Microstructure and Corrosion Resistance of Composite nc-TiO2/Ni Coating on 316L Steel

Open access

Abstract

The aim of this work was to obtain composite of nc-TiO2/Ni coatings on 316L steel and to characterize their corrosion resistance. In order to investigate the influence of the addition of TiO2 nanoparticles, both pure Ni and composite nc-TiO2/Ni coatings were electrodeposited from nickel citrate baths. The microstructure of the coatings was examined by scanning and transmission electron microscopy. The nc-TiO2/Ni coatings were about 10 μm thick. Their microstructure consisted of TiO2 nanoparticles uniformly distributed in nanocrystalline Ni matrix. The corrosion resistance of the coatings was measured using impedance spectroscopy and polarization curves techniques in Ringer’s solution. It was determined that the addition of nano-TiO2 particles improved corrosion resistance and reduced corrosion rate of the coated steel.

[1] D. Thiemig, A. Bund, Surface and Coatings Technology 202, 2976 (2008).

[2] S. Spanou, E.A. Pavlatou, N. Spyrellis, Electrochimica Acta 54, 2547 (2009).

[3] S.A. Lajevardi, T. Shahrabi, Applied Surface Science 256, 6775 (2010).

[4] G. Parida, D. Chaira, M. Chopkar, A. Basu, Surface & Coatings Technology 205, 4871 (2011).

[5] G. Yılmaz, G. Hapc, G. Orhan, JMEPEG 24, 709 (2015).

[6] L. Benea, E. Danaila, J.P. Celis, Materials Science&Engineering A610, 106 (2014).

[7] Tadashi Doi, Kazunari Mizumoto, Metal Finishing 102, 104 (2004).

[8] L. Chaoqun, L. Xinhai, W. Zhixing, G. Huajun, Rare Metal Materials and Engineering 44 (7), 1561 (2015).

[9] D.H. Kim, S.Y. Kim, S.W. Han, Y.K. Cho, M.G. Jeong, E.J. Park, Y.D. Kim, Applied Catalysis A: General Volume 495, 184 (2015).

[10] R. Zhou, N. Rui, Z. Fan, C. Liu, International Journal of Hydrogen Energy (2016).

[11] N.M. Mohamed, R. Bashiri, F.K. Chong, S. Sufian, S. Kakooei, International Journal of Hydrogen Energy 40, 14031 (2015).

[12] H. Lin, C. Shih, Journal of Molecular Catalysis A: Chemical 411, 128 (2016).

[13] A.J. Haider, A.A. Najim, M.A.H. Muhi, Optics Communications 370, 263 (2016).

[14] S. Spanoua, A.I. Kontos, A. Siokouc, A.G. Kontos, N. Vaenas, P. Falaras, E.A. Pavlatoua, Electrochimica Acta 105, 324 (2013).

[15] A. Katamipour, M. Farzam, I. Danaee, Surface & Coatings Technology 254, 358 (2014).

[16] H. Goldasteh, S. Rastegari, Surface & Coatings Technology 259, 393 (2014).

[17] Y. Wang, S.J. Wang, X. Shu, W. Gao, W. Lu, B. Yan, Journal of Alloys and Compounds 617, 472 (2014).

[18] B. Ranjith, G. Paruthimal Kalaignan, Applied Surface Science 257, 42 (2010).

[19] A. Laszczynska, J. Winiarski, B. Szczygieł, I. Szczygieł, Applied Surface Science 369, 224 (2016).

[20] M.W. Khalil a, Taher A. Salah Eldin, H.B. Hassan, Kh. El-Sayed, Z. Abdel Hamid, Surface & Coatings Technology 276, 89 (2015).

[21] L. Besra, M. Liu, Progress in Materials Science 52, 1 (2007).

[22] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang, Acta Materialia 51, 387 (2003).

[23] S. Dehgahi, R. Amini, M. Alizadeh, Surface & Coatings Technology 304, 502 (2016).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 247 16
PDF Downloads 109 98 5