Microstructural Evolution During Laser Surface Alloying of Ductile Cast Iron with Titanium

Open access

Abstract

Diode laser surface alloying process was used to the in-situ synthesis of TiC-reinforced composite surface layers on the ductile cast iron substrate. The obtained composite surface layers were investigated using optical and scanning electron microscopy, and XRD diffraction.

It was found that the morphology and fraction of TiC phase is directly dependent upon both the concentration of titanium in the molten pool and also the solidification rate. With increasing titanium content, the fraction of TiC increases, whereas the fraction of cementite decreases. The TiC phase promotes a heterogeneous nucleation of primary austenite grains, what reduces a tendency of cracking in the alloyed layers.

[1] J.R. Davis. ASM Specialty Handbook, Cast Irons, 1996, ASM International.

[2] K. Janerka, M. Kondracki, J. Jezierski, J. Szajnar, M. Stawacz, J. Mater. Eng. Perform. 23, 2174-2181 (2014).

[3] A. Studnicki, R. Dojka, M. Gromczyk, M. Kondracki, Arch. Foundry Eng. 16, 117-123 (2016).

[4] B.S. Yilbas, I. Toor, C. Karatas, J. Malik, I. Ovali, Opt. Laser Eng. 64, 17-22 (2015).

[5] J.H. Abbud, Materials and Design 35, 677-684 (2012).

[6] K.F. Alabeedi, J.H. Abboud, K.Y. Bnounis, Wear 266, 925-933 (2009).

[7] M. Król, P. Snopiński, B. Tomiczek, T. Tański, W. Pakieła, W. Sitek, P. Est. Acad. Sci. 65/2, 107-116 (2016).

[8] D. Janicki, Proc. SPIE 8703, Laser Technology 2012: Applications of Lasers, 87030Q (2013).

[9] D. Janicki, M. Musztyfaga-Staszuk, Stroj. Vestn-J. Mech. E. 62 (6), 363-372 (2016).

[10] A. Lisiecki, Metals 5, 54-69 (2015).

[11] D. Janicki, Appl. Mech. Mater. 809-810, 423-428 (2015).

[12] M. Bonek, Arch. Metall. Mater. 59 (4), 1647-1651 (2014).

[13] M. Musztyfaga-Staszuk, L.A. Dobrzański, Cent. Eur. J. Phys. 12 (12), 836-842 (2014).

[14] H.I. Park, K. Nakata, S. Tomida, J. Mater. Sci. 35, 747-755 (2000).

[15] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, J. Mater. Process. Tech. 164, 1046-1055 (2005).

[16] A. Czupryński, J. Górka, M. Adamiak, Metalurgija 55 (2), 173-176 (2016).

[17] J. Górka, T. Kik, A. Czupryński, W. Foreiter, Weld. 28 (10), 749-755 (2014).

[18] S. Boncel, J. Górka, S. Milo, P. Shaffer, K. Koziol, Materials Letters 116, 53-56 (2014).

[19] J.F. Lancaster, Metallurgy of welding, 1980 Springer Netherland.

[20] C.R. Heiple, J.R. Roper, R.T. Stanger, J. Aden, Weld. J. 62, 72-77 (1983).

[21] N. Zarubova, V. Kraus, J. Cermak. J. Mater. Sci. 27, 3487-3496 (1992).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 280 238 21
PDF Downloads 146 134 21