Review. Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study

Open access


We assume that the CRISPR Cas9 theory must be delimited by applicability, because the consequences of long term DNA manipulation remain unknown. Moreover, the irreversibility of this procedure should instigate researchers to reserved opinions.

Usefulness as well as benefits of CRISPR Cas9 made it one of the most popular and used genome editing technique. But with its huge potential, ethical and safety concerns emerge. Therefore, before continuing research in this direction we should have a well organized system that is able to make that differentiation between research and reproduction. However we truly believe in the future of genetic engineering and with the CRISPR-Cas9 system we expect that the opportunity of treating now so called incurable diseases arises. Time is all we need.

1. Yang GK, Jooyen C, Srinivasan C. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156-1160.

2. Carroll D, Charo RA. The societal opportunities and challenges of genome editing. Genome Biology. 2015;16(1):1-9.

3. Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet. 2016;53:91-97.

4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429-5433.

5. Makarova SK, Haft DH, Barrangou R. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467-477.

6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.

7. Lokody I. Correcting genetic defects with CRISPR-Cas9. Nat Rev Genet. 2014; 15:63.

8. Burgess JD. In vivo correction of genetic disease in adult mice. Nat Rev Genet. 2014; 15:291.

9. Burgess JD. Technology: A CRISPR genome-editing tool. Nat Rev Genet. 2013;14: 80-81.

10. Blake W, Esther VD, Jelle BB, el al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS. 2011;108(25): 10092-10097.

11. Josiane EG, Marie-E`ve D, Manuela V, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468: 67-72.

12. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130-143.

13. Ledford H. Alternative CRISPR system could improve genome editing. Nature. 2015; 526:17.

14. Bernd Z, Jonathan SG, Omar OA. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015;163(3):759-771.

15. Lander ES. The Heroes of CRISPR. Cell. 2016;164(1-2):18-28.

16. CRISPR-Cpf1 May Outsnip CRISPR-Cas9. GEN News Highlights. [ accessed 26.Feb.2015].

17. Scientists discover new system for human genome editing with potential to increase power and precision of genome engineering. Broadinstitute News. [accessed 23.Feb.2016].

18. Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med. 2012;18, 618-623.

19. Gerald S, Koo BK, Sasselli V. Functional Repair of CFTR by CRISPR/ Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell. 2013;13(6): 653-658.

20. Patrick DH, Eric SL. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell. 2014;157(6): 1262-1278.

21. U.S National Library of Medicine. Huntington disease. Genetic Home Reference. 3 May 2016. [accessed 10.04.2016].

22. U.S National Library of Medicine. HTT Huntington. Genetic Home Reference. 3 May 2016. [accessed 10.04.2016].

23. Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014;11(7):705-706.

24. Li HL, Gee P, Ishida K, Hotta A. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods. 2015;101:27-35.

25. Rajat M, Kiran M. Expanding the genetic editing tool kit: ZNFs, TALENs and CRISPR-Cas 9. The Journal of Clinical Investigation. 2014;124(10):4154-4161.

26. Sara R, Federica U, Melanie H,et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat. Cell Biol. 2012;14: 911-923.

27. Brennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2012;473: 221-225.

28. Kannan R, Ventura A. The CRISPR revolution and its impact on cancer research. Swiss Med Wkly. 2015;145:w14230.

29. Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. Crispr-cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer. 2016;138:6;1328-1336.

30. Randall J, Sidi C, Yang Z, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014;159;440-455.

31. Hu Z, Yu L, Zhu D, et al. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells. Biomed Res Int. 2014; Article ID:612823.

32. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Letters. 2016;373(1):109-118.

33. Wen WS, Yuan ZY, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer. 2016;138(6):1328-36.

34. Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.Oncotarget. 2016. DOI: 10.18632/ oncotarget.14072.

35. Kim E, Hurtz C, Koehrer S, et al. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood. 2016.

36. Huibin T, Joseph BS. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO. 2016;8(2):83-85.

37. Xun LX, Leqiang S, Teng Y, et al. A CRISPR/Cas9 and Cre/Lox systembased express vaccine development strategy against reemerging Pseudorabies virus. Sci Rep. 2016; 6:19176.

38. Money of the genes: CRISPR attracts a lot of investors. News & Tips. 2016. [accesed 13.02.2016].

39. Wang G, Zhao N, Berkhout B, Das AT, et al. A Combinatorial CRISPRCas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures. Cell Rep. 2016;17(11):2819-2826.

40. Edward AP, Ryan BP, Benjamin JF, Jeffrey SG, Aijaz A, Robert GG. Future Therapy for Hepatitis B Virus: Role of Immunomodulators. Curr Hepatol Rep. 2016;15(4):237-244.

41. Zhengyan F, Botao Z, Wona D, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013; 23:1229-1232.

42. Mercx S, Tollet J, Magy B, Navarre C, Boutry M. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cell. Front Plant Sci. 7:40. doi:

43. Lombardo L, Coppola G, Zelasco S. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends Biotechnol. 2016;34(1):49-57.

44. Ain QU, Chung JY, Kim JH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120-127.

45. Bing S, Liz HM, Yi G, Ying P. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int. 2016;Volume 2016:17 pages. Article ID 8140168: doi:

46. Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/ Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014; 24:132-141.

47. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Lett. 2016;373(1):109-118.

48. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84-88.

49. Julie S, Jonathan W, David G. Opposition mounts to genetic modification of human embryos. [accesed 10.02.2016].

50. Puping L, Yanwen X, Xiya Z et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell. 2015; 6(5):363-372.

51. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380-384.

52. Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014:159(2):440-450.

53. Lu XJ, Qi X, Zheng DH, Ji LJ. Modeling cancer processes with CRISPRCas9. Trends Biotechnol. 2015;33:317-319.

54. Katerine S, Michael B, Annelien B, et al. CRISPR germline engineering - the community speaks. Nature Biotechnology. 2015; 33:478-486.

55. Ewen C. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530,18-19.

56. Yanfang F, Jennifer AF, Cyd K. High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822-826.

57. Roni A. UNESCO panel of experts calls for ban on “editing” of human DNA to avoid unethical tampering with hereditary traits. UNESCO Media Service. 10 May 2016.

Acta Medica Marisiensis

The Journal of The University of Medicine and Pharmacy of Targu-Mures

Journal Information

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 280 280 42
PDF Downloads 90 90 22