The Use of Numerical Modelling to Determine the Conditions of Regeneration of Medium Carbon Steel

Open access

Abstract

In the paper, the regeneration process of the material in grade C45 using the MAG welding was analysed. The effect of preheating on the properties of the regenerated layers was determined. Preheating technology was used to facilitate the process of regeneration and minimize the risk of imperfections. The use of numerical methods allows one to observe the direction of changes in the properties, structures and emerging stresses and accompanying strains of the elements depending on the temperature applied for preheating. Modeling of the stress state in the element made of medium carbon steel during the regeneration process was performed on original software based on the finite element method. The implemented numerical model consists of three basic elements – thermal phenomena, mechanical phenomena and phase transformations in the solid state. The performed numerical analysis made determining the optimum heating conditions possible, so that the material in the area of joint didn’t show tendency to create structural notches associated with the stress state.

[1] M. Avrami, J.Chem. Phys. 7, 1103-1112 (1939).

[2] R. Bęczkowski, Metalurgija 56 (1-2), 59-62 (2017).

[3] R. Bęczkowski, M. Gucwa, Weld.Technol. Rev. 87 (9), 43-46 (2015).

[4] R. Bęczkowski, M. Gucwa, J. Wróbel, A. Kulawik, American Institute of Physics 1738, Melville 2016.

[5] R. Bęczkowski, M. Gucwa, Arch. Foundry Engineer. 16 (4), 23-28 (2016).

[6] A. Bokota, A. Kulawik, Arch. Metall. Mater. 52 (2), 337-346 (2007).

[7] A. Bokota, Modelling of solidification and cooling of two-component metal alloys. Fields of temperature, concentrations and stresses, Monograph nr 79, 2001 Wydawnictwo Politechniki Czestochowskiej, Czestochowa.

[8] J. Brózda, Stale konstrukcyjne i ich spawalność, 2009 Instytut Spawalnictwa, Gliwice.

[9] M. Coret, A. Combescure, Int. J. Mech. Sci. 44, 1947-1963 (2002).

[10] T. Chmielewski, D. Golański, G. Gontarz, Weld. Technol. Rev. 83(12), 59-64 (2011).

[11] F.D. Fischer, G. Reinsner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, Int. J. Plasticity 16, 723-748 (2000).

[12] ISO 5817:2014 Welding – fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) – quality levels for imperfections.

[13] ISO 15614-7:2009 Specification and qualification of welding procedures for metallic materials – Welding procedure test – Part 7: Overlay welding.

[14] D.P. Koistinen, R.E. Marburger, Acta Metall. 7, 59-60 (1959).

[15] M. Kleiber, Finite element method in nonlinear continuum mechanics, 1985, PWN, Warszawa-Poznań

[16] V.D. Kuzniecow, P.W. Popowicz, Weld. Technol. Rev. 83 (10), 4-7 (2011).

[17] C. Li, Y. Wang, H. Zhan, T. Han, B. Han, W. Zhao, Mater. Design 31, 3366-3373 (2010)

[18] P.F. Mendez, N. Barnes, K. Bell, S.D. Borle, S.S. Gajapathi, S.D. Guest, H. Izadi, A.K. Gol, G. Wood, J. Manuf. Process. 16, 4-25 (2014).

[19] J. Orlich, A. Rose, P. Wiest, Atlas zur Wärmebehandlung von Stähle, III Zeit Temperatur Austenitisierung Schaubilder, 1973 Verlag Stahleisen MBH, Düsseldorf.

[20] M. Różański, W. Gawrysiuk, Weld. Technol. Rev. 79 (9), 7-12 (2007).

[21] J. Szajnar, A. Walasek, C. Baron, Arch. Metall. Mater. 58 (3), 931-936 (2013), DOI: 10.2478/amm-2013-0104.

[22] L. Taleb, N. Cavallo, F. Waeckel, Int. J. Plasticity 17, 1-20 (2001).

[23] J. Winczek, Procedia Eng. 136, 108-113 (2016).

[24] J. Winczek, E. Gawrońska, Metalurgija 55 (2), 225-228 (2016).

[25] J. Winczek, A. Kulawik, Metalurgija 51 (1), 9-12 (2012).

[26] F. Wever, A. Rose, Atlas zur Wärmebehandlung von Stähle, I Zeit Temperatur Umwandlungs Schaubilder, 1961Verlag Stahl Eisen MBH, Düsseldorf.

[27] O.C. Zienkiewicz, R.L. Taylor, The finite element method, 2000 Oxword: Butterworth-Heinemann.

[28] J. Zimmerman, D. Golański, T. Chmielewski, W. Włosiński, Weld. Technol. Rev. 85 (1), 12-16 (2013).

Archives of Metallurgy and Materials

The Journal of Institute of Metallurgy and Materials Science and Commitee on Metallurgy of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.571
5-year IMPACT FACTOR: 0.776

CiteScore 2016: 0.85

SCImago Journal Rank (SJR) 2016: 0.347
Source Normalized Impact per Paper (SNIP) 2016: 0.740

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 262 262 16
PDF Downloads 86 86 14