Thermal Assessment of Modified Ultra-Light Magnesium-Lithium Alloys

Open access

Abstract

The paper presents the results of the influence of commercial TiBor and AlSr10 master alloys on the refine the grains size, hardness and crystallisation process based on the thermal-derivation analysis of light cast magnesium-lithium-aluminium alloys. The effects of TiBor and AlSr10 content on the characteristic parameters of the crystallisation process of Mg-Li-Al alloys were investigated by thermal-derivative analysis (TDA). Microstructural evaluations were identified by light microscope, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy.

The results showed that the addition of TiBor master alloy reduced the grain size of Mg-9Li-1.5Al cast alloy from 900 μm to 500 μm, while the addition of AlSr10 master alloy reduced the grain size of investigated cast alloy from 900 μm to 480 μm. Moreover, an addition of TiBor and AlSr10 simultaneously reduced the grain size from 900 μm to 430 μm.

Results from the thermal-derivative analysis showed that the addition of grain refinement causes a decrease in nucleation temperature and solidus temperature.

[1] A. Białobrzeski, J. Pezda, Archives of Foundry Engineering 12 (2), 143-146 (2012).

[2] B. Jiang, Y. Zeng, M. Zhang, H. Yin, Q. Yang, F. Pan, T. Nonferr. Metal. Soc. 23, 904-908 (2013).

[3] D.H. Stjohn, M.A. Easton, M. Qian, J.A. Taylor, Metall. Mater. Trans. A. 44A, 2935-2949 (2013).

[4] A. Zieliński, G. Golański, M. Sroka, Mat. Sci. Eng. A-Struct. 682, 664-672 (2017), DOI: 10.1016/j.msea.2016.11.087.

[5] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Materialwiss. Werkst. 47 (5-6) SI, 428-435 (2016).

[6] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tanski, Int. J. Mater. Prod. Tec. 51 (3), 264-280 (2015).

[7] A. Zieliński, M. Miczka, B. Boryczko, M. Sroka, Arch. Civ. Mech. Eng. 4, 813-824 (2016), DOI:10.1016/j.acme.2016.04.010.

[8] A. Zhang, H. Hao, X. Zhang, T. Nonferr. Metal. Soc. 23 (11), 3167-3172, (2013).

[9] R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 60 (2), 65-100 (2015).

[10] M. Sun, M.A. Easton, D.H. StJohn, G. Wu, T.B. Abbott, W. Ding, Adv. Eng. Mater. 15 (5), 373-378 (2013).

[11] G. Wei, X. Peng, J. Liu, A. Hadadzadeh, Y. Yang, W. Xie1, Mater. Sci. Technol. 31 (14), 1757-1763 (2015).

[12] T. Mikuszewski, Metalurgija 53, 588-590 (2014).

[13] T. Mikuszewski, D. Kuc, Inżynieria Materiałowa 35 (3), 258-262 (2014).

[14] I. Bednarczyk, D. Kuc, T. Mikuszewski, Hutnik 83 (8), 321-323 (2016).

[15] R. Cheng, F. Pan, S. Jiang, Ch. Li, B. Jiang, X. Jiang, Prog. Nat. Sci. 23 (1), 7-12 (2013).

[16] V. Kumar, Govind, K. Philippe, R. Shekhar, K. Balani, Procedia Materials Science 5, 585-591 (2014).

[17] M. Krupinski, B. Krupinska, Z. Rdzawski, K. Labisz, T. Tanski, J. Therm. Anal. Calorim. 120 (3), 1573-1583 (2015).

[18] M. Król, T. Tański, P. Snopiński, B. Tomiczek, J. Therm. Anal. Calorim. 127, 299-308 (2017), DOI 10.1007/s10973-016-5845-4.

[19] R. Schmid-Fetzer, J. Gröbner, Metals 2 (3), 377-398 (2012).

[20] N.C. Goel, J.R. Cahoon, Bulletin of Alloy Phase Diagrams 11 (6), 528-546 (1990), DOI:10.1007/BF02841712.

[21] X. Guanglong, Z. Ligang, L. Libin, D. Yong, Z. Fan, X. Kai, L. Shuhong, T. Mingyue, J. Zhanpeng, Journal of Magnesium and Alloys 4, 249-264 (2016).

[22] H. Baker, ASM Handbook, Alloy Phase Diagrams, 10th ed., ASM International 3, 1992.

[23] A. Suzuki, N.D. Saddock, L. Riester, E. Lara-curzio, J.W. Jones, T.M. Pollock, Metall. Mater. Trans. A. 38 (2), 420-427 (2007).

[24] B. Jiang, Y. Zeng, H. Yin, R. Li, F. Pan. Prog. Nat. Sci-Mater. 22 (2), 160-168 (2012).

[25] J. Dutkiewicza, S. Rusz, W. Maziarz, W. Skuza, D. Kuc, O. Hilserb, Acta. Phys. Pol. A. 131 (5), 1303-1307 (2017).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 187 12
PDF Downloads 70 70 14