E,E) is said to be a causal operator, or
nonanticipative if the following property is satisfied: for each couple of elements x,y of E such that x(s) = y(s)
for 0 <s <t, we also have (Qx)(s) = (Qy)(s) for 0 < s <t¢, t < T; for details see [7].

Definition 1. The Riemann-Liouville derivative of order o with the lower limit #y for a function f : [fy,o0) — R
can be written as

1 dn t f(s)
Lo
DUf(1) = m——~ - | 7 arra a4 (>0, n—1 .

7o) F(n—a)dln/t()([_s)l+an s, t>tg, n—1<a<n

Definition 2. The Caputo derivative of order ¢ for a function f : [fg, o) — R can be written as

n—1/, k
D% f(t) =- D* [f(t) -y (tk'to)f(")(to)], t>t, n—1<a<n
=0 *
Lemmal. [/]Let R(ct) > 0 and let n be given by n= [R(a)]+ 1 for a ¢ No, o« = n for a. € Np. If y(x) € C"[a,b],
then )
n— k
c yia
(18 D)) =5~ . 2 Dt
k=0 K-

in particular, if 0 < R(o) < 1 and y(x) € C'[a, b], then

(I “D%y)(x) = y(x) = y(a).

Lemma?2. [/]. Let R(a) > 0 and let n be given by n = [R(at)]+ 1 for a ¢ No, a = n for o € Ny. If y(x) € C"|a, b],
then the Caputo fractional derivative ‘D%y(x) is continuous on [a, b).
(a) If a & Ny, then

1

DY) = g | (=) 0 = (1) ),
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where D = d /dx, in particular, if 0 < R(«t) < 1 and y(x) € C'[a,b], then
“Dfy(x) = (1, *Dy) (x).
(b) If & = n € Ny, then the fractional derivative *Dly(x) = y") (x). In particular,
“Djy(x) = y(x).
It is necessary to state the Schauder’s fixed point theorem which would be used in the proof of lemmas.

Theorem 3. [4]. Let E be a Banach space and B C E be a convex, closed bounded set. If T : E — E is a
continuous operator such that TB C B and T is relatively compact, then T has a fixed point.

Let us recall the definition of a solution of the fractional BVP (1).

Definition 3. A function y € C!(J,R) is said to be a solution of the fractional BVP(1.1) if y satisfies:
(i) D%y(r) = (Qy)(¢) a.e. on J,
(ii) g(»(0),¥(T)) = 0.

We prove the following differential inequalities with positive linear operator L which are important in ob-
taining our main results.

Lemma 4. Assume that L € C(E,E) is a positive linear operator. Let m € C'(J,R) satisfy:

Dm(t) < —(Lm)(z), 1€, o
m(0) < rm(T), re[0,1]
and the condition holds
1 ! oa—1
Stlel?{r(a)/o (t—s) (Ll)(s)ds} <1, 3)

where 1(t) =1, t € J. Thenm(t) <0, t € J.

Proof. Case 1. Suppose m(0) < 0. We need to show that m(t) < 0,7 € J. Moreover, if r = 0, then m(0) < 0.
Assume the above inequality is not true. Then, there exists #p € (0, T] such that m(zy) > 0. Let

m(t;) = minm(t) <O0.
[O,t()]

Applying the fractional integration operator /%, to the both sides of the differential inequality in (2), we can get
I (“D%m(t)) < —If, (Lm) (1),

thus, by Lemma 1 and the condition (3), we have

m(to) —m(t1) < —F:O‘) /, " (to — ) (Lm) (s)ds
< —’qu((;i /tl (10— )% 1 (L1) (s)ds
< —m(ty)

then m(fy) < 0. This is a contradiction.
Case 2. Assume m(0) > 0. Note that m(7) > 0. there are two situations:

V[
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Rayr=1,2b)0<r<1.
Subcase 2a. Let r = 1.
Subcase 2a(i).Suppose m(r) > 0 on J and m(z) # 0. then

1 o
m(t) —m(0) < _F(Oﬂ)/o (t —5)* Y (Lm)(s)ds

take the boundary conditions into account, it can be obtain

0) <m(T) < m(0 Lo T —s)*"Y(Lm)(s)d
m(0) < () < m0) = o [ (1 =9 Lm) (5
Hence fo —5)%"1(Lm)(s)ds < 0 which is a contradiction.

Subcase 2a(ii). Let m(t) <0, t € (0,T]. Put

m(t;) = rtneljnm(t) =—A, A>0.

Then ‘D%m(t) < —(Lm)(t) < A(L1)(¢),t € J.
Taking the fractional integration operator /¥, on the both sides of the differential inequality in (2) , we see that

T
m(T) —m(t;) < F()La)/tl (T —s5)* 1 (L1)(s)ds
T
m(T)+A < F(Aa)/tl (T —5)* " Y(L1)(s)ds < A.

Then m(T) < 0. This is a contradiction.
Subcase 2b. Let 0 < r < 1.
Subcase 2b(i). Let m(t) > 0 onJ and m(t) # 0. Then, in view of the boundary conditions, we have

Tn(0) < () < m(0) — o5 [ (79 (Lm)(s)ds.
So L
) <~ g [ =9 w5y
Hence . )
) <~ | =0T ) 0)ds— s [a=9 wm)syas <o

Since m(t) > 0, t € J. This means that m(¢) = 0. This is a contradiction.
Subcase 2b(ii). Let m(t) < 0. Put
m(t)) = mijnm(t) =—A, A>0.
re

Then “D%m(t) < —(Lm)(t) < A(L1)(¢). In the same way as before, we see that
m(T)+A <A.

We can obtain m(7T') < 0,this is a contradiction. Thus,the proof is completed.
Define I°f(t) = f(t), for f(t) € C(J,R), t € J, the following holds:

‘UR:
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Lemma 5. Let L € C(E,E) be a positive linear operator and K € C(J,R). Let m € C'(J,R) satisfy:

{CD“m(t) < —K()m(t) — (Lm)(t), teJ,

“4
m(0) < rm(T), re0,1]
with 0 < rg(T) < 1 for g(t) = e~ W KO, I addition, we assume that
! t _ o—lpl—ar, i K(t)dT
‘i‘é?{rm) /0 (1 =)o [ T (L] (s)ds }g 1 )

Thenm(t) <0, t €J.
Proof. Set q(t) = eféK(S)dsm(t), then

Dq(t) = I %4/ (1) < I3, *el K4 (LG (1)
where, ¢ = q(t)q(t). Thus, system (4) takes the from
Doq(r) < —[T %l KB (LG)(1), tel,
{qw) < ng(1), for n = 1g(T).
According to the Lemma 4, the proof is complete.

Lemma 6. Let L € C(E,E) be a positive linear operator and K, ¢ € C(J,R). Assume that condition (5) holds,
0<ri<1lwithr = re*for K(s)ds Then the linear problem

{CD“ v(t) = —K()W(t) — (Lv)(1) + o(t), teJ,
v(0) =rv(T)+B, B R,

forv(t) € C'(J,R) has a unique solution u € C'(J,R).

(6)

Proof. To begin with, we prove the problem owns at most one solution.
Assume that it has two different solutions X,Y € C!(J,R). let p = X — Y then p satisfies the following
problem
‘Dp(t) = —K(t)p(t) - (Lp) (1), 7
p(0) = rp(T).
By the Lemma 5, we have p(t) <0, so X(t) <Y(¢), t €J. On the other hand, Let p =Y — X, similarly, we can
getY(r)<X(t),t€J.thenX =Y.

We will show problem 7 has a solution.Put u(t) = el K (5)45y(t) then system 7 takes the form

{CD“u(t) = —(B'u)(t)+0*(t), t€[0,T],

®)
u(0) = riu(T) + B, BEeR,

whereB* = I}, %[l KO (L) (1), i = ue™ WK, 6% = [} el KOs 5] (r).
Applying the fractlonal integration operator /g, to (8),we have
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where

S W S L B L [ e
o _l—rlf(a)/O(T ) G(s)ds+1_rl+r(a)/0(t )41 % (5)ds.

Let v, € C(J,R) and v, — v in C(J,R), then u,, € C(J,R), u, — uinC(J,R),here

up(t) = efﬂtK(S)dsvn(t), u(t) = eféK(s)dsv(t).

Hence
r T
(A0 = ()] < 17 [ =) ) 5) = ()9
iy 9B w6 - Bs)as
n ! * * ! a—1
= ﬁm,:;};]'“f un) (1) = (Bu)(o)] | (T =)™ ds
") o ()= Eawl —9*ds
1T . )
= l—rlmt:&'w ) (1) = (B*u)(1)-
Since

[(B"wn) (1) = (Bru) ()] < 15 “elo® O (L)) (1) — g e lo KO (La)) 1))

1 ! —a [y K(1)dt ~
< e [, = e O =) )

—— su i) (1) — (L) (t)|elo K (s)ds t —s) %ds
< Fiay, o (0~ @0y [

T N e
= T2—a),cor {I(Lid) () — (Lid) (1) e KW}

By the condition that L € C(E, E) is a positive linear operator which implies (Lu,)(t) — (Lu)(t) as u, — u, n —
. So |(B*uy,)(t) — (B*u)(t)| — 0 as n — oo for t € J. Thus, we have

sup |(Auy,)(t) — (Au)(t)| = 0 if n— oo,

teJ

So operator A is continuous. Moreover,

sup |(Au) ()] < sup [(Aup ) (1) — (Au)(2)| + sup|(Au)(1)],

teJ teJ teJ
the operator A : C(J,R) — C(J,R) is bounded. In addition, sup,c( 71 |(B*u)(t)| < . Moreover, for#1, t; € [0, 7]

‘UR:
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with t; <1, we have
1 g oa—1 a—1 *
|(Au)(11) = (Au)(r2)] < 1“(05)/0 (11 =) = (2= 5)" 7 [|(B"u)(s) ds
g [ =9 E s

(a)
g | =9 == o s
+F(1a)/tz|(t2—s)alc*(s)|ds
. 2(—1)* e 2 —11)%
< ZES[I(I)PT]KB u)(f)|7r(a+l) +tes[l(l)%]|0 (t)‘ir(ourl)
su * su *u 7202 —n)*
< [IG[OFJT]\G (f)|+t€[0%]|(3 )(@®)1] Tat1)"

Since o (¢) is continuous, then sup, (o 77|07 (#)| < . Thus, It is proved that the operator A is equicontinuous on
J, with Arzela-Ascoli theorem, It can be obtain that A is compact. Hence, by Schauder’s fixed point theorem, the
operator A has a fixed point u € C(J,R). On the other hand, ' exists and «’ € C(J,R). The proof is completed.

3 Main results

u € C'(J,R) is called a lower solution of problem (1) if
{cmu@ <(Qu)(t), 1€,
8(u(0),u(T)) <0

and it is an upper solution of problem (1) if the above inequalities are reversed.

A solution u € C!(J,R) of problem (1) is called maximal if x(t) < u(t), t € J, for each solution x of problem
(1), and minimal if the reverse inequality holds.

The existence results for the extremal solutions of problem (1) presented as following:

Theorem 7. Assume that

H,: Q € C(E,E) is a causal operator, g € C(R X R,R),

Hy: 79, yo € C'(J,R) are lower and upper solutions of problem (1) respectively, and zo(t) < yo(t), t € J,
Hj: there exists K € C(J,R) such that

(Qu)(t) — (Qu)(r) < K(t)[u(t) — u(t)] + (L(w —u))(1),
forzo(t) <u(t) <u(t) <yo(t), t€J,
Hy: there exist constants 0 < b < a, a > 0 such that
g(ﬁ,V) _g(”’v) < a(ﬁ_”) —b(V— V),

for 20(0) < u <u < yo(0) and zo(T) < v <V < yo(T). Moreover, the condition(5)holds. then, there exists
monotone sequences {z,(t)}, {yn(t)} such that lim z,(t) = p(t), lim B,(¢t) = r(t), where p, r are minimal and
n—soo n—soo

maximal solutions of problem(1), respectively, satisfying zo < p(t) < r(t) < yo.
Proof. Consider the linear BVP

{cmu(r) +K(1)u(t) = —(Lu)(t) + on (1),

I ©)
u(0) =1(0) = 78(n(0),n(T)) + rlu(T) —n(T)],

V[
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where oy (1) = (On)(t) + K(1)n () + (Ln)(t), n € C[J,R] and zo(t) < n(r) < yo(r). By lemma 6 , the linear
BVP (9) has a unique solution, we set [z9,y0] = {w € C(J,R) : zo(t) < w(r) < yo(¢)}. Now we claim that any
solution u(r) of (9) satisfies u(r) € [z0(¢),y0(?)], t € J. By the conditions H,, H3, we have

‘D%20(t) < —K(t)z0(t) — (Lz0) () + 05, (1)

and
Du(t) = —K(1)u(t) = (Lu)(t) + oq (t) = —K(1)u(t) = (Lu) (1) + 05, (1).
Put p = zp — u, we have
“D%p(t) = “D2(t) = D u(r)
< —K(1)20(1) = (L20) (1) + 05 (1) = +K (1)u(t) + (Lu) (1) — 05, (1)
= —K(0)p(1) — (Lp)(r)

and
p(0) = z0(0) —u(0)
= 20(0) —n(0) + ;g(n(O)an(T))—r[M(T)—n(T)]
< rp(T).

The last inequality is got by the condition Hy. Thus, from the Lemma 5, we have p(¢) < 0 and hence zo(¢) <
u(t), t € J. Similarly, we can show that u(r) < yo(t), t € J. Hence, we have zo(t) < u(t) < yo(t).
Next consider the boundary value problem

{cmynm) = (0)(0) = (L1 =) (1) = KOs (1) —3al0)], w0
$01(0) = 1a(0) = L8 (0), (7)) + 7l (T) — (7))

and
{CDaZn+l(t) = (Qz)(t) — (L(zn+1—20)) (1) — K(t) [2011 () — 2a(2)], (11)
2n+1(0) = 24(0) = 8(24(0), 2 (T)) + r[2n41(T) — 2u(T)

J-
From the (9), we know problem (10) and (11) have a solution in the sector [zo(¢), yo(t)].
Next, we will show that

20(1) S21(1) S22(1) < -+ < 2alt) Syn(r) <o <ya(t) <ni(r) <yolt), €.
First, we show that zg < z;. Now
‘D%(1) < (Q20)(1) and “Dz (1) = (Qz0) (1) — (L(z1 —20)) (1) — K (1) [21 () — 20 (t)]-
Let p =20 —z1. Then

DYp(r) = “D%z(t) — D%z (1)
< (Qz0)(r) = (L20)(r

) = (Qz0)(1) + (Lz1) (1) + K (1) [z1(r) — 20(7)]
= —K(1)p(t) = (Lp)(1)

and
1

P(0) =20(0) = 21(0) = ~8(20(0),20(T)) = rlz1(T) = 20(T)] = rp(T).
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By Lemma 5, we show that zo < zj, 7 € J.
Assume z;_1(¢) < z(t), t € J. Let p = zx — zx+1, using hypothesis (H3) and simplifying, we obtain

‘Dp(t) = ‘Du(t) — D71 (1)
= (Qz-1)(t) — (L(zx — zx-1)) (1) — K (1) [z (t) — zx-1(1)]
—(Qz) (1) + (L(zkr1 — 21)) (1) + K(8) [zir1 (1) — 2 (7)]
K(t)[zi(t) = zi—1 ()] — Lz — zi1) (1) — K (1) [z (1) — 21 (7))
+K(t)[zrs1(t) — 2 (1)]
= —K(t)p(t) — (Lp)(t)

—

IN

and

P(0) = z(0) —zx41(0)
= z-1(0) — ég(Zkfl(O)ﬂkfl(T)) +r(zk(T) — zk—1(T)] — 2 (0)

+%g(zk(0),zk(T)) — rlzs 1 (T) = 2(T)]

< 2-1(0) —2(0) + é[a(Zk(O) —2-1(0)) = b(2(T) — 21 (T))]
+rlzi(T) = 21 (T)] = rlzi1 (T) — 2 (T)]
= rp(T).
Again, using Lemma 5, we get zx (1) < zx4+1(¢), t € J, thus, by induction, we have
(1) <zi(t) < <znle), ted.
Similarly, we can show that

Vi(t) < yr—1(t) < - <yi(t) < yolt), tel.

We next show that z,(r) < y,(t), t€J, n=1,2,---.
Put p =z, — y,, and proceeding as before we arrive at

‘Dp(t) = (“D%n) (1) = (“D¥yn) (1) < —K(t)p(t) — (Lp)(1)
and p(0) < rp(T) which yields z,(t) <y,(t), t €J, n=1,2,---, from Lemma 2.8. Hence, we have
() Szi(t) <+ <zalt) Syn(t) < <yi(t) < yolr), €.

It then follows, using standard arguments, that lim z,(¢) = p(¢) and lim y,(¢) = r(¢) uniform on J, and p(¢) and
n—oo n—oo

r(t) are solutions of problem (1).

To show that p(¢) and r(¢) are extremal solutions of problem (1). Let u(z) be any solution of problem (1) such
that u(r) € [z0,Y0], and suppose for some k > 0, zx—(t) <u(t) <yp—1(t), t € J.

Let p(t) = zx(t) — u(z). Then

(,D(Xp(t) — CD(XZk _LDau(t)
= (Qa—1) (1) = (L2 — 2x-1)) (1) = K(1) [z (1) — 21 (1)] = (Qu) (1)

Since zx_1 (1) < u(t), we have from the hypothesis Hz of the theorem that
‘Dp(1) < =K(1)p(t) = (Lp)(1).

‘UR%
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Also p(0) <rp(T). Now applying Lemma 5, we get z;(f) < u(t). Similarly, u(z) < y(¢).Thus,from the induction
principle, it follows that z,(¢) < u(t) < y,(¢t), forall n, t € J. Taking limits as n — oo, we obtain p(t) < u(r) <
r(t),hence p(t) and r(r) are extremal solutions of problem (1). The proof is complete.

We say that u, w € C'(J,IR) are coupled lower and upper solutions of problem (1) if

‘D*u(t) < (Qu)(t), teJ (12)
8(u(0),w(T)) < 0.
and
“Dw(r) > (Qw)(t), 1€ )
g(w(0),u(T)) = 0.
Functions y, z € C'(J,IR) are called quasisolutions of problem (1) if y and z satisfy the following system:
D¥y(t) = (Qy)(t), for teJ, g(3(0),2(T))=0, (14)
‘D%(t) = (Qz)(t), for t€J, g(z(0),y(T))=0.
The next theorem deals with the existence results of quasisolutions for problem (1).
Theorem 8. Suppose that
Hy: 70, yo € C'(J,R) are coupled lower and upper solutions of problem (1) and yo(t) < zo(t), t € J,
H,: there exists constants a > 0, b > 0 such that
g(u,v) — g(u V) < b( ) for yo(T) <v<v<z(T), tel
if assumptions Hy, Hy, Hz,Hy hold,then there exists a quasisolutions for problem (1) in the sector [yg, 7o) -
Proof. We define sequences {y,,z,} as followings:
CDaynJrl(t) = (Qyn)(t) - (L(ynJrl _yn))(t) _K(t)[))n+l(t) _yn(t)]a tel (16)
Yat1(0) = y4(0) = 28(a(0), 24(T)),
and
D%zp1 (1) = (Qz) (1) — (L(zn41 — 20)) (1) = K () [zn41(2) = 2a(t)], 1 €T (a7
2n11(0) = 22(0) — 38(21(0), yu(T)),
forn=0,1,---

In a way similar to the way we used in the proof of Theorem 7, we have

20(1) S21(0) <o < 2a(t) Syalt) < - <yi(1) S wolt), 1€,
Hence, {y,} and {z,} converge uniformly on J to limit functions y, z € C'(J,R).
Indeed, y, z are the quasisolutions of problem (1). This ends the proof.
4 Illustrative example

In this section, we give the following example to demonstrate the validity of assumptions and theoretical
results.
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Example 9. Consider the problem

{ D%x(t) = —M(t)x(t) — M(t)[1 — cos(x(%1))] —tf(; s2x(s)ds, (18)
0=e""—x(1)-3,

where M(t) € C(J,[0,00),¢ € J = [0,1], and Q(t) = —M (t)x(t) + M(t)[1 — cos(x(11))] —tfé s%x(s)ds.
Put yo(t) =0, zo(t) =ywith1 <y<7Z. Then

(Qvo)(t) =0="D%(r),

4

(QZO)(’)=0=—M(f)HM(t)(l—cosy)—V%SM(I)(l—V)<0 = D%(1),
g(¥0(0),y0(1)) = — %<o

8(z0(0),z0(1)) =" —y— % > 0.

It means that yg, zo are lower and upper solutions of problem (18), respectively. If we also assume that

sup b [ tgeelivns, [ e iueirggyyash <1

Then, the problem has extremal solutions.
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