The Attempt of the Low-Cycle Fatigue Life Description of Chosen Creep-Resistant Steels Under Mechanical and Thermal Interactions

Open access


The study focuses on the problem of determination of low-cycle fatigue properties for the chosen group of creep-resistant steels used in the power and chemical industries. It tries to find the parameter which would describe well the fatigue life and take into account mechanical loads and temperature. The results of LCF tests have been presented in the paper. New parameter P has been introduced. This parameter joins a plastic strain range, a stress range and temperature. The fatigue life has been predicted versus parameter P. The comparison of the predicted and observed values of fatigue life shows the agreement between these values. The method of fatigue life prediction formulated in this way is expected to describe the behavior of materials under thermo-mechanical fatigue.

[1] G.A. Webster, R.A. Ainsworth, High Temperature Component Life Assessment, Chapman & Hall, 1994 London.

[2] FITNET Report (European Fitness-for-service Network) Edited by M. Kocak, S. Webster, J.J. Janosch, R.A. Ainsworth, R. Koers, Contract No. G1RT-CT-2001-05071, 2006.

[3] Nuclear Electric Ltd, Assessment Procedure for the High Temperature Response of Structure, Proc. R5 Issue 2, UK, 1997.

[4] A. Hernas, Żarowytrzymałość stali i stopów, Wydawnictwo Politechniki Śląskiej, 1999 Gliwice (in Polish).

[5] RWTÜV Replicas for parts under creep according to TRD 508. Recommendation, 451-1983/1, 1983.

[6] S. Webster, A. Bannister, Structural Integrity Assessment Procedure for Europe – of the SINTAP programme overview, Engineering Fracture Mechanics, Elsevier Science 67, 6, 481-514 (2000).

[7] A.G. Miller, R.A. Ainsworth, A.R. Dowling and A.T. Stewart Background to and validation of CEGB report R/H/R6 – version 3. Int. J. Pres. Vessels Pip. 32, 105-196 (1988).

[8] K.M. Nikbin, G.A. Webster, C.E. Turner, A Comparison of Methods of Correlating Creep Crack Growth, Fracture 2, 1977.

[9] A.J. Fookes, D.J. Smith Using a Strain Based Failure Assessment Diagram for Creep-Brittle Materials, 2th International HIDA Conference, 2000 Stuttgart.

[10] S.S. Manson, G.R. Halford, Fatigue and durability of materials at high temperatures, ASTM International (2009).

[11] S.S. Manson, G.R. Halford, Fatigue and durability of structural materials. ASTM International (2006).

[12] S.S. Manson, Thermal Stress and Low Cycle Fatigue, 1966 New York: McGraw-Hill.

[13] S. Kocańda, J. Szala, The basics of fatigue calculations (Podstawy obliczeń zmęczeniowych – in Polish), PWN Warszawa 1997.

[14] M.R. Mitchell, R.W Landgraf (eds.), Advances in fatigue lifetime predictive techniques, ASTM STP 122, 1991.

[15] Z.W. Huang, Z.G. Wang, S.J. Zhu, F.H. Yuan, F.G. Wang, Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy, Materials Science and Engineering A 432, 308-316 (2006).

[16] W.J. Ostergren, Damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue, J. Test Eval. 4 (5), 327-339 (1976).

[17] J. Schijve, Fatigue of Structures and Materials in the 20th Century and the State of the Art, Proceedings of ECF 14 Conference: “Fracture Mechanics Beyond 2000, Kraków, 211-262 (2002).

[18] PN-EN 12952-4:2002.

[19] J. Bressers, L. Remy (eds.), Fatigue under Thermal and Mechanical loading. Netherlands: Kluwer Academic Publishers 1996.

[20] P. Hähner, C. Rinaldi, V. Bicego, E. Affeld, T. Brendel, H. Andersson, T. Beck, H. Klingelhöffer, H-J Kühn, A. Köster, M. Laveday, M. Marchionni, C. Rae, Research and development into a European code-of-practice for strain-controlled thermo-mechanical fatigue test, International Journal of Fatigue 30 (2), 372-381 (2008).

[21] H. Sehitoglu, Thermal and Thermo-mechanical Fatigue of Structural Alloys, In: Fatigue and Fracture ASTM Handbook 19, 527-556 (2008).

[22] J. Okrajni, M. Plaza, Simulation of the fracture process of materials subjected to low-cycle fatigue of mechanical and thermal character, Journal of Material Processing Technology 53, 311-318 (1995).

[23] J. Okrajni, G. Junak, A. Marek, Modelling of the deformation process under thermo-mechanical fatigue conditions, International Journal of Fatigue 30 (2), 324-329 (2008).

[24] A. Marek, J. Okrajni, G. Junak, M. Twardawa, Research on dependence between the fatigue life of X20CrMoV12.1 and P91 steels under conditions of interactions of thermo-mechanical and isothermal low-cycle fatigue, Solid State Phenomena 224, 93-98 (2015).

[25] G. Junak, M. Cieśla, Low-cycle fatigue of P91 and P92 steels used in the power engineering industry, Arch. Mater. Sci. Eng. 48 (1), 19-24 (2011).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 219 7
PDF Downloads 133 89 2